Integrated modeling of complex socio-ecological systems: case study of the Mojana ecoregion

Paula Andrea Villegas Gonzalez, Maria Juliana Florez Florez, Nathaly Triviño León, Jorge Alberto Escobar, Nelson Obregón Neira, Alex Mauricio González Méndez, Ramon Eduardo González Salazar

Abstract


Context: It was observed that the modeling of complex socio-ecological systems based on Agent-Based Simulations has the advantage of allowing the integration of different processes, scales, variables and the possibility to generate scenarios with actors in the context of the modeling with stakeholders.

Method: A computational tool for planning and support of decision-making processes related with water resources management, specifically in the case of floods in the Mojana ecoregion (Colombia) is designed along with social participation workshops related with beliefs, values, social networks and resilience.

Results: The model has two components: the first one represents the hydrodynamic of flooding by means of the numerical platform ISIS 2D. The second one, regarding the social aspects of the region, is handled via agent systems modeling. Both schemes are integrated into the NetLogo platform.

Conclusions: The integrated modeling of complex socio-ecological systems allow us to visualize the behavior of the population and the natural resources in a territory, contributing to the design of policies and educational processes involving different disciplines and actors. Future work will focus on regional modeling and the analysis of the impact produced by the use of these tools.


Keywords


Agent-based modeling; modeling with stakeholders; socio-ecological system

References


L. Parrott, “Hybrid modelling of complex ecological systems for decision support: Recent successes and future perspectives”. Ecological Informatics, 6(1), 2011, pp. 44–49. [En línea] Disponible en: http://doi.org/10.1016/j.ecoinf.2010.07.001

DNP and FAO, Programa de desarrollo sostenible de la región de la Mojana, Colombia. I. G. Comunicaciones, Ed., (Primera ed). Bogotá D.C., 2003.

G. Harris & G. Harris, Seeking sustainability in an age of complexity. Seeking Sustainability in an Age of Complexity, 2007, [En línea] Disponible en: http://doi.org/10.1017/CBO9780511815140

S. A. Levin, (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems, 1(5), 431–436. http://doi.org/10.1007/s100219900037.

L. Parrott, (2002). Complexity and the Limits of Ecological Engineering. American Society of Agricultural Engineers I, 45(5), 1–6.

D. A. Meyer, (1997). Towards the global: complexity, topology and chaos in modelling, simulation and computation 1 Introduction 2 Hierarchical e ciency 3 Topology induces complexity, (September), 0–5.

Dawn C. Parker, Berger Thomas and S. M. M. (2002). Agent-Based Models of Land-Use and Land-Cover Change. LUCC Report Series, (6), 140.

F. Bousquet and C. Le Page, (2004). Multi-agent simulations and ecosystem management: a review. Ecological Modelling, 176(3-4), 313–332. http://doi.org/10.1016/j.ecolmodel.2004.01.011.

R. B., Matthews, N. G. Gilbert, A. Roach, J. G. Polhill and N. M. Gotts, (N.d.). Agent-based land-use models: a review of applications. LANDSCAPE ECOLOGY. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=edswsc&AN=000250632100005〈=es&site=eds-live.

L. An, (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36. http://doi.org/10.1016/j.ecolmodel.2011.07.010.

S. Balbi, C. Giupponi, P. Pérez, and M. Alberti, (2013). A spatial agent-based model for assessing strategies of adaptation to climate and tourism demand changes in an alpine tourism destination. Environmental Modelling and Software, 45, 29–51. http://doi.org/10.1016/j.envsoft.2012.10.004.

D. Brown, S. Page, R. Riolo and W. Rand, (2004). Agent-based and analytical modeling to evaluate the effectiveness of greenbelts. Environmental Modelling & Software, 19(12), 1097–1109. http://doi.org/10.1016/j.envsoft.2003.11.012.

O. Barreteau and F. Bousquet, (2000). SHADOC: a multi‐agent model to tackle viability of irrigated systems. Annals of Operations Research, 94(1-4), 139–162.

P. Schreinemachers and T. Berger, “An agent-based simulation model of human-environment interactions in agricultural systems”. Environmental Modelling and Software, 26(7), 2011, pp. 845–859, [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2011.02.004

S. Balbi, A. Prado, P. Gallejones, C. P. Geevan, G. Pardo, E. Pérez-Miñana and F. Villa, “Modeling trade-offs among ecosystem services in agricultural production systems”. Environmental Modelling & Software, 72, 2015, pp. 314–326, [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2014.12.017

B. Anselme, F. Bousquet, A. Lyet, M. Etienne, B. Fady, and C. Le Page, Modelling of spatial dynamics and biodiversity conservation on Lure mountain (France). Environmental Modelling & Software, 25(11), 2010, pp. 1385–1398. [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2009.09.001

P. Kroes, Technical Artefacts: Creations of Mind and Matter: A Philosophy of Engineering Design, Philosophy of Engineering and Technology 6, 2012, pp. 127-161, [En línea] Disponible en: http://doi.org/10.1007/978-94-007-3940-6

H. Arendt, Trabajo. En La condición humana, 2007, pp. 157–191. Editorial: PAIDOS IBERICA. Barcelona.

J. Epstein, “Why model? Journal of Artificial Societies and Social, 11(4), 2008, p. 6. [En línea] Disponible en: http://doi.org/10.1080/01969720490426803

M. Schwaninger, “Model-based management (MBM): a vital prerequisite for organizational viability”. Kybernetes, 43(6), 2010, pp. 1419 - 1428.

G. Restrepo, Aproximación Cultural al Concepto de Territorio. Revista Perspectiva Geográfica, 3, 2010, [En línea] Disponible en: http://datateca.unad.edu.co/contenidos/100007/Leturas_apoyo_Act6/Aproximación_cultural_al_concepto_de_territorio_banrepcultural.org.pdf

R. Barthel, S. Janisch, N. Schwarz, A. Trifkovic, D. Nickel, C. Schulz and W. Mauser, “An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain”. Environmental Modelling & Software, 23(9), 2008, pp. 1095–1121, [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2008.02.004

CEPAL, Población y Desarrollo. Modelos demográficos para la proyección de la demanda del sector social, 2007. Editorial CEPAL. Santiago de Chile.

M. Schwaninger and M. Janovjak, Institut für Betriebswirtschaft (Eds.), “Model-Based Management: A Systemic Approach from the Pharmaceutical Industry”. Diskussionsbeiträge, 56. St. Gallen, 2008.

R. A. Kelly, A. J. Jakeman, O. Barreteau, M. E. Borsuk, S. ElSawah, S. H. Hamilton and A. A. Voinov, “Selecting among five common modelling approaches for integrated environmental assessment and management”. Environmental Modelling & Software, 47, 2013, pp. 159–181. [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2013.05.005

A. Voinov and F. Bousquet, “Modelling with stakeholders”. Environmental Modelling & Software, 25(11), 2010, pp. 1268–1281. http://doi.org/10.1016/j.envsoft.2010.03.007

M. A. Max-Neef, Desarrollo a escala humana, 1993. Editorial Nordan-Comunidad. Montevideo, Uruguay.

T. Berger, R. Birner, N. Mccarthy, J. DíAz and H. Wittmer, “Capturing the complexity of water uses and water users within a multi-agent framework”. Water Resources Management, 21(1), 2006, pp. 129–148. [En línea] Disponible en: http://doi.org/10.1007/s11269-006-9045-z

J. C. Refsgaard, J. P., van der Sluijs, A. L., Højberg & P. A. Vanrolleghem, “Uncertainty in the environmental modelling process – A framework and guidance”. Environmental Modelling & Software, 22(11), 2007, pp. 1543–1556. [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2007.02.004

CORPOICA, El plan de la Mojana: aplicación del nuevo paradigma de desarrollo sostenible. CORPOICA, Vol 2, 1998.

L. Posada, “Si no se concluyen las obras en La Mojana, el desastre será peor”. 2012, UN periódico.

P. A. Villegas, M. Melgarejo, and E. Pérez, MOJANA: Modelo Organizacional Jerárquico de Agentes Naturales del Agua. En proceso de publicación.

Triviño, N., Escobar, J.A., and Villegas, P.A. Modelación numérica bidimensional de escenarios de inundación en el municipio de Nechí Antioquia. Proyecto de grado para optar al título de Ingeniera Civil. Facultad de Ingeniería. Pontificia Universidad Javeriana, 2015.

U. Wilensky, (1998). NetLogo Wealth Distribution model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. [En línea] Disponible en: http://ccl.northwestern.edu/NetLogo/models/WealthDistribution

M. Felsen and U. Wilensky, NetLogo Urban Suite - Sprawl Effect model, Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 2007, [En línea] Disponible en: http://ccl.northwestern.edu/NetLogo/models/UrbanSuite-SprawlEffect

G. Dunham, S. Tisue and U. Wilensky, NetLogo Erosion model. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 2004, [En línea] Disponible en: http://ccl.northwestern.edu/NetLogo/models/Erosion

ISIS, User Manual, ISIS 2D Cost effective, integrated software solutions. CHM2HILL, 2014.

D. Wirasaet, E. J Kubatko, C. E Michoski, S. Tanaka, J. J Westerink and C, Dawson. “Discontinuos Galerkin methods whith nodal and hybrid modal/nodal triangular, quadrilateral and polygonal elements for nonlinear shallow water flow”. Computer methods in applied mechanics and engineering, 270, 2014, pp. 113-149.

P. Kundu and L. Cohen, Fluid Mechanics. California, Academic, 1990.

Henderson-Sellers and P. Giorgini, Agent-Oriented Methodologies. Idea group Inc. pp. 406. 2005.

T. Filatova, P. H. Verburg, D. C. Parker, and C. A. Stannard, “Spatial agent-based models for socio-ecological systems: Challenges and prospects”. Environmental Modelling & Software, 45, 2013, pp. 1–7. [En línea] Disponible en: http://doi.org/10.1016/j.envsoft.2013.03.017

O. P. R., Van, M. S. Krol, A. Hoekstra and R. R. Taddei, “Feedback mechanisms between water availability and water use in a semi-arid river basin: A spatially explicit multi-agent simulation approach”. Environmental Modelling & Software, 25, 2010, pp. 433–443.

Z. Sun and D. Müller, “A framework for modeling payments for ecosystem services with agent-based models, Bayesian belief networks and opinion dynamics models”. Environmental Modelling & Software, 45, 2013, pp. 15-28.

USGS, Science for changing world, 2015, [En línea] Disponible en: http://glovis.usgs.gov

G. Remolina, Del “BIG BANG” de las ciencias a su integración en el pensamiento complejo, 2014. Bogotá.

J. A. Amozurrutia, Complejidad y ciencias sociales. Un modelo adaptativo para la investigación interdisciplinaria (Primera ed), 2011, [En línea] Disponible en: http://www.ceiich.unam.mx/0/51LibFic.php?tblLibros_id=449

K. Dopfer, Evolutionary economics: a theoretical framework. The Evolutionary Foundations of Economics, 2005, [En línea] Disponible en: http://doi.org/http://dx.doi.org/10.1017/CBO9780511492297

C. Olaya, “Models that Include Cows: The Significance of Operational Thinking”. 30th International Conference on System Dynamics Society, 2012, pp. 1–19.

M. Aguilera, La Mojana: riqueza natural y potencial económico. Documentos de trabajo sobre economía regional, 2004. Editorial Banco de la República. Cartagena.

A. Serna, Memorias en crisoles propuestas teóricas, metodológicas y estratégicas para los estudios de memoria. IPAZUD, Instituto para la Pedagogía, Bogotá, D.C., Ed. Igarss 2014, [En línea] Disponible en: http://doi.org/10.1007/s13398-014-0173-7.2.

D.T Campbell, Variation and Selective Retention in Sociocultural Evolution in Social Change in Developing Areas: A Reinterpretation of Evolutionary Theory, H.R. Barringer, G.I. Blanksten, and R.W. Mack, Editors. 1965, Schenkman: Cambridge, Mass. p. 19-49.




DOI: https://doi.org/10.14483/udistrital.jour.reving.2016.3.a09

Creative Commons License

Recognition-No Commercial-No Derivative Works

Facultad de Ingeniería

Universidad Distrital Francisco José de Caldas

ISSN 0121-750X   E-ISSN 2344-8393