EDITORIAL

Investigación basada en pruebas como antídoto de modas didácticas en la enseñanza de las ciencias

Antonio García-Carmona*


* Doctor en Didáctica de las Ciencias Experimentales. Docente del Departamento de Didáctica de las Ciencias Experimentales y Sociales de la Uni­versidad de Sevilla (España). Correo electrónico: garcia-carmona@us.es


En 1974, el físico Richard P. Feynman pronunció un discurso en el que acuñó la célebre frase ciencia del culto a la carga (FEYNMAN, 1974) para referirse a aquellas teorías que, a pesar de que no funcionan, se promueven y aceptan por gran parte de la sociedad. Esto lo hacía para alertar de los peligros de las pseu­dociencias que imperaban por aquel entonces, incluyendo algunos estudios pedagógicos. Casi tres décadas después, el pedagogo E. Donald Hirsch Jr. (2002) rememoraba el discurso de Feynman para reflexionar sobre aquella investigación educativa que, incluso estando bien planificada y desarrollada, no provee un conocimiento confiable y utilizable para el aula.

Lamentablemente, lo comentado por Hirsch en su reflexión sucede a menudo en el ámbito de la ense­ñanza de las ciencias. Basta con tener una mirada algo atenta para percatarse de que, con cierta regularidad, se impulsan planteamientos didácticos sin un respaldo científico de su eficacia. Sobre todo, una eficacia ligada al contexto; porque la educación científica es un campo de investigación social, y propuestas que pueden funcionar en un contexto educativo determinado, no tienen por qué hacerlo en otros con carac­terísticas diferentes.

Ocurre lo que sería impensable en otros ámbitos. ¿Qué diríamos si los servicios de salud promoviesen entre su personal médico la prescripción de medicamentos cuya eficacia no ha sido clínicamente proba­da? Se podrían citar muchos ejemplos de planteamientos didácticos que irrumpen en la enseñanza de las ciencias, y que no han sido validados previamente con las garantías científicas suficientes. A continuación, comentaremos algunos de ellos de manera breve.

Un primer ejemplo es el enfoque de ciencia integrada. Este tuvo un auge importante en los años 1970 (HAGGIS, ADEY, 1979) y, en síntesis, propone una enseñanza de las ciencias basada en la unidad del conocimiento científico; a saber, que prioriza aquellos conceptos y procesos/métodos de investigación comunes –o transversales– a las distintas ciencias y las matemáticas (GUERRA, 1984). Sin embargo, no terminó de funcionar por las enormes dificultades que entrañaba su implementación en el aula (GUERRA, 1984). Posiblemente, el mayor problema fue presuponer que el planteamiento teórico era funcional, aun cuando no se contaba con pruebas que avalaran su eficacia educativa en los contextos donde se implantó. En muchos países, el enfoque de ciencia integrada ha derivado en la organización del currículo de ciencias como área; si bien, algunos estudios han cuestionado también que la organización curricular como área sea más apropiada que la estructurada en disciplinas (e.g., TAMASSIA, FRANS, 2014).

El segundo ejemplo se refiere al aprendizaje de las ciencias por proyectos. Se trata de uno de los enfoques didácticos con mayor auge en los últimos años, aunque realmente es centenario (SANMARTÍ, MÁRQUEZ, 2017). Si bien es un enfoque con una fundamentación teórica razonable, ha tenido vaivenes continuos en educación, y su eficacia didáctica es cuestionable en relación con determinados aspectos (LACUEVA, 1998). Así, mientras que el trabajo por proyectos parece mejorar en el alumnado la motivación, creatividad, autonomía o capacidad para la cooperación, todavía no se dispone de datos suficientes y sólidos sobre su validez en el desarrollo de elementos específicos de la competencia científica (SANMARTÍ, MÁRQUEZ, 2017).

Un tercer ejemplo lo encontramos en el aprendizaje de las ciencias basado en prácticas científicas. Este enfoque ha sido promovido esencialmente desde Estados Unidos (LEAD STATES,NGSS, 2013), como al­ternativa al aprendizaje de las ciencias por indagaci. El argumento dado es que el enfoque basado en la indagación no ha mostrado ser todo lo eficaz que se esperaba para aprender ciencias; entre otras muchas razones, porque ha sido identificado más como un proceso que como un medio para aprender ciencias (ASAY, ORGILL, 2010). Entonces, el enfoque basado en prácticas científicas se presenta como un modo de aprender de y sobre ciencias más apropiado y acorde con el trabajo de las personas dedicadas a la investigación científica. Sin embargo, hasta el momento no conocemos estudios que demuestren que su eficacia educativa es mayor que la del enfoque basado en la indagación. Asimismo, como el nuevo enfoque habla de prácticas, parece que muchos educadores en ciencias lo están identificando con los procesos de la ciencia (FURTAK, PENUEL, 2019); una interpretación inadecuada semejante a la que ya se observó con respecto al enfoque basado en la indagación.

El cuarto y último ejemplo es el archipromovido movimiento educativo STEM (science, technology, en­gineering and mathematics). En esencia, plantea la integración sinérgica y contextualizada de contenidos de las cuatro disciplinas que componen el acrónimo. Sin embargo, pese al fuerte apoyo por parte de las administraciones educativas, a escala internacional, existe poca investigación sobre la mejor manera de proyectar un enfoque STEM integrado, ni acerca de qué factores favorecen realmente aprendizajes signi­ficativos y utilitarios bajo este prisma educacional (HONEY, PEARSON, SCHWEINGRUBER, 2014; MIL­NER-BOLOTIN, 2018).

En consecuencia, los educadores en ciencias debemos permanecer atentos, y acoger con escepticismo y espíritu crítico todos aquellos planteamientos que se hacen sin un aval científico apropiado de su vali­dez y eficacia en el contexto educativo que nos atañe. En otras palabras, seamos cautelosos ante aquellos medicamentos didácticos cuya eficacia no ha sido clínicamente probada, y empleemos los resultados de la investigación didáctica como antídoto.


Referencias bibliográficas

ASAY, L.D.; ORGILL, M. Analysis of essential features of inquiry found in articles published in The Science Teacher, 1998–2007. Journal of Science Teacher Education, Londres, v. 21, n. 1, pp. 57-79. 2010.

FEYNMAN, R. Cargo Cult Science. Engineering and Science, Pasadena, CA, v. 37, n. 7, pp. 10-13. 1974.

FURTAK, E.M.; PENUEL, W.R. Coming to terms: Addressing the persistence of “hands-on” and other re­form terminology in the era of science as practice. Science Education, Hoboken, NJ, v. 103, n. 1, pp. 167-186. 2019.

GUERRA, J.M. Ciencia integrada en España: un análisis interno del curriculum. Ensenza de las Ciencias, Bellaterra (Barcelona), v. 2, n. 3, pp. 170-174. 1984.

HAGGIS, S.; ADEY, P. A review of integrated science education worldwide. Studies in Science Education, Londres, v. 6, n. 1, pp. 69-89. 1979.

HIRSCH Jr., E.D. Classroom research and cargo cults. Policy Review, Stanford, CA, n. 115, pp. 51-69. 2002.

HONEY, M.; PEARSON, G.; SCHWEINGRUBER, H. (eds.).STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press. 2014.

LACUEVA, A. La enseñanza por proyectos: ¿mito o realidad? Revista Iberoamericana de Educaci, Ma­drid, n. 16, pp. 165-187. 1998.

LEAD STATES,NGSS. Next generation science standards: For states, by states. The National Academies Press. Washington, DC. 2013.

MILNER-BOLOTIN, M. Evidence-Based Research in STEM Teacher Education: From Theory to Practice. Frontiers in Education, Lausanne (Switzerland), v. 3, n. 92, pp. 1-9. 2018.

SANMARTÍ, N.; MÁRQUEZ, C. Aprendizaje de las ciencias basado en proyectos: del contexto a la acción. Apice. Revista de Educaci Científica, A Coruña (España), v. 1, n. 1, pp. 3-16. 2017.

TAMASSIA, L.; FRANS, R. Does integrated science education improve scientific literacy? Journal of the European Teacher Education Network, Viana do Castelo (Portugal), v. 9, pp. 131-141. 2014.