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Centroid of an Interval Type-2
Fuzzy Set: Continuous vs. Discrete

Centroide de un Conjunto Difuso Tipo-2
de Intervalo: Continuo vs. Discreto

Abstract

Karnik-Mendel algorithm involves execution of two independent
procedures for computing the centroid of an interval type-2 fuzzy
set: the first one for computing the left endpoint of the interval
centroid (which is denoted by ¢,), and the second one for computing
its right counterpart (which is denoted by ¢ ). Convergence of the
discrete version of the algorithm to compute the centroid is known,
whereas convergence of the continuous version may exhibit some
issues. This paper shows that the calculation of ¢, and ¢ are really
the same problem on the discrete version, and also we describe
some problems related with the convergence of the centroid on its
continuous version.

Key words: Centroid, Karnik-Mendel algorithm, interval type-2
fuzzy set, recursive algorithm.

Resumen

El algoritmo de Karnik-Mendel presenta siempre dos procedi-
mientos independientes para calcular el centroide de un conjunto
difuso tipo-2 de intervalo: el primero calculando su extremo iz-
quierdo (denotado como ¢,) y el segundo calculando su extremo
derecho (denotado como ¢ ). Esto a’un es cierto en diferentes
versiones del algoritmo que han sido propuestas en la literatura. En
la version discreta del centroide no hay problemas relacionados
con la convergencia dado que existe un nimero finito de términos
para sumar. Por otro lado, la versién continua tiene algunos proble-
mas relacionados con la convergencia. Este articulo presenta una
discusion simple donde se muestra que el cilculo de ¢ y ¢ en su
version discreta es el mismo problema y no dos problemas diferen-
tes. También se muestran algunos problemas relacionados con la
convergencia del centroide en su versiéon continua.

Palabras clave: Centroide, Algoritmo Karnik-Mendel, Algoritmo
recursivo, conjunto difuso tipo-2 de intervalo.

INGENIERIA '+ Vol.16 + No.2 + ISSN 0121-750X + UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS 67



Centroid of an Interval Type-2 Fuzzy Set: Continuous vs. Discrete

1. Introduction

The Karnik-Mendel (KM) algorithm was proposed as a method for computing type
reduction of interval type-2 (IT2) fuzzy sets [1]. This algorithm has been studied
theoretically and experimentally in order to improve its performance on applications. It
gives an exact way to get the centroid (if it exists), which is a closed interval, of an I'T2
fuzzy set. KM algorithm has two versions: continuous and discrete. The corresponding
version is applied on problems depending whether or not the variable’s domain is
continuous or discrete. Contrary to its discrete counterpart, the continuous version has
some problems related to the convergence of the integrals, because they are improper
integrals.

Mendel and Liu [2] proved the convergence of the KM algorithm if the centroid
exists. An enhanced version is known as Enbanced Karnik-Mende!/ (EXXM) algorithm which
is 40% faster than KM algorithm [3]. Both versions of this algorithm involve two procedures
(even in recent papers [3]): (1) the first one computing ¢,, which is the left part of the
centroid and, (2) the second one computing ¢ , which is the right part of the centroid.

On a discrete domain, Melgarejo ez al. [4], [5] presented an alternative version of KIM
algorithm re-expressing the equations for ¢ and ¢ but still involving two different steps.
Separate procedures for computing the centroid of an I'T2 fuzzy set have direct implications
on engineering applications, such as in [6], where ¢, and ¢ were calculated by hardware.

According to Mendel and Wu [7] “The computation of I.and K represents a bottleneck
for interval type-2 fuzzy logic systems”, where L. and R are two switch points which are
found by the KM algorithm. On the other hand, Melgarejo et al. [5] state that “The KM
algorithm finds L. and R by means of two procedures that are essentially the same
computationally speaking”. The aim of this paper is to show that the preceding sentence
is true on the discrete version of the centroid. We will show that the calculation of ¢,
and ¢ is the same problem and therefore that separate procedures are not required to
compute the centroid, i.e., equations for ¢, and ¢ are related and one expression can be
deduced from the other one. Also, we will present a simple discussion where the KM
algorithm collapses on its continuous version.

2. Continuous version of the centroid

Given an IT2 fuzzy set A (for more details see [8]) which is defined on an universal set
XER, with membership function u;(x),x€ X, its centroid (if it exists) ¢(A) is
a closed interval [¢,, ¢ ] in the classical sense of mathematics, i.e.,

e(A) = [er,er]

where ¢ and ¢ are respectively the minimum and maximum of all centroids of the

embedded type-1 fuzzy sets in the footprint of uncertainty (FOU) of .4 (Figure

1(2)). Mendel e# al in some papers [2], [9] define continuous version for ¢, and ¢ of

an IT2 fuzzy set A:
o = r',“i.ll centroid(A. (1)),
eR

¢, = max centroid(A.(r)),
reik
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where +o0

I zpa, ) (z)dz
centroid(A.(1)) = ;‘x— (3)
’ ,.'.“,-L_(f)(.}')d.l'
1 +00
_f ofi 1 (z)dz + ! xp ;(x)de
== : 4)
| #i(z)dz + ] w5 (x)dz
—00 i
+o0
[ zpa, o (x)de
centroid(A.(r)) = _jx— (5)
] pa, m(x)de
[ zp;(z)de + ] afi 3 (x)dz
= — - ; (6)

r 20
J pi@)de+ [ fz(z)de
_x_‘ T

and where A (/) and A4 (r) denote embedded type-1 fuzzy sets for which:

B i(2), ifz<l,
Ha.w(@) = {,u (z), ifx>I,

, ifx < r,
Ha, (rJ(I)_{ E,; :fi;r

According to Mendel, /, re X are switch points, i.e., values of x at which x4 y (x) and

. . _ e(l)
u A, (x)switch from 1 - (x) to u~(x) (or vice versa). i+ (x) and u - (x) are the upper
membership function and lower membership function of A4 (Figure 1(b) and Figure 1(c)).

2.1. Non-existence of the centroid

Mendel ez al. |2], [9] has studied properties of (4) and (6) assuming existence of the
centroid, that is, convergence of the integrals that define it. However, this is not always
true and there are some IT2 fuzzy sets for which (4) and (6) do not exist in the sense that
they are not finite. One example is the following.

Example 1. Let A be an IT2 fuzzy set (Figure 2) defined over the real numbers X=R
with lower and upper membership functions defined by:

1 1

1

fijlz) = T
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1 (@)
1
Upper
Footprint of membership
uncertaifity function
(FOU) 7, ()
Lower
Embeddpd membership
type-1 function
fuzzy set " A (x)
T
(a)
4 _u’i{:-:)
1 1
I
1
1
I
I
1
i
i * x
(b) (c)

Figure 1. (a) Membership function of an interval type-2 fuzzy set. (b) Interpretation of the switch point /.
(c) Interpretation of the switch point .

Then for a given /:
f (x)dx —i—J Tty x)dr
centroid( A.(1)) = lim

Iim
t—+00

%(i)

= '11 ctan(l) + = '11 ctan(t)

but the denominator i
3 1 3
5 arctan(l) + 7 arctan(t) — 5 arctan(l) + i

1111 —1+12 - —x
4 1+ 2

if #— + oo. Then centroid (A ( /)) — —oo and it does not exist. The calculation of
centroid (A (7)) is similar and although not shown, we claim that centroid (A (7)) — + co.
In this case (1) and (2) do not make sense.

and the numerator
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Figure 2. Membership function of an IT2 fuzzy set Awhich does not have centroid.
In this case [ (x) = 0.5/(1+x,) and Pz (x) = 1/(1+x,), forallxe X=R

2.2. Continuous version of the KM algorithms
Karnik-Mendel (KM) algorithms for computing ¢,and ¢ are so similar, that we will refer
only to the ¢, procedure for the sake of brevity (for more details see [2]):

1. Compute the initial value, ¢, for ¢, as

GLGRITCI

J ; I
T a(z(@) + p(@)de
o0

| (A3(@) + p (@)

and then set /= 1 and
Jf| = Cy-

2. Compute centroid (A, (/)) as

Ly + o0
] xfi(x)dr + ![ wp ;(x)de

centroid(A,(l;)) = -

I + o0
[ Fila)de + ,'f p 5 () dx

3. If convergence has occurred, stop. Otherwise, go to step 4.
4. Set l;+1 = centroid(A.(1;)).

5. Set /= 7+ 1, and go to step 2.
Now we show an example where the preceding algorithm collapses.

Example 2. Let A be the IT2 fuzzy set presented in Section 2.1. One problem arises
when we want to find ¢, for this fuzzy set. In the first step it is clear that ¢ exists and it is
given by:

INGENIERIA '+ Vol.16 + No.2 + ISSN 0121-750X + UNIVERSIDAD DISTRITAL FRANCISCO JOSE DE CALDAS 71



Centroid of an Interval Type-2 Fuzzy Set: Continuous vs. Discrete

T0oC

[ 2(iz(@) + p g (x))da

o =
0 +o0

—_
—
=

filz)+p -(:r) Yda:

g

=

+
S

= lim
t—r+4oo

o

o] b

|
e
+
<]
.

=

= lim ——
t—+oo Jarctan(t)

= (.

Sowe set/=1and / = ¢ = 0. In the second step, as we showed in Section 2.1, centroid
(A (/,)) = centroid (A ( O)) does not exist (it is not finite). In this case the KM algorithm
for ¢ collapses. The reader should take note that it does not matter which initial value /, =
¢ is used (initialization point), in the second step centroid (A (/,)) is not finite.

3. Discrete version of the centroid

Karnik and Mendel [1] demonstrated that ¢ and ¢ can be computed from the lower and
upper membership functions of A as follows

¢; = mincentroid(A. (L)), (7)
LeN '
¢ = max centroid(A.(R)), (8)
were
L N
Z‘:_’[(":i)'l__z_ it ( )
centroid(A.(L)) = ='; “:l\’;" : 9)
Z_’l(!-’;)‘f‘ ; i_{‘(tr)
i=1 i=L41
R N
2, {:E]("."]"’I L [fﬁ‘l('j'ﬂ)
centroid(A. (R)) = = = . (10)
_:-i(ri)—’_ Z F\(:r)
i=1 i=R+1

and where I. € N is the switch point that marks the change from & ; to u -~ (Figure
3(a)), and R € N is the switch point that marks the change from 7 ; to u ~ (Figure 3(b)).
N e N is the number of discrete points on which the x-domain of 4 has been discretized.
It is assumed that in (9) and (10) x,< x,< ... <x_, in which x, denotes the smallest
sampled value of xand x, denotes the largest sampled value of x [3].
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Hi (x) B (z)

Ty T2 ccr TL ccc TRt TN

(a) (b)

Figure 2. (a) Interpretation of the switch point L. (b) Interpretation of the switch point R.

3.1. Discrete version of the KM algorithm and recursive algorithm
In order to find I, and consequently ¢, the KM algorithm [2] goes as follows:

1. Start the search by computing an initial point ¢”:
N N
(.'{ = Z .I-',:f)',: Z 9,‘ 5
i=1

with pr

0; = (p (i) +Hz(2i))/2, i=12,...,N.
2. Find £ (1 <4< N-1)such thatx, <¢'< x| .

3. Set o _ (A, i<k,
R VG N

and compute N

N
CH = Z .-17,-3.; Z 6;
i=1 i=1

4. If ¢" = ¢ then stop and set ¢, = ¢”", L. = &£. Else go to step 5.

5. Set ¢ =¢""and go to step 2.

The alternative recursive algorithm to compute described in [5] goes as follows:

1. Start by doing: i
Do =) wipz(wi),
i=1 =

Jl\r
D),
i=1

¢ =IN-]

Fy

2. Compute:
pu Dj = Dj_l +x; (F;i (.‘I.‘j) — i (.’I.'j-)},

JPj —] Pj—] + }'_fq(rj) - E‘_;‘(:Bj)a
&= Dyl Py
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3. Check if ¢ <v¢,. If yes, set ¢, = ¢ .
J J

4. Doj=;+1

5. If j=N-1,stop.

3.2. A special property of the discrete version

The following property was first noted in [10]. Let us rewrite the expression (10). If we
let j=N-1-7then we will have the following:

1.if 1</<Rthen1<N+1-j<Randhence N-R+1< /7 <N
22f R+1</<NthenR+1<N+1-j<N,and hence 1 £ j SN -R;
therefore (10) can be written as (by properties of sums)

N N—R

> ying(y) + X vili(ys)
J=N—R+1 : j=1

N N-R

> pi)+ X maly)

j=N=R+1 i=1
N—R N

> yiraly)+ X wing(ys)
ji=1 j=N-R+1

N-R N
Z] miyi)+ > pai(y)
=

J=N-R+1

centroid( A.(R)) =

L' N
> yikz(y;) + yin ;(yj)
i=1 j=L'+1 '

= an
2 i)+ X

2 paw)

L'+1

7

were
Y =xNni1-5, 1< <N, (12)
and
L'=N-R. (13)

Equations (9) and (11) have #he same form. We can obtain one from the other only with
the substitution of x by Y and L. by L.” (or vice versa). Equations (9) and (11) differ in
and L (switch points) and L’ in that the values of x are indexed in reverse order as (12)
establishes. Equation (12) means that

Y1 =IN, Y2 =TN-1s---, YN = I,

as we show in Figure 4. It is just a permutation (a bijective function) of the N values of
x. Equation (12) can be thought as an indexation of the N values of x in reverse order.

It can be seen that the problem for computing ¢ and ¢ can be reduced to one single
procedure. It is just necessary to reverse the order in which the values of x are indexed,
and if we are computing ¢, then we will need to find a minimum, and if we are computing
¢ then we will need to find a maximum. We present a geometrical interpretation in Figure
5(a) and Figure 5(b), where each x ( y,) is accompanied by its lower u ;(x,) (u ;(,)) or
upper @ +(x,) (% +(,)) grade of membership.
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If we start form (9) by using a similar argument then we will obtain an analogous
expression to (10), i.e., there will be an expression

R N
21 Cj!fj/;_{zj) + .__%; | zjf 5(24)
centroid(A, (L)) = *— e (14)
S+ X Falz)
i=1 J=R+1

which is analogous to (10), where R,= X 1< /<N,and R'=N-L.

N+15°

ey ey
| |

- - ~ -

| + + |
— = =t =4 = = =
Py - i’ .- Y e .

L o = -
= = L3 + E e TR D g
e S O ) ’ R P
il e v b S L
R i
i | £
T e
‘a”4’ F ] ~ -\."_\_‘._‘_
e . . il S
—a ” ! i ol
L - ¥ + u e

e e e ? . e e
i ~ Al ey = i e
Ly 4 -
- - "~
= = | = + | =
i T ) -

= = =~

- ° =

Figure 4. Permutation Y= Xy, (IS j<N) that inverts the order in which the values of x are indexed.

N+1+j

~1)

(z1)

reit (yn—1)

B =
< < = = _= Direction of R = _= Direction of
Rt 2 2 =2 8
. . calenlation caleulation
] : - o :
o for ¢ = = 2 fore

rn_1eft (TN_1)
eneft ()
i1 B (yre_1)

Tr-1ef (2L

TL4
Un -

(a)

Figure 5. (a) Direction of calculation for computing ¢, by using (9).
(b) Direction of calculation for computing ¢, by using (11).

3.3. A more general expression

We define a general expression' (15) for computing a centroid (¢, or ¢ ) because of the
dnality between (9) and (11). It is just necessary to replace appropriate values in order to
tind ¢, or ¢ as we show in Table L.

M N
Poomtude. B mpzlind

centroid(A. (M)) = = e (15)
Yoai(wi)+ X pi(wi)
i=1 i=M+41

The substitution of M and w,in (15) by L. and x, respectively gives the expression (9);
and the substitution of M and », in (15) by L."(= N - R) and y,(= x, ) respectively gives

N+1-
the expression (11) (which is the same Equation (10) as we showed above).

 This problem can also be re-formulated with the definition of a general expression by using the duality between(10) and (14).
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Table I. Summary for computig a centroid (c, or ¢ ) by using (15) based on equations (9) and (11)

c | M i Observation
(1<i<N)
o | L T If we are finding ¢;, we will have to find L such that (15)
is minimum by using r;
e | Bt i If we are finding ¢,., we will have to find L' (= N — R)
such that (15) is maximum by using u; (= &tn41-i)

1y (@)

/

i
-5 =25 0 2.5 5 7.5 10 12.5 15

Figure 6. IT2 fuzzy set Awith non-symmetric footprint of uncertainty that is defined in the universal set X =[-5, 14].
Example 3. This example is also considered in [2], [4], [5]. Consider an IT2 fuzzy
set 4 with non-symmetric footprint of uncertainty as we show in Figure 6.

The universal set is the closed interval X = [-5, 14]. The lower membership function
corresponds to a non-symmetrical triangular membership function

3 0.6(x +5)/19, ifz < 2.6,
pilx) =4 ( )/ : - (16)
0.4(14 — 2)/19, ifz > 2.6,
whereas the upper membership function is a non-symmetrical Gaussian
- exp (-0.5((x ~2)/5)?),  ifw <785,
filz) = (17)

exp —(1,5{(.:.-—5-}},11.75)"’). ifz > 7.185.

The x-domain of A has been discretized into N = 50 points, then Ax = (14-(-5))/(N- 1)
=19/49 = 0.388. Hence, x, = -5+(-1)Ax = -5+(+1)(19/49), where 1 <7< 50. Columns
1 and 2 of Table II show all these values. Columns 3 and 4 show u +(x) and & +(x/) which
have been calculated from (16) and (17). Columns 6, 7 and 8 are the same as columns 2, 3
and 4 respectively, but they were written in reverse order, i.e., row 1 (of columns 6, 7 and
8) corresponds to row 50 (of columns 2, 3 and 4), row 2 corresponds to row 49 and so
on. Columns 5 and 9 were calculated with the expression (15). For example, the third
value ¢ =3.993 of column 9 was calculated as:

wift g (mi)

a = (14)(0.017) + (13.612)(0.031) + (13.224)(0.054) +

g L)
o

(12.837)(0.024) + (12.449)(0.033) + - - - + (—=5)(0.000)

woilwi) #tw)

b= 0.017 + 0.031 + 0.054 + 0.024 + 0.033 + - - - + 0.000
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and finally ¢ =a/b = 3.993. Similatly, the third value ¢ = 2.417 of column 5 was
calculated as

x i g (xi)

a = (=5)(0.375) + (—4.612)(0.417) + (—4.224)(0.461) 4

rip s ()
Tip gl

(—3.837)(0.037) + (—3.449)(0.049) + - - - + (14)(0.000)

[FLE] #ilai)

b =0.375 + 0.417 + 0.46T + 0.037 + 0.049 + - - + 0.000
and finally ¢ =a/b = 2.417.
Melgarejo [5] reports that (with N = 50)
1. ¢,=3.993and ¢, = 7.1538 (KM Algorithms).

2. ¢, =0.3767 and ¢ = 7.156 (Recursive Algorithm).

Table IT shows that the minimum value (shaded cell) of column 5 is ¢ = 0.375 and the
maximum value (shaded cell) of column 9 is ¢ = 7.156, where both columns were calculated
with the general expression (15).

The reader should take note that this example cannot be solved with the continuous
version of the KM algorithm because the integrals cannot be calculated in a closed form.

4. Conclusion

This paper showed that expressions (9) and (10), which were given by Karnik and
Mendel in order to calculate ¢, and ¢ , have the same form with a simple substitution of
its index variable. Therefore there is a duality between them and they are not independent.
We presented a general dual expression (15) for computing ¢, and ¢ . It is just necessary
to replace appropriate values in order to find ¢, or ¢ as we showed in Table L.

Finally, we showed that computation of the continuous version of the centroid may
exhibit non-existence abnormalities, which do not occur in the discrete version. Simple
examples were showed to illustrate the latter issaues.
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Table Il. Numerical example (see text for explanation). In this table:
N =50, y, = x51-, ¢ = 0.375 (shaded cell) and c = 7.156 (shaded cell)

1 2 3 4 5 6 7 8 9

i @ () pala)| o« vi palwi) Balw)] e

1 [-5.000 0.000 0.375 |3.335 14.000  0.000 0.017 |3.8%%
214612 0012 0417 |2.852 13.612  0.008 0.031 | 3.934
3(-4.224  0.024 0461 | 2417 13.224  0.016 0.054 | 3.993
4 |-3.837  0.037 0.506 | 2.029 12.837 0.024 0.090 | 4.090
51-3.449 0.049 0.552 | 1.687 12449 0.033 0.143 | 4.241
6-3.061 0061 0599 [1390 [[12.061 0041 0217 |4.459
71-2673 0073 0646 |1.137 ||11.673 0.049 0311 |4.747
8 |-2286 0086 0693 0924 ||11.28 0.057 0426 |5.004
9 |-1.898 0.098  0.738 |0.751 ||10.898 0065 0555 [5477
10[-1.510  0.110 0782 0614 [[10.510 0073 0689 |5.862

-1.122  0.122 0.823 | 0.511 10,122 0.082 0814 [6.218
-0.735  0.135 0.861 |0.439 9.735 0.090 0916 |6.520
131-0.347  0.147 0.896 | 0.394 9.347 0.098 0981 |6.758
141 0.041  0.159 0.926 | 0:375 8.959  0.106 1.000 | 6.931
15( 0429  0.171 0.952 | 0378 8571  0.114 0970 | 7.046
16| 0.816 0,184 0.972 | 0.400 8.184 0122 0897 |7.114
17 1.204  0.196 0.987 | 0.439 7796 0.131 0.789 | 7.147
18] 1.592  0.208 0.997 | 0.492 7408 0.139  0.661 | T156
191 1.980  0.220 1000 | 0.556 7.020 0.147  0.604 | 7.152
20| 2.367 0.233 0.997 | 0.630 6.633  0.155  0.651 | 7.135
21| 2,755 0.237 0.989 |0.712 6.245  0.163 0.697 | 7.105
22| 3.143  0.229 0.974 | 0.802 5.857  0.171 0.743 | 7.061
23| 3.531 0.220 0.954 | 0.897 5469 0.180  0.786 | 7.003
2413918 0212 0.929 | 0.997 5.082 0.188  0.827 | 6.933
25 4306 0.204 0.899 | 1.100 4694 0196  0.865 | 6.851
26| 4694 0.196 0.865 | 1.204 4306 0204 0899 | 6757
27| 5.082  0.188 0.827 | 1.309 3918 0212 0929 | 6.653
28| 5469  0.180 0.786 | 1.413 3.531 0220 0954 | 6.540
29| 5.857  0.171 0.743 | 1.515 3143 0229 0974 | 6.420
30( 6.245  0.163 0.697 | 1.615 2755 0237 0989 |6.29%4
31| 6.633 0.155 0.651 | L.711 2367 0.233 0.997 |6.161
32( 7.020  0.147 0.604 | 1.803 1.980  0.220 1.000 | 6.021
33| 7408  0.139 0.661 | 1.912 1.592  0.208  0.997 | 5.876
34| 7.796  0.131 0.789 | 2.053 1.204  0.196 0987 |5.728
35| 8.184  0.122 0.897 |2.220 0816 0.184 0972 |5577
36| 8571 0.114 0.970 |2.407 0.429  0.171 0952 | 5426
37| 8959  0.106 1000 | 2.602 0.041 0.159 0926 |5.274
38( 9347 0.098 0981 |2.794 |[-0.347 0.147  0.896 |5.124
39(9.735  0.090 0916 |2975 ||-0.735 0.135  0.861 |4.976

2

40110122 0.082  0.814 |[3.136 |[|-1.122 0122  0.823 |4.831
4110510 0073 0.689 |3273 |[-1.510 0.110  0.782 | 4.690
42110898 0.065  0.555 |[3.384 |[|-1.898 0.098 0738 |4.552

43(11.286 0.057 0.426 | 3470 |[-2.286 0.086  0.693 | 4420
44111.673  0.049 0.311 |3.533 -2.673  0.073 0.646 | 4.293
45112.061  0.041 0217 |3.576 |[-3.061 0.061 0.599 [4.171
4612449 0,033 0.143 | 3.605 |[-3.449 0.049  0.552 [4.055
47(12.837 0.024 0.090 | 3.622 -3.837  0.037 0506 |3.944
48(13.224 0.016 0.054 | 3.633 -4.224  0.024 0461 | 3.839
49(13.612 0.008 0.031 |3.639 |[-4.612 0012 0417 |3.739
50(14.000  0.000 0.017 |3.645 |[-5.000 0.000 0375 |3.645
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