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Abstract

Objective: In this paper, different approaches to how the penetration of electric vehicles (EV) can be modeled in power
networks are reviewed. The performance of three probabilistic electric vehicle charging load approaches considering four
levels of penetration of EV is also evaluated and compared.
Methodology: A detailed search of the state-of-the-art in charging load modeling strategies for electric vehicles is carried
out, where the most representative works on this subject were compiled. A probabilistic model based on Monte Carlo
Simulation is proposed, and two more methods are implemented. These models consider the departure time of electric
vehicles, the arrival time, and the plug-in time, which were conceived as random variables.
Results: Histograms of the demand for charging of electric vehicles were obtained for the three models contemplated.
Additionally, a similarity metric was calculated to determine the distribution that best fits the data of each model. The
above was done considering 20, 200, 2.000, and 20.000 electric vehicles on average. The results show that, if there is a low
penetration of electric vehicles, it is possible to model the EV charging demand using a gamma distribution. Otherwise, it
is recommended to use a Gaussian or lognormal distribution if there is a high EV penetration.
Conclusions: A review of the state of the art of the modeling of electric vehicles under a G2V approach is presented, where
three groups are identified: deterministic approaches, methods that deal with uncertainty and variability, and data-driven
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methods. Additionally, it was observed that EVCP model 3 and gamma distribution could be appropriate for modeling the
penetration of electric vehicles in probabilistic load flow analysis or for stochastic planning studies for active distribution
networks.
Funding: Institución Universitaria Pascual Bravo

Keywords: electric vehicle charging demand, Monte Carlo simulation, probabilistic modeling

Resumen

Objetivo: En este artículo se revisan diferentes enfoques sobre cómo modelar la penetración de los vehículos eléctricos
(EV) en los sistemas eléctricos de potencia. También se evalúa y compara experimentalmente el desempeño de tres enfo-
ques probabilísticos de demanda de carga de vehículos eléctrico considerando cuatro niveles de penetración de EV.
Metodología: Se realiza una búsqueda detallada del estado del arte de estrategias de modelado de carga de carga para
vehículos eléctricos, donde se recopilaron los trabajos más representativos sobre este tema. Se propone un modelo proba-
bilístico basado en la simulación de Monte Carlo y se implementan dos métodos más. Estos modelos tienen en cuenta la
hora de salida de los vehículos eléctricos, la hora de llegada y la hora que se conectan a la red, las cuales fueron concebidas
como variables aleatorias.
Resultados: Se obtuvieron histogramas de la demanda de carga de los vehículos eléctricos para los tres modelos contem-
plados. Adicionalmente, se calculó una métrica de similitud para conocer la distribución que mejor se ajusta a los datos de
cada modelo. Lo anterior se realizó considerando 20, 200, 2.000 y 20.000 vehículos eléctricos en promedio. Si se tiene una
baja penetración de vehículos eléctricos, es posible modelar la demanda de estos usando una distribución gamma. De lo
contrario, se recomienda usar una distribución Gaussiana o lognormal si se tiene una alta penetración de EV.
Conclusiones: Se presenta una revisión del estado del arte en el modelado de vehículos eléctricos bajo un enfoque G2V,
donde se identificaron tres grupos: los enfoques deterministas, los métodos que tratan la incertidumbre y la variabilidad
y los métodos basados en datos. Adicionalmente, se observó que el modelo EVCP 3 y la distribución gamma pueden ser
apropiados para modelar la penetración de vehículos eléctricos en análisis de flujo de carga probabilístico o para estudios
de planeamiento estocástico en redes de distribución activas.
Financiamiento: Institución Universitaria Pascual Bravo

Palabras clave: demanda de carga de vehículos eléctricos, simulación de Monte Carlo, modelado probabilístico
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INTRODUCTION

Due to the current debate around global warming, many countries have created numerous stra-

tegies to combat this issue. One of these strategies is the inclusion or penetration of electric vehicles

(EVs) to the power grid (Alahyari et al., 2019). Nevertheless, the inclusion of this technology to the

power grid is not only to fight against global warming; this penetration can also achieve an efficient

operation of the power grid (Alahyari et al., 2019). All of this brings benefits to combat the afore-

mentioned issue. However, this technology introduces new challenges that must be addressed. For

example, with the penetration of EVs, it is not only evident that there is an increased electricity con-

sumption in the power grid, along with the introduction of new load variations, but impacts have al-

so been identified on transportation, manufacturing, and the economy (Li et al., 2019). These impacts

depend on when EVs are connected for charging, where they are connected, and at which charging

power (Grahn et al., 2011). Therefore, these factors must be considered in the operation, planning,

and analysis of modern power grids such as active distribution networks or grid-connected micro-

grids (Alahyari et al., 2019). The penetration of EVs in studies on power network analysis has been

widely addressed (Alahyari et al., 2019, Li et al., 2019, Kongjeen et al., 2019), and it can be supported

by following several charging opportunities:

unidirectional charging, bidirectional charging, uncontrolled charging, external charging strategies,

and individual charging strategies (Grahn et al., 2011). Uncontrolled charging (UCC) means that EV

users travel and park as they choose and connect their EVs when there is a need to recharge the

battery. External charging strategies imply that the charging may somehow be controlled externally,

based on the information of the power grid. Finally, individual charging strategies indicate that the

individual can be seen within an UCC approach, but also that individuals may adjust their charging

behavior based on economic incentives. For example, in the literature, it is commonly assumed that

the penetration of EVs is modeled as a UCC unidirectional charging approach, which only considers

the power flow in the grid-to-vehicle (G2V) direction. External charging strategies could be based
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on either unidirectional or bidirectional charging, which can consider a power flow in the vehicle-

to-grid (V2G) direction. From the literature, one comes across reviews that organize their analysis

about of EV charging technologies, EVs standards, charging infrastructure, or the impacts on power

grid integration. However, there are few studies that focus on analyzing the different methodologies

that have emerged using the G2V philosophy. In this article, we review different G2V approaches.

Additionally, we perform an experimental comparison with three probabilistic models and evaluate

their performance considering four levels of EV penetration.

EV CHARGING LOAD MODELING

Several approaches for modeling EV load have been proposed in the past. According to Yi &

Scoffield, 2018, we can find, for example, deterministic EV load modeling techniques (Kongjeen et al.,
2019), Monte Carlo simulation approaches (MCS) (Li & Zhang, 2012), fuzzy methods (Shahidinejad

et al., 2012), hybrid Fuzzy-MCS methods (Ahmadian et al., 2017) and many other techniques (Stiasny

et al., 2021,Frendo et al., 2020) to model the EV load. In this paper, we intend to classify these methods

into three groups: deterministic, data-driven, and uncertainty/variability approaches.

Deterministic approaches

In deterministic EV load modeling, several methods assume that EV parameters are known (Yi &

Scoffield, 2018). For example, the available period, the arrival or departure times of vehicles, and the

travelling distance are already known or fixed by the power grid operator, that is, EVs can be seen

as stationary energy storage (Yi & Scoffield, 2018). On the other hand, it is possible to find studies

that have used measurement-based load modeling approaches to estimate the load model for electric

vehicle fast-charging stations (Gil-Aguirre et al., 2019). Basically, the authors estimate the parameters

of the ZIP or polynomial load models, minimizing the discrepancy between the real measurement

load and the simulated load responses (Gil-Aguirre et al., 2019). Kongjeen et al., 2019 implemented a

modified backward and forward sweep method for analyzing the impact levels from EV load models

on the grid based on constant current load and voltage-dependent loads. These deterministic EV load

modeling approaches are also known as traditional methods.

Data-driven approaches

Due to the large amount of real-time driving data, by using these deterministic models, it is dif-

ficult to accurately capture the driving patterns (Li et al., 2019). These patterns show the usage beha-

viors of drivers and directly affect the energy consumption of EVs. Data-driven models are cons-

tructed from large historical data to model the underlying realistic EV charging behaviors. Based on

these data-driven models, residential EV charging load profiles can be generated with regard to dif-
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ferent numbers of households and charging rates. According to Li et al., 2019, these methods should

be scalable and flexible frameworks.

Some data-driven methods have been proposed to describe EV charging patterns and analyze

EV driving data. For example, data mining methods such as clustering (Yi & Scoffield, 2018, Li et al.,
2019), correlation analysis (Xydas et al., 2016), stochastic prediction (Ashtari et al., 2012), and time-

series clustering (Zhou et al., 2017) are commonly employed to examine EV driving data. Specifically,

Zhou et al., 2017 developed a time-series clustering with variable weights to analyze the driving cycle

of hybrid-electric vehicles. On the other hand, Yi & Scoffield, 2018 used historical residential char-

ging behavior data to construct probability density functions for modeling the charging duration;

and then they employed clustering based on the k-nearest neighbors (KNN) algorithm for charging

decision-making. (Li et al., 2019) proposed a two-level clustering model to determine the driving pat-

terns of EVs. They identified five daily driving patterns and four multifaceted driving patterns that

affect the daily load curve. However, the authors considered vehicle static parking patterns and did

not take weather conditions into account. Crozier et al., 2019 introduced a probabilistic model based

on K-means clustering for UCC of EVs to identify three distinct vehicle usage modes in the United

Kingdom. However, the cluster number was included as a model parameter. To summarize, data-

driven methods have a great potential for nonlinear system prediction, and the EV charging load can

be computed considering different numbers of households and charging rates (Yi & Scoffield, 2018).

However, these data-driven approaches have a weak performance against real-time driving data in

low dimension. Although many studies mention differences between data-driven and machine lear-

ning techniques, we consider that both can be included into data-based approaches. We have found

several approaches that use machine learning theory or concepts to model the EV load, charging

behaviors, or driving patterns (Gerossier et al., 2019, Godde et al., 2015, Stiasny et al., 2021). Specifi-

cally, Gerossier et al., 2019 modeled the consumption profile of EVs from raw power measurements.

From these measurements, the authors detected five kinds of plugs and EV batteries in order to de-

termine the power drawn from the grid and the battery capacity using the random forest algorithm.

On the other hand, Godde et al., 2015 proposed an approach for modeling the charging probability

of electric vehicles as a Gaussian mixture model (GMM). This GMM comprehensively captures the

charging profiles, assuming underlying assumptions about battery capacity, consumption, charging

infrastructure, week day, and settlement structure. Stiasny et al., 2021 also used a GMM to distinguish

seven aspects with respect to EV load modeling that influence the variables as flows and voltages in

the grid. Frendo et al., 2020 proposed a data-driven regression model for predicting the EV char-

ging demand from a large historical dataset of charging processes. (Arias& Bae, 2017) presented a

forecasting model to estimate the EV charging demand using big data technologies. Specifically, the

authors performed a cluster analysis to classify traffic patterns, a relational analysis to identify in-

fluential factors affecting the traffic patterns, and a decision tree to establish classification criteria,

which determines the charging speed and power of an EV.
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Uncertainty/variability approaches

After having discussed several deterministic, data-driven, and machine learning approaches, we

would like to present the probabilistic, possibilistic, and stochastic methods that have been used to

model the EV charging demand. We have decided to name them uncertainty/variability approaches

due to the fact that these techniques deal with these two properties (uncertainty and variability) in

the EV charging demand modeling process. In many research areas, these two fields are confused

about their meaning and use.

In probabilistic methods, it is possible to find many studies that have used individual proba-

bilistic distribution to model the EV charging demand. For example, these studies have employed

Gaussian (Sun et al., 2015), Weibull (Li & Zhang, 2012), lognormal (Khoo et al., 2014), exponential

distributions (Khoo et al., 2014), mixed probability distributions (i.e, a mixture of Gaussian distri-

butions) (Flammini et al., 2019), or non-parametric methods (Chung et al., 2018, Chen et al., 2020) to

determine the EV charging demand. However, the most common and used technique is Monte Carlo

Simulation (MCS), which is conducted for a large number of samples generated using the probability

density functions from several input variables (Li & Zhang, 2012, Su et al., 2019). These input varia-

bles can be home arrival/departure time, daily travelling distance/EV initial battery SoC, EV type,

EV battery capacity, or EV recharge probability (Su et al., 2019). Many MCS applications can be found

in the literature. For example, Grahn et al., 2011 analyzed the impact caused by the EV charging

demand based on uncontrolled and controlled charging scenarios on the distribution transformer

hot-spot temperature and loss of life by using a thermal model. Similarly, Tekdemir et al., 2017 also

evaluated the effects of EVs on distribution grids. The authors used the MCS and Weibull probability

distribution to model the EV charging demand, and they also assumed correlated loads on the grid.

Under different conditions, Ul-Haq et al., 2018 employed MCS to develop an EV charging pattern mo-

del that considers the vehicle class, battery capacity, SoC, driving habit/need, plug-in time, mileage,

recharging frequency per day, charging power rate, and dynamic EV charging price. In Ahmadian et
al., 2015, a probabilistic approach is proposed to model the EV load demand considering home arri-

val time, home departure time, deriving distance, nonlinear characteristics of the battery charge, and

different vehicle types. The authors used historical information from the National Household Travel

Survey to obtain the probability distributions. On the other hand, in possibilistic approaches, we can

find that authors such as Tan & Wang, 2014 have proposed a load profile for EVs, which considers the

arrival time, departure time, daily distance travelled, and vehicle parameters in order to obtain a sto-

chastic model of driving patterns based on fuzzy logic theory. Hussain et al., 2019 introduced a fuzzy

inference mechanism to determine an appropriate charging, discharging, or withholding decision

for EVs. This scheme also considers the available power from the smart grid, arrival time, departure

time, SoC, and the required stay time of EVs. Ali et al. (2017) proposed a hybrid fuzzy-MCS method

where the parameters are modeled according to either probabilistic or possibilistic approaches. For

example, the travelling distance is modeled using a fuzzy triangular membership function, while the
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Table 1. EV charging load modeling summary

Approach Method Advantage Disadvantage

Deterministic
Voltage-Dependent model (Kongjeen et al., 2019)

Low computational time.
Uncertainty and driving patterns

are not considered.ZIP models (Gil-Aguirre et al., 2019)

Uncertainty/Variability

Probabilistic

Gaussian (Sun et al., 2015), Weibull

(Li & Zhang, 2012), and lognormal

(Khoo et al., 2014) distributions

Uncertainty is

appropriately modeled.

They require

computational effort,

experience, and many

input data samples to

determine the demand

for EVs.

Beta (Flammini et al., 2019) and

Gaussian (Stiasny et al., 2021)

mixture models

A non-parametric kernel density

estimation method (Chen et al., 2020)

Stochastic

Markov chain (Sokorai et al., 2018)

and

ARIMA (Amini et al., 2016) and Poisson

(Jiang et al., 2017) processes

Queue theory

(García-Valle & Vlachogiannis, 2009)

Possibilistic

Fuzzy logic method

(Shahidinejad et al., 2012)

Fuzzy logic method with MCS

(Ahmadian et al., 2017)

Data-driven

K-nearest neighbors (Li et al., 2019) They concentrate many

of patterns associated

with the dynamics of the EVs.

They need large amounts

of data to generalize the

behavior of the demand for EVs.

Linear regression (Frendo et al., 2020)

Random forest (Gerossier et al., 2019)

Source: Authors.

arrival and departure times are modeled by Weibull probability distributions using MCS.

Finally, in uncertainty and variability approaches, different stochastic methods have been applied

to model the EV charging demand. In these stochastic methods, we found approaches such as auto-

regressive integrated moving average (ARIMA) processes (Amini et al., 2016), Markov chains (So-

korai et al., 2018), Poisson processes (Jiang et al., 2017), and queue theory-based Poisson proces-

ses (García-Valle & Vlachogiannis, 2009). A summary of these approaches can be seen in Table 1.

ELECTRIC VEHICLE CHARGING PROBABILISTIC (EVCP) MODELING

In cases where the output variables are requested and the system is complex and includes uncer-

tainty, probabilistic models of the system are advantageous to use in order to determine the behavior

of some random variables. In our context, probabilistic modeling can be defined as a way of mo-
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deling a phenomenon that uses presumed probability distributions of certain input assumptions or

variables to compute the involved probability distribution for chosen output variables (Pergler &

Freeman, 2010). One way to achieve this probabilistic modeling is using MCS, which is the most

commonly used technique for probabilistic modeling. This section presents three MCS-based EVCP

models.

EVCP model 1

For model 1, we have considered the model presented by Su et al., 2019, where the authors as-

sumed that the daily travel distance d and the plug-in time tp of an EV are Gaussian and lognormal

random variables. The authors also assumed that the state of charge SOCij after a daily travel dis-

tance (D), can be computed from Equation (1) using the efficiency of battery power in driving cycles

in EVs (η), as follows:

SOCij = 1− d

Dη
(1)

For each EV, the authors calculated the charging duration (td) to compute the total EV power

using Equation (2), which is given by

PEV =
5∑

i=1

N∑
j=1

PEVij (2)

where,

PEVij =

{
Pc tp ≤ t ≤ td
0 other time

(3)

where Pc in Equation (3) is the rated charging power, j is the MCS iteration, and i represents the

i-th EV in the specific predefined EV fleet, that is, where i = {1, 2, 3, 4, 5}, which represents private

EVs, utility EVs, commercial EVs (taxies), electric goods trucks, and electric buses, respectively.

EVCP model 2

For model 2, we propose an EVCP model that depends on the leaving time from home tl, the time

that the EV user is away from home ta, and the charging efficiency η of EVs as random variables to

compute the energy consumption of EVs. tl and ta are modeled by Gaussian distributions, and η is

modeled as a uniform distribution. We also consider the five types of EVs, similarly to EVCP model

1. For our model, we approximate the minimum charging duration time tmcd as a function of the

initial SOC:

tjmcd =
(η − SOCij)Cap

Pc
(4)
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where Cap is the battery capacity, and the connecting time tc and the fully charging time tfc are

computed as

tjc = tjl + tjl

tjfc = tjc + tjmcd (5)

From the expressions shown in Equations (4) and (5), the total EV power is calculated from Equa-

tions (6) and (7), that is,

PEV =

5∑
i=1

N∑
j=1

PEVij (6)

where

PEVij =

{
Pc tp ≤ tjfc ≤ td
0 other time

(7)

EVCP model 3

The third model was presented by Ahmadian et al., 2015, which we have modified to include the

specific predefined EV fleet of the EVCP model 1. For this model, the home arrival time ta, home

departure time td, and travelled distance d are Gaussian random variables, and battery efficiency is

uniformly distributed. The SOC is initially computed as in Equation (1). The rated charging power Pc

is modelled as a nonlinear function of the SOC, where the SOC is recursively calculated as follows:

SOCt = SOCt−1 +
100Pcη

Cap
(8)

where η represents the efficiency of the EV during driving. Considering the random variables

mentioned above and Equation (8), the total EV power is calculated using Equations (9) and (10).

PEV =
5∑

i=1

N∑
j=1

PEVij (9)

where

PEVij =

{
Pc tp ≤ t and SOCt ≤ 100

0 other time
(10)

EXPERIMENTAL EVALUATION

In this section, we compare the three aforementioned MCS-based EVCP models following the

procedure shown in Figure 1. In the EV input data block, we use the information in Su et al., 2019

as the battery capacity, EV types, charging power, and full endurance mileages. On the other hand,
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for the sampling process block, we use the parameters of Table 2 to generate samples for all random

variables that feed the three MCS-based EVCP models, and then to compute the total EV power. We

repeat N = 5000 times the procedure shown in Figure 1 to obtain the histogram for the EV electric

energy consumption. We adopt some assumptions about how to use the different EV types employed

in Su et al., 2019. For example, we consider that 80 % of private EVs are plugged into the power grid

from 18 to 7 h, and the remaining 20 % is recharged during working hours, that is, from 9 h to 17

h. We contemplate three penetration scenarios using 20, 200, 2.000 and 20.000 EVs. To determine the

number of EVs, we use a Poisson distribution with an expected value λ. For each level of penetration,

we consider over 60 % of private EVs, 20 % of utility EVs, 10 % of taxis, 5 % of electric goods trucks,

and 5 % of electric buses.

Figure 2 shows the results of the MCS applied to the three EVCP models considering a penetration

of 20, 200, 2.000, and 2.0000 expected EVs. Note that the EVCP models 1 and 2 present similar results.

On the contrary, EVCP model 3 obtained significant differences in the energy consumption of the

EVs. On one hand, we observe that the EVCP models 1 and 2 keep coherence when the number of

EVs increases. However, this can only be true if we are analyzing similar EVs. On the other hand,

from EVCP model 3, note that the energy consumption gradually changes as the number of vehicles

Table 2. Charging EV parameters for probabilistic modeling (Su et al., 2019).N (µ, σ) is a Gaussian distribution

with parameters µ (mean) and σ (standard deviation); LN (µ, σ) is the lognormal distribution; and U(a, b) is a

uniform distribution with parameters a and b

EV type Period Mode Prob. d

EVCP

model 1
EVCP model 2 EVCP model 3

tp tl ta η ta td

Private

9h - 17h Slow 10

LN (3.2,0.92)

N (9,0.9)

N (7,2) N (10,2) U(0.88,9)

N (9,0.9)

N (7,2)18h - 1h Slow 80 N (18.5,0.1) N (18.5,0.1)

9h - 17h Fast 10 N (9,0.9) N (9,0.9)

Utility
9h - 17h Fast 30

LN (3.2,0.92)
N (18.5,0.1) N (17,2)

N (12,2) U(0.88,9)
N (18.5,0.1) N (17,2)

18h - 7h Slow 70 N (12,0.9) N (6,2) N (12,0.9) N (6,2)

Commercial

0h - 9h Fast 70

N (195.49,49.99)

N (4,2.5) N (16,2)

N (12,2) U(0.73,9)

N (4,2.5) N (16,2)

9h - 16h Fast 20 N (12,2.5) N (0,2) N (12,2.5) N (0,2)

16h -

24h
Fast 10 N (18.5,0.1) N (9,0.9) N (18.5,0.1) N (9,0.9)

Goods Trucks
0h - 9h Fast 60

N (201.8,94.42)
N (3,1.5) N (12,2)

N (10,2) U(0.73,9)
N (3,1.5) N (12,2)

9h - 24h Fast 40 N (14.5,2.8) N (4,2) N (14.5,2.8) N (4,2)

Bus 22h - 7h Fast 100 N (155,10) N (22,0.5) N (5,2) N (12,2) U(0.73,9) N (22,0.5) N (5,2)

Source: Authors.
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Figure 1. Flowchart for comparing the EVCP Models

Source: Authors.

increases, but it is not consistent between one scenario and the other. From the above, it is necessary

to improve EVCP models 1 and 2.

We noticed that one of the great differences of models 1 and 2 with model 3 is that the latter, in

addition to considering the non-linear characteristics of the battery charge, ensures that the battery

is charged once it is connected to the power grid. From Figure 2, we also noticed that, when there is
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Figure 2. Histograms of the EV charging demand when we apply MCS to the three EVCP models considering

a penetration of 20, 200, 2.000, and 20.000 expected EVs

Source: Authors.
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Table 3. Wasserstein Distance applied between the real probability distribution and the proposed distribution

of the EV demand. As proposed distribution, the gamma, lognormal, Gaussian, and Weibull distributions were

analyzed

Distribution
Wasserstein distance

20 200 2,000 20,000

Gamma 17,928 ± 3,2997 18,634 ± 2,5456 58,565 ± 2,3555 235,03 ± 47,933

Lognormal 21,463 ± 1,7000 26,194 ± 10,059 60,434 ± 18,760 160,02 ± 42,010

Gaussian 49,735 ± 6,1031 48,164 ± 8,0598 69,243 ± 17,408 169,34 ± 27,718

Weibull 28,133 ± 1,5911 136,55 ± 21,603 545,91 ± 26,603 1913,2 ± 83,372

Source: Authors.

when low EV penetration, the behavior of the energy demand can be modeled using a probability

distribution. However, when there is a high penetration of EVs, the probability that best adjusts to

the behavior of EV demand can be a Gaussian or lognormal distribution. To this effect, we applied a

similarity measure to determine how one probability distribution is different from the other, that is,

we computed this distance between the real probability distribution (obtained by MCS) and a pro-

posed distribution. Specifically, we computed the Wasserstein distance (Carrillo & Toscani, 2005) in

order to measure the similarity between the true data distribution and some proposed distributions.

We analyzed the Gaussian, lognormal, gamma, and Weibull distributions. To compute this distance,

we repeated the experiment described above five times using only model 3, that is, we applied five

times the procedure shown in Figure 1. From the obtained data, we fit the previously described distri-

butions to the data. Then, we generated samples from these distributions and compared them, using

the distance, with the data obtained by applying the MCS of each model. Table 3 shows the Wassers-

tein distance for modeling the EV demand considering the previous distributions. We particularly

noticed that the gamma distribution can be a different modeling alternative for low EV penetration

levels. On the other hand, note that the lognormal and Gaussian distributions are adequate options

for modeling the demand of EVs when there is a high penetration.

CONCLUSION

A review of the state of the art of the modeling of electric vehicles under a G2V approach was

presented, where three groups were identified: deterministic approaches, methods that deal with un-

certainty and variability, and data-driven methods. Additionally, an experimental comparison was

made with three probabilistic models based on Monte Carlo Simulation. From this comparison, we
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observed that EVCP model 3 and the gamma distribution can be appropriate for modeling the pene-

tration of EVs in probabilistic load flow analysis or for stochastic planning studies for active distri-

bution networks. As future works, it would be possible to consider smart charging strategies within

these EVCP models, as well as to include more realistic scenarios.
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