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Resumen

Contexto: La optimización de máquinas de soporte vectorial (SVM, por su sigla en inglés) ha sido un tema recu-
rrente en diversos foros y publicaciones relacionadas con la inteligencia artificial (IA) y el aprendizaje automático.
A pesar de su relevancia, existe una notable ausencia de directrices claras para la selección y optimización de los hi-
perparámetros asociados a las distintas funciones kernel utilizadas en SVM, lo cual puede comprometer la eficacia
de estas herramientas en tareas de clasificación y regresión.
Objetivo: Este estudio tiene como objetivo general presentar un método detallado y riguroso para la optimización
de los hiperparámetros en SVM, mediante el uso de la librería e1071 en R. Se busca, así, proporcionar una guía clara
para futuros investigadores y practicantes en el campo, que les permita implementar de manera efectiva SVM en
sus proyectos.
Metodología: Se emplearon las librerías e1071 y scales en R para estandarizar los datos y ajustar los modelos SVM
con diferentes tipos de kernel (lineal, radial, sigmoide y polinomial). Se procedió a la optimización de hiperparáme-
tros mediante la función “tune”, con análisis de conjuntos de entrenamiento y prueba para verificar la bondad de
ajuste. Se utilizó una metodología detallada para seleccionar los hiperparámetros óptimos de cada kernel, a partir
del estudio de la eficacia de la clasificación y la minimización del error.
Resultados: Los resultados destacan la correcta selección y optimización de los hiperparámetros en SVM, y de-
muestran mejoras significativas en la clasificación al aplicar el método propuesto. Se encontró que la elección de
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hiperparámetros óptimos varía considerablemente entre los diferentes tipos de kernel y que su adecuada optimiza-
ción contribuye a la precisión del modelo.
Conclusiones: La implementación detallada y el ajuste de los hiperparámetros en SVM son cruciales para maximi-
zar su desempeño. Este artículo proporciona un código optimizado y una metodología clara para su implementa-
ción en R, lo cual facilita la tarea de investigadores y analistas en el campo del aprendizaje automático. Se enfatiza la
necesidad de considerar la especificidad de cada conjunto de datos y la relevancia de la experiencia en la selección
de hiperparámetros. También, se sugiere, para futuras investigaciones, explorar y expandir las fronteras de las SVM
en la solución de problemas complejos de clasificación.

Palabras clave: máquina de soporte vectorial, optimización, R, librería e1070, aprendizaje supervisado.

Abstract

Context: The optimization of Support Vector Machines (SVM) has been a recurring theme in various forums and pu-
blications related to artificial intelligence and machine learning. Despite its relevance, there is a notable absence of
clear guidelines for the selection and optimization of parameters associated with the different kernel functions used
in SVMs, which can compromise the effectiveness of these tools in classification and regression tasks. Objective:
The overall objective of this study is to present a detailed and rigorous method for the optimization of parameters
in SVMs, using the e1071 library in R for this purpose. Thus, it seeks to provide a clear guide for future researchers
and practitioners in the field, enabling them to effectively implement SVMs in their projects.
Methodoly: The e1071 and scales libraries in R were used to standardize the data and adjust the SVM models with
different types of kernels (linear, radial, sigmoid, and polynomial). Parameter optimization was carried out using
the tune function, analyzing training and test sets to verify the goodness of fit. A detailed methodology was used
to select the optimal parameters for each kernel, based on the analysis of classification efficacy and error minimiza-
tion.
Results: The results highlight the importance of correct parameter selection and optimization in SVMs, showing
significant improvements in classification when applying the proposed method. It was found that the choice of
optimal parameters varies considerably among the different types of kernels, and their proper optimization contri-
butes to the precision of the model.
Conclusions: Detailed implementation and parameter adjustment in SVMs are crucial to maximizing their perfor-
mance. This article contributes to the existing literature by providing optimized code and a clear methodology for
its implementation in R, facilitating the work of researchers and analysts in the field of machine learning. It empha-
sizes the need to consider the specificity of each data set and the relevance of experience in parameter selection,
inviting future research to explore and expand the boundaries of SVMs in solving complex classification problems.

Keywords: Support Vector Machine, Optimization, R, e1071 library, Supervised Learning.

Introducción

Aprendizaje supervisado

Para entender el aprendizaje supervisado usaremos un ejemplo. Suponga que usted está

con un grupo de amigos y juega a adivinar una película con base en mímicas. Usted ve que

su equipo ejecuta una serie de movimientos que deberían darle alguna idea de la película que
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debe adivinar. Con esa serie de movimientos, usted hace un escrutinio basado en las películas

que conoce; aunque la interpretación tiene un grado de incidencia alto, usted podrá acertar con

la película, si ya la ha visto, debido a que los movimientos le serán familiares. Básicamente,

usted no puede acertar el nombre de la película si no la conoce. Esto es aprendizaje supervi-

sado, “porque el entrenamiento se realizó a partir de datos conocidos o inputs, los cuales están

etiquetados [...] con la finalidad de obtener un resultado [...] que también es conocido y etique-

tado” (Paredes, 2020, p. 10). En esencia, en el aprendizaje supervisado se debe saber cuál es el

resultado para determinar las diferencias presentes, dada una clasificación previa.

Entre los métodos de aprendizaje supervisado se pueden considerar las máquinas de so-

porte vectorial (SVM, por su sigla en inglés).

Máquinas de soporte vectorial

La inteligencia artificial (IA) depende en gran medida de la forma en que se diferencian pa-

trones. Las SVM utilizan las funciones kernel para segmentar los datos y brindar información

sobre datos desconocidos, a partir de la información provista por datos conocidos (Méndez,

2003). Un kernel es una “función definida positiva que permite la transformación de los datos”

(Rodríguez et al., 2009, p. 172) y se utiliza para transformar datos no lineales y reducir su di-

mensionalidad para crear una función de separación.

En el contexto de este artículo, interesan los resultados de clasificación binaria (pero no se

debe entender que la clasificación binaria es la única posible dentro de las SVM) para los cuales,

según Méndez (2003), se deben considerar los siguientes conjuntos de datos:

X ⊂ Rn, siendo X el conjunto de observaciones de las variables de entrada

Y = {−1, 1}, Y un conjunto que contiene la variable salida que toma valores binarios

S = {(x1, y1), (x2, y2), . . . , (xi, yi)}, siendo S el conjunto de entrenamiento, con xi, yi ⊂ X,Y

Sobre esta última parte se debe resaltar que el tamaño de observaciones del conjunto entre-

namiento es estrictamente inferior al conjunto de observaciones presentes en los conjuntos de

entrada X y de salida Y . Esto, debido a que es necesario comprobar el grado de precisión del

algoritmo con datos que no están incluidos en el aprendizaje para probar la bondad de ajuste,

es decir, el porcentaje de error y acierto (Amat, 2017). Este ejercicio se verifica con una partición

de los datos denominado conjunto de prueba, que indica el acierto basado en una muestra no

involucrada en el entrenamiento.

En principio, podemos suponer que la segmentación de los datos es posible a partir de una

partición lineal, es decir, una línea recta que divida los datos. En este caso, dado un conjunto
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de observaciones X , se define una clasificación Y , y se elige un conjunto S de observaciones y

respuesta para entrenar el algoritmo (figura 1).

Figura 1. Ordenación de entrenamiento datos clasificados

Nota: elaborada a partir del uso de Geogebra.org.

En este sentido, los datos pueden ser divididos con una recta (figura 2). No obstante, surge

el interrogante: ¿cuál de las posibles rectas divisorias es la más adecuada para el conjunto de

datos? La respuesta involucra el grado de error determinado y se refiere a la distancia máxima

que puede ocurrir entre dos puntos de clasificación diferente sin que se reduzca el acierto de la

separación.

Así, el algoritmo de clasificación considera un hiperplano f(x) =< w, x > +b (función de

una recta) que clasifica correctamente los datos. En este caso, se considera un error la clasifi-

cación equivocada de una observación, con lo que la minimización del error sucede cuando

se presenta el mayor porcentaje de acierto. Para minimizar el error de clasificación, el algo-

ritmo aplica el método de multiplicadores de Lagrange, en combinación con las condiciones

complementarias de Karush-Kuhn-Tucker (KKT). Este proceso asegura que se identifique el

hiperplano óptimo que maximiza la distancia entre las clases, y así reduce la clasificación inco-

rrecta de las observaciones. Aunque la demostración y el desarrollo matemático completo de

este método exceden el alcance de este artículo, puede ser consultado en obras de referencia

como las de Méndez (2003), Betancourt (2005) y Campo (2016). El nombre de soporte vectorial

se da debido a que las rectas deben pasar por, al menos, un punto que análogamente será una

barrera a partir de la cual se definirá la regla de clasificación para los puntos que contenga di-

cha barrera; así, la frontera se convierte en un vector que contiene o soporta los datos (figura

3).
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Figura 2. Segmentación de datos clasificados

Nota: elaborada a partir del uso de Geogebra.org.

Figura 3. Vectores soporte

Nota: elaborada a partir del uso de Geogebra.org.

El objetivo de las máquinas de soporte vectorial es crear una zona de clasificación en la que

cualquier dato nuevo, pueda ser clasificado (figura 4).

Lo anterior ocurre cuando se tiene un kernel tipo lineal, pero también se pueden tener ker-

nel tipo radial (figura 5), sigmoide (figura 6) y polinomial (figura 7), estos responden a las

siguientes funciones y hiperparámetros (tabla 1).
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Figura 4. Clasificación por kernel lineal

Nota: elaborada a partir del uso de Geogebra.org.

Figura 5. Clasificación por kernel radial

Nota: elaborada a partir del uso de Geogebra.org.

La forma en la que se presenta la función sigmoidal (figura 6) permite ampliar el enten-

dimiento de un kernel. Este, al ser una transformación, toma un conjunto de datos en Rn−1 y

expresa su ordenamiento en Rn, este encuentra patrones al incorporar una nueva dimensión

para la clasificación.

Vale la pena señalar que para manipular correctamente los datos frente a un algoritmo SVM,

se recomienda trabajar, en primer lugar, con datos estandarizados.

Por consiguiente, el problema abordado en este artículo se refiere a la ausencia de optimiza-

ción de la totalidad de hiperparámetros asociados a las funciones de los diferentes kernel (véase
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Figura 6. Clasificación por kernel sigmoide* (misma gráfica en 2D y 3D)

*Las funciones sigmoide tienen una forma más asociada a una ese (S); no obstante, su graficación es
compleja y su idea principal se expresa la gráfica.
Nota: elaborada a partir del uso de Geogebra.org.

Figura 7. Clasificación por kernel polinomial grado 2

Nota: elaborada a partir del uso de Geogebra.org.

tabla 1). Una función lineal consta de un factor: v, por lo que la optimización debe constar de

un conjunto de valores para un parámetro. La función radial consta de dos factores: v, γ, por

lo que la optimización debe constar de un conjunto de valores para dos hiperparámetros. La

función sigmoidal consta de tres factores: v, γ, τ , por lo que la optimización debe tener de un

conjunto de valores para tres hiperparámetros. La función polinomial consta de cuatro facto-

res; v, γ, τ, p, por lo que la optimización debe integrar de un conjunto de valores para cuatro

hiperparámetros.
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Tabla 1. Kernel usados en máquinas de soporte vectorial

Kernel Función Término de regularización γ τ p

Lineal u′ · v ✓

Radial exp(−γ∥u− v∥2) ✓ ✓

Sigmoide tanh[γ(u′ · v) + τ ] ✓ ✓ ✓

Polinomial [γ(u′ · v) + τ ]p ✓ ✓ ✓ ✓

Nota: tomada de librería e1071 (Chih et al., 2021).

En las máquinas de soporte vectorial (MSV), los hiperparámetros cumplen un papel clave

en la optimización del modelo. A continuación, se detalla la función de cada uno:

• Término de regularización (v). Controla la penalización por errores en la clasificación de

los puntos. Un valor bajo de v permite más errores, busca un margen más amplio entre

las clases (más tolerante a los puntos mal clasificados); mientras que un valor alto busca

minimizar los errores, pero a costa de reducir el margen, lo que puede llevar a sobreajuste.

• γ (gamma). Se usa en los kernel radial, sigmoide y polinomial. Define la influencia de un

solo punto de entrenamiento, es decir, cuánto afecta un punto a la decisión del modelo.

Un valor alto de gamma hace que los puntos cercanos tengan una influencia grande,

lo que resulta en un modelo que podría sobreajustarse; mientras que un valor bajo de

gamma permite que los puntos más alejados también influyan.

• τ (tau). Se usa en los kernel sigmoide y polinomial. Actúa como un desplazamiento en las

funciones kernel, afectando el margen de decisión. Ayuda a controlar la relación entre los

vectores de soporte y el resto de los datos.

• p (grado polinómico). Se usa en el kernel polinomial. Representa el grado del polinomio

en la función de decisión. Un valor más alto de p genera una frontera de decisión más

compleja y no lineal; mientras que un valor bajo, crea una frontera más simple.

No obstante, es recurrente que se presente cualquiera de los siguientes tres escenarios:

• Se omiten las funciones con kernel sigmoidal o polinomial.

• Se carece de un código que minimice el error dado un conjunto de hiperparámetros.

• Se utiliza un conjunto de valores para uno o dos hiperparámetros que no están relacio-

nados directamente con el tipo de kernel utilizado. Por ejemplo, se utiliza un conjunto

de valores para dos hiperparámetros en una función polinomial que depende de cuatro

hiperparámetros.
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Debido a esto, este trabajo presenta un código que permite comprender la forma de op-

timizar todos los hiperparámetros de una determinada SVM para kernel tipo lineal, radial,

sigmoidal y polinomial.

Metodología

Al observar el código que circula en diferentes foros acerca de SVM, es común encontrar tres

grupos de código: (a) los que directamente no plantean máquinas de soporte vectorial del tipo

polinomial (Amat, 2017; Tinoco, 2019; Sosa, 2021); (b) aquellos que al intentarlo no concluyen

cómo se pueden elegir los hiperparámetros (Berrendero, 2016; Calvo, 2016); o (c) directamente

aquellos que, al no incluir todos los hiperparámetros necesarios, omiten información que po-

dría optimizar los resultados (Gil, 2018; Vargas, 2020; Cuenca y León, 2019). Para remediar esta

situación, como metodología se integran las sugerencias de los creadores de la librería e1070

(Chih et al., 2021) utilizada regularmente en R para SVM.

Para implementar una SVM se utilizan las librerías e1071 y scales, esta última para norma-

lizar los datos, es decir, transformarlos de un rango de R+ (reales positivos) a un rango entre 0

y 1, con el fin de reducir el impacto que pueden tener las variables con rango más alto. Para el

diseño del código en R, se siguieron las recomendaciones de Amta (2017) y Gomila (2018).

Resultados

Durante la implementación de este código, se utilizó la versión 4.4.1 de R para Windows

(82 MB, 64-bits), descargada desde el sitio oficial (https://cran.rstudio.com/) y el entorno

de ejecución RStudio, versión 2024.09.0-375, descargado desde (https://posit.co/download/

rstudio-desktop/). Al momento de realizar este proceso, los paquetes instalados fueron:

- scales, versión 1.3.0.

- e1071, versión 1.7-16.

En primer lugar, se deben instalar los paquetes que se utilizarán. Por ahora se sugiere no

hacer llamado a las librerías, ya que algunas de estas pueden compartir el nombre de las funcio-

nes, lo que podría ocasionar conflictos o resultados inesperados. De esta manera, se minimizan

posibles interferencias entre las librerías.

Al inicio, y debido a que este conjunto de datos es aleatorio, se debe plantar una semilla que

garantice que la elección de observaciones sea siempre la misma; sin una semilla, los resultados

no serían replicables:
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Para realizar el ejercicio, se construye una base ficticia con las funciones “rnorm” y “sam-

ple”, para luego construir la tabla de trabajo:

Este código permitirá crear un “dataframe” de trabajo con 100 observaciones, 3 variables; en

este caso, variable_1, variable_2 y variable_3, y la variable objetivo, denominada aquí “respues-

ta”. Las SVM son parte del aprendizaje supervisado, por lo que es imperativo que el modelo se

entrene con los resultados; de la calidad de estos dependerá la capacidad del modelo de apren-

der y así replicar correctamente el proceso para nuevos conjuntos de datos.

Para iniciar con el proceso de SVM, es necesario reescalar los datos para garantizar un ren-

dimiento óptimo del modelo. La razón principal es que las SVM se basan en la distancia entre

los puntos de datos y los hiperplanos (en el caso de datos linealmente separables) o las fron-

teras de decisión (en el caso de los no lineales). Las SVM son sensibles a la magnitud de las

características; si estas tienen escalas muy diferentes (por ejemplo, una característica está en el

rango de [0, 1] y otra en el rango de [0, 1000]), aquella con un rango mayor dominará las dis-

tancias y afectará de manera desproporcionada la optimización del modelo. Esto puede llevar

a resultados incorrectos.
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Esta librería permite estandarizar las variables utilizadas con la función “rescale”:

Dentro del conjunto de datos debe existir una variable binaria que será predicha con el con-

junto de variables independientes, en este ejemplo: tres variables. Así, la variable debe estar

codificada como tipo factor para producir resultados también binarios, a partir de la implemen-

tación de la SVM. Esta transformación se logra con la función “factor”, implementada sobre la

variable dependiente:·

Dentro del conjunto de datos debe existir una variable binaria que será predicha con el con-

junto de variables independientes, en este ejemplo: tres variables. Así, la variable debe estar

codificada como tipo factor para producir resultados también binarios, a partir de la implemen-

tación de la SVM. Esta transformación se logra con la función “factor”, implementada sobre la

variable dependiente:

El proceso de SVM inicia con la elección de una muestra de datos de entrenamiento sobre

el conjunto total de datos, y unos datos de prueba que son una partición del conjunto total

de datos, esto se conoce como validación cruzada. Para construir las muestras de entrenamiento

y prueba se requiere la función “sample”. Dentro de esta, se utiliza “nrow” que muestra el

número de filas que posee un “data.frame” determinado. La opción “size” considera el tamaño

de la muestra elegido (en este caso es 75 % de los datos) y la opción “replace” tiene como

opciones “T” (true) o “F” (false), para permitir o negar la muestra con reemplazo, es decir, la

opción de considerar más de una vez cada observación para incluirla en la muestra. En este

caso, la orden es “tome el total de observaciones del conjunto de datos y tome aleatoriamente

y sin reemplazo una muestra del 75 % de los datos”:

Es prudente resaltar que la partición de datos en un conjunto de entrenamiento y un con-

junto de prueba, utilizando una proporción del 75 % para el entrenamiento y el 25 % para la
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prueba, es una recomendación común por varias razones relacionadas con el rendimiento y la

evaluación de modelos de machine learning. Sin embargo, esta proporción no es una regla es-

tricta, sino una convención que ha demostrado funcionar bien en muchos escenarios.

El conjunto de datos almacenado en “df_mod” muestra las posiciones de los datos aleato-

rios elegidos, por lo que es necesario ejecutar el siguiente código que permite elegir un conjunto

de datos de un conjunto determinado, en este caso se da la orden de exclusivamente las obser-

vaciones posicionadas dentro de la muestra elegida. El contenido en las llaves está posicionado

como filas y columnas, por lo que antes de la coma, la acción afecta las filas y después de la

coma, la acción afecta las columnas. En este caso, se requiere afectar las filas:

Al incluir la resta (-) se da la orden de que considere todos los datos, excepto las posiciones

señaladas en la muestra:

Así, se obtiene un conjunto de entrenamiento y prueba que será útil para medir la fiabilidad

del modelo. Se recomienda, antes de avanzar, observar con la función “summary” para deter-

minar que la proporción de ceros y unos dentro de ambos conjuntos sea similar, con el fin de

obtener resultados de prueba más confiables.
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Para crear SVM se utiliza la librería e1071, del paquete con el mismo nombre (Chih et al.,
2021):

En primer lugar, se utiliza la función “tune” para modelar cuatro tipos de kernel de las má-

quinas, con esto se incluye un vector de costo con valores, 0.001, 0.01, 0.1, 1, 5, 10 y 20 para un

kernel lineal. El mismo costo y un vector gamma con valores 0.5, 1, 2, 3, 4, 5 y 10 para un kernel

radial. Este costo y vector gamma, más un conjunto de valores para la constante tao con los mis-

mos valores que el vector gamma para un kernel sigmoide, y finalmente, los mismos valores

más un grado p con valores entre 2 y 4 para un kernel polinomial (debido al coste computacio-

nal para los polinomios, se reducen a 6 los valores de 3 vectores adicionales, se eliminan los

valores superiores a 5 de las tres variables consideradas).

Para una SVM con un kernel lineal, se eligen costos para la función:

u′ · v

Así,

En este caso, “cost” hace referencia a v.

Para una SVM con un kernel radial, se eligen costos para la función:

exp(−γu− v2)

De la siguiente forma:

En este caso, “cost” hace referencia a v y gamma a γ.
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Para una SVM con un kernel sigmoide, se eligen costos para la función:

tanh[γ(u′ · v) + τ ]

Donde,

Aquí, “cost” hace referencia a v, gamma a γ y coef0 a τ .

Para una SVM con un kernel polinomial, se eligen costos para la función:

[γ(u′) + τ ]p

Luego,

En este caso, “cost” hace referencia a v, gamma a γ, coef0 a τ ; y “degree”, a p. El investiga-

dor tiene libertad de modificar los valores en cada uno de los hiperparámetros elegidos hasta

lograr una SVM eficiente para sus objetivos.

El siguiente código, permite observar el error asociado a cada forma del kernel. El inves-

tigador debería elegir una o dos funciones que menor coste generen y contrastarla con sus

resultados. No en todos los casos, la SVM que menor error arroje es la que más se ajusta a los

datos:
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Al observar el dato de “error” generado por el código anterior en cada una de las tablas,

se debe elegir aquella SVM con menor error y sobre esta seleccionar los hiperparámetros que

provoquen tal nivel de error.

La siguiente orden permite especificar los mejores hiperparámetros para cada tipo de SVM:

Una vez observados, los mejores hiperparámetros se utilizan en la siguiente función. En

este caso hipotético, la función de menor error fue una SVM con kernel tipo polinomial, con el

siguiente comportamiento:

[5(u′ · 5) + 1]4 (1)

Escrito en código como:

Nótese que la base de datos utilizada en esta implementación es el conjunto de datos de

entrenamiento. En caso de que se requiera hacer una gráfica:

Una salida posible para este conjunto de datos hipotético se ilustra en la figura 8.

Sobre el código, se debe resaltar que la graficación se da por parejas de variables; por lo que,

al ejecutar el código, estas deben modificarse (en este caso son 3 variables y siempre son parejas

de elementos, por lo que el resultado (3) es igual a

(
3

2

)
hasta encontrar una combinación en la

que gráficamente se observe una división clara de franjas de color (véase figura 8).

Para construir la matriz de confusión, sobre lo cual se recomienda ver el apartado de mé-

tricas de desempeño de Ávila et al. (2022), debe utilizarse una función de predicción sobre los

datos de entrenamiento:
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Figura 8. Máquina de soporte vectorial con kernel polinomial grado 4

Nota: tomada como resultado de R.

La matriz de confusión surge al construir una tabla comparativa entre el vector de predic-

ción creado por el modelo y el vector de datos binarios del conjunto de entrenamiento:

Usando la función construida sobre los datos de entrenamiento, se implementa la máquina

para los datos de prueba a través del código “newdata” que integra los nuevos datos a la má-

quina construida. Sobre estos datos también se construye una matriz de confusión. A grandes

rasgos, el objetivo es que las matrices generadas no difieran proporcionalmente, y en general,

que los elementos fuera de la diagonal principal se aproximen a 0:

Finalmente, y una vez revisada la matriz de confusión (proceso que escapa del objetivo de

este documento), incluidas las métricas que se generan de ella, y entendiendo que el modelo

se ajusta a los datos de entrenamiento y prueba, se procede a implementar el modelo en la

tabla de despliegue, que por definición no tiene construida la variable “respuesta”, en este caso

“respuesta_despliegue”, que es la que se espera predecir con el modelo:
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Sobre este nuevo conjunto de datos se debe garantizar que los nombres son iguales, para

que la predicción pueda realizarse:

Luego se integran a dicho conjunto de variables como una variable adicional:

Conclusiones

En el presente trabajo se ha demostrado la relevancia de las máquinas de soporte vectorial

(SVM, por su sigla en inglés) como una herramienta robusta para la clasificación de datos, y se

ha resaltado el impacto de una correcta selección de los hiperparámetros y kernels. El proceso
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detallado, desde la generación de las variables predictoras hasta la evaluación del modelo me-

diante validación cruzada, proporciona una guía completa para la implementación efectiva de

SVM en tareas de clasificación.

Una de las conclusiones más importantes del estudio es la necesidad de ajustar adecuada-

mente los hiperparámetros del modelo SVM. Los experimentos con distintos tipos de kernel

(lineal, radial, sigmoide y polinómico) muestran que cada uno requiere configuraciones espe-

cíficas de los hiperparámetros cost, gamma, coef0, y degree, para obtener un rendimiento óptimo.

En particular, se observó que el kernel lineal es efectivo cuando los datos son linealmente sepa-

rables; mientras que los no lineales, como el radial y el polinómico, ofrecen mayor flexibilidad

en la representación de patrones complejos. Estos resultados evidencian la importancia de em-

plear una metodología de ajuste de hiperparámetros, ya que la selección incorrecta de estos

puede resultar en modelos con bajo rendimiento.

El preprocesamiento es un paso crucial en la creación de modelos robustos. En este estu-

dio, el rescalado de las variables predictoras ha sido un componente esencial para asegurar el

rendimiento adecuado del SVM. Las SVM son altamente sensibles a la magnitud de las caracte-

rísticas, y sin un reescalado adecuado, el modelo puede verse influenciado de manera despro-

porcionada por variables de mayor escala. La utilización de la función “rescale” ha garantizado

que todas las variables predictoras estén en la misma escala, lo cual es particularmente impor-

tante cuando se emplean los tipos no lineales.

La implementación de validación cruzada ha sido clave para asegurar que el modelo no

solo se ajuste bien a los datos de entrenamiento, sino que también generalice bien a nuevos

conjuntos de datos. Mediante la función “tune” en R se exploraron diferentes combinaciones

de hiperparámetros y se seleccionaron aquellos que minimizaban el error de clasificación.

El análisis de las matrices de confusión, obtenidas tanto para los datos de entrenamiento co-

mo para los de prueba, ha facilitado la cuantificación del rendimiento del modelo en términos

de precisión. Aunque los modelos SVM suelen ser robustos, hay que ajustar cuidadosamente

los hiperparámetros para evitar problemas como el sobreajuste o la subestimación de la com-

plejidad de los datos. A través de este proceso, se identificaron los mejores modelos, lo que

demuestra que la correcta sintonización de los hiperparámetros puede aumentar considerable-

mente la exactitud de las predicciones.

Los resultados en este estudio presentan una técnica estándar para la implementación de

SVM. Sin embargo, la elección del kernel y de los hiperparámetros debe estar alineada con las

características particulares del conjunto de datos. En aplicaciones futuras, el uso de otras téc-
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nicas de optimización de hiperparámetros, como la búsqueda en cuadrícula o la optimización

bayesiana, podría mejorar los resultados.

Además, sería interesante explorar el rendimiento de SVM en conjuntos de datos más gran-

des o más dimensionales, donde la escalabilidad del modelo puede convertirse en un desafío.

El uso de técnicas como kernel trick ha demostrado ser eficaz para manejar la complejidad no

lineal de los datos, lo que amplía las posibles aplicaciones de SVM en áreas como la visión por

computadora, bioinformática y reconocimiento de patrones.

En resumen, las SVM siguen siendo una técnica de clasificación robusta y flexible, parti-

cularmente cuando se implementan con una selección correcta de hiperparámetros y un pre-

procesamiento cuidadoso de los datos. El ajuste adecuado de los hiperparámetros mediante

validación cruzada asegura la generalización del modelo y minimiza el riesgo de sobreajus-

te. Este trabajo ha destacado los pasos clave para implementar con éxito un modelo SVM y

proporciona una guía clara sobre cómo sintonizar los hiperparámetros para maximizar su ren-

dimiento.

Es importante aclarar que el uso del código no puede entenderse como algo rutinario o

definitivo, pues cada conjunto de datos presenta un reto diferente, y encontrar la combinación

de hiperparámetros adecuada tiene tanto que ver con el método como con la experiencia.
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