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Resumen

Contexto: la creciente demanda global de alimentos, junto con los retos ambientales y sociales asociados a la inten-
sificación agrícola, ha impulsado el desarrollo de soluciones tecnológicas que mejoren la eficiencia y sostenibilidad
de la producción. En este escenario, la agricultura de precisión, apoyada en vehículos aéreos no tripulados (unman-
ned aerial vehicle [UAV]) y en inteligencia artificial (IA), se posiciona como una herramienta clave para el monitoreo
detallado de cultivos y suelos.
Objetivo: este artículo presenta una revisión estructurada de la literatura científica sobre técnicas de detección
remota basadas en UAV, con énfasis en aplicaciones orientadas a la estimación de niveles de fertilización, biomasa
aérea, predicción de rendimiento y detección de plagas y malezas en sistemas agrícolas.
Metodología: se efectuó una búsqueda sistemática en bases de datos académicas (Scopus y Web of Science), me-
diante combinaciones de términos clave relacionados con agricultura de precisión, UAV, teledetección, IA y moni-
toreo agronómico. Se recurrió a criterios de selección rigurosos que resultaron en la inclusión de 62 artículos para
análisis. La información se sintetizó mediante un enfoque comparativo de técnicas, sensores, algoritmos y métricas
de desempeño.
Resultados: la revisión evidenció una tendencia creciente hacia el uso de UAV equipados con sensores RGB, mul-
tiespectrales, hiperespectrales y LiDAR, junto con técnicas de aprendizaje automático y profundo, para estimar
parámetros clave del cultivo como el índice de área foliar (leaf area index [LAI]), contenido de nitrógeno y rendi-
miento. Se identificaron enfoques prometedores basados en fusión multimodal de datos y modelos híbridos (CNN
+ GRU, ensambles), capaces de superar limitaciones de métodos clásicos como la saturación espectral. Sin embargo,
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se detectó escasa disponibilidad de bases de datos abiertas y poca estandarización en los protocolos de adquisición,
lo que dificulta la replicabilidad y generalización de los modelos.
Conclusiones: el uso integrado de UAV e IA representa una herramienta transformadora para la gestión agrícola
inteligente. No obstante, su implementación efectiva requiere superar barreras técnicas, económicas y estructura-
les; además, debe promover el acceso abierto a datos y el desarrollo de soluciones contextualizadas. Esta revisión
destaca la importancia de avanzar hacia sistemas más explicables, ligeros y adaptables, así como de fomentar una
transformación digital agrícola inclusiva y responsable.

Palabras clave: agricultura de precisión, UAV, detección remota, inteligencia artificial, aprendizaje automático, fer-
tilización, biomasa, predicción de rendimiento, apropiación tecnológica.

Abstract

Background: The growing global demand for food, along with the environmental and social challenges associated
with agricultural intensification, has driven the development of technological solutions aimed at improving the ef-
ficiency and sustainability of food production. In this context, precision agriculture, supported by unmanned aerial
vehicles (UAVs) and artificial intelligence (AI), emerges as a key tool for the detailed monitoring of crops and soils.
Objective: This article presents a structured review of the scientific literature on UAV-based remote sensing tech-
niques, with an emphasis on applications aimed at estimating fertilization levels, aboveground biomass, yield pre-
diction, and the detection of pests and weeds in agricultural systems.
Methodology: A systematic search was conducted in academic databases (Scopus and Web of Science), using
combinations of key terms related to precision agriculture, UAV, remote sensing, AI, and agronomic monitoring.
Rigorous inclusion criteria were applied, resulting in the selection of 62 articles for analysis. The information was
synthesized through a comparative approach of techniques, sensors, algorithms, and performance metrics.
Results: The review highlights a growing trend in the use of UAVs equipped with RGB, multispectral, hypers-
pectral, and LiDAR sensors, combined with machine learning and deep learning techniques, to estimate key crop
parameters such as leaf area index (LAI), nitrogen content, and yield. Promising approaches were identified based
on multimodal data fusion and hybrid models (CNN + GRU, ensemble methods), capable of overcoming limitations
of classical methods such as spectral saturation. However, a lack of open-access datasets and limited standardiza-
tion in data acquisition protocols were observed, which hinders the replicability and generalization of models.
Conclusions: The integrated use of UAVs and AI represents a transformative tool for smart agricultural manage-
ment. Ne- vertheless, effective implementation requires overcoming technical, economic, and structural barriers, as
well as promoting open data access and the development of context-aware solutions. This review underscores the
importance of advancing toward more explainable, lightweight, and adaptable systems, and fostering an inclusive
and responsible digital transfor- mation of agriculture.

Keywords: Precision agriculture, UAV, remote sensing, artificial intelligence, machine learning, fertilization, bio-
mass, yield prediction, technological adoption.

Introducción

A partir del estudio pionero de (1), a lo largo de la década de 1990 se llevaron a cabo una se-

rie de investigaciones centradas en el desarrollo de métodos de muestreo del suelo, para medir

eficazmente la calidad de la fertilización. Estos estudios incorporaron herramientas tecnológi-
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cas avanzadas a las prácticas agrícolas rutinarias; además, demostraron cómo las variaciones

en los niveles de fertilizantes del suelo podían atribuirse a la variabilidad introducida por los

métodos de muestreo del análisis del suelo. Este conjunto de conocimientos ha dado lugar a

propuestas innovadoras para optimizar las estrategias de fertilización y garantizar una gestión

sostenible de los recursos agrícolas. De ahí han surgido conceptos clave en la agricultura de

precisión, como el muestreo estratégico de nutrientes, las evaluaciones de la toxicidad del suelo agríco-
la y la fertilización de precisión con dosificación variable para cultivos productivos (2).

Figura 1. Análisis de imágenes hiperespectrales para predecir el contenido de agua de la hoja de la
planta. Tomado de (4).

La evolución en estos métodos de estudio agrícola ha facilitado la incorporación de varia-

bles más específicas y detalladas, y ha enriquecido significativamente el análisis de suelos. Por

ejemplo, pueden medirse los efectos de la inclinación del terreno en los índices de fertilización

o los impactos negativos de la sobredosificación de fertilizantes en otros seres vivos del ecosis-

tema. Este progreso ha resultado en innovaciones significativas, como la integración de mapas

de contornos tridimensionales, modelos geoestadísticos y técnicas cartográficas, sistemas de

información geográfica (SIG), los sistemas de posicionamiento global (SPG) y las técnicas de

monitoreo remoto (3).

Los drones comerciales (unmanned aerial vehicles [UAV]) pueden equiparse con diversos sen-

sores y cámaras para captar imágenes y facilitar los procesos de telemetría (5) (véase figura 1).

Esta capacidad ha impulsado el desarrollo de aplicaciones de supervisión y control remotos

para la gestión de cultivos, por medio de la integración activa de los UAV como herramientas

versátiles en la producción agrícola de nueva generación (6). Las investigaciones en esta área

demuestran cómo las imágenes panorámicas captadas por UAV sirven para calcular índices de

vegetación, los cuales pueden correlacionarse con varios aspectos de la salud y vitalidad de
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las plantas: crecimiento, altura, densidad y medidas geométricas de referencia específicas. Este

enfoque acentúa la utilidad de las imágenes basadas en UAV para proporcionar información

detallada y procesable sobre el estado y el desarrollo de los cultivos (7). Entonces, la literatu-

ra especializada resalta la decidida integración de UAV para detección remota por medio de

distintas cámaras, con sensores remotos, sistemas de información en tiempo real e inteligen-

cia artificial (IA), según requerimientos concretos y definidos. De hecho, la utilización de UAV

como apoyo a procesos agrícolas representa un campo de investigación y desarrollo en expan-

sión, con miras a lograr su integración a los flujos de trabajo y a operaciones agroindustriales

de precisión (8, 9).

En la literatura hay una gran diversidad de índices de vegetación (IV) y sus aplicaciones en

casos de uso bien definidos. Una primera aproximación a índices primarios de vegetación para

aplicaciones de detección remota, basadas en UAV la plantean (5). Los autores proponen una

clasificación de los IV en dos grupos: térmicos y espectrales, y ponen de manifiesto un caso de

uso que era el foco en ese momento, la utilización de distintos IV para la detección de estrés

hídrico. Posteriormente, otros estudios han registrado la evolución y aplicaciones de los IV ba-

sados en imágenes obtenidas por UAV, como se observa en los trabajos de (10–12) y (13).

La reciente disponibilidad de distintos sensores y cámaras especializados para UAV ha im-

pulsado el desarrollo de nuevos usos para la teledetección de cultivos, lo cual amplía las capaci-

dades de la agricultura de precisión a los siguientes campos: estrés hídrico, estado nutricional

de los cultivos (particularmente niveles de nitrógeno), y monitoreo de plagas y enfermeda-

des (14, 15).

El objetivo de este artículo es presentar una revisión estructurada de la literatura científica

sobre el uso UAV e IA, en aplicaciones de agricultura de precisión, con énfasis en la estimación

de niveles de fertilización, biomasa aérea, detección de plagas y predicción de rendimiento.

Esta revisión se fundamenta en el análisis de 62 estudios primarios recientes que integran imá-

genes captadas por UAV con técnicas de visión por computador y modelos de aprendizaje

automático. El artículo se organiza como sigue: la introducción contextualiza los avances histó-

ricos y tecnológicos en agricultura de precisión con UAV; la metodología detalla el proceso de

búsqueda, selección y análisis de la literatura revisada; luego se sintetizan los resultados más

relevantes organizados por área de aplicación; las últimas dos partes plantean una discusión

crítica y las conclusiones generales; además, se resaltan los avances, limitaciones y oportunida-

des futuras identificadas en este campo.
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Metodología

La presente revisión de literatura se llevó a cabo siguiendo una metodología estructurada,

diseñada para identificar, sintetizar y analizar de manera sistemática los estudios primarios

publicados recientemente sobre el uso de UAV y técnicas de IA en agricultura de precisión.

Se enfatizó en las aplicaciones sobre monitoreo de cultivos y estimación de parámetros clave,

fertilización, estimación de biomasa, detección de plagas y predicción de rendimiento. Este

enfoque buscó asegurar la transparencia y reproducibilidad de la selección de la literatura,

para así iniciar el análisis crítico de los hallazgos empíricos.

Fuentes de información

La búsqueda de literatura relevante se realizó en las bases de datos Scopus y Web of Science

(WoS). Estas fueron elegidas estratégicamente debido a su indexación de literatura peer-reviewed
de alto impacto, lo cual contribuyó a garantizar la calidad y pertinencia de los estudios identi-

ficados.

Estrategia de búsqueda

Para identificar los artículos relevantes, se emplearon las siguientes cadenas de búsqueda

en cada base de datos:

• Scopus. TITLE-ABS-KEY((UAV OR “unmanned aerial vehicle“ OR UAS) AND

(“artificial intelligence“ OR “machine learning“ OR "deep learning“) AND (“pre-

cision agriculture“ OR “precision farming“)) AND (crop* OR plant* OR vege-

tation OR field* OR agricul* OR soil* OR land OR fertiliz* OR nitrogen OR

phosphorus OR potassium OR biomass OR yield OR pest* OR disease* OR

“plant density“ OR “vegetation index*“ OR “spectral analysis“))

• Web of Science. ALL=((“UAV“ OR “unmanned aerial vehicle“ OR UAS) AND

(“artificial intelligence“ OR “machine learning“ OR “deep learning“) AND

(“precision agriculture“ OR “precision farming“) AND ((“crop*“ OR “plant*“

OR "vegetation.OR “field*“ OR agricul*) OR (“soil*“ OR land) OR fertiliz* OR

nitrogen OR phosphorus OR potassium OR biomass OR yield OR pest* OR

disease* OR “plant density“ OR “vegetation index*“ OR “spectral analysis“))

La búsqueda abarcó publicaciones entre los años 2020 y 2024. Esta limitación temporal per-

mitió focalizar la revisión en los avances más recientes y relevantes en el campo. La ejecución

de esta estrategia de búsqueda en las plataformas seleccionadas resultó en una identificación

inicial de un total de 1165 artículos.
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Criterios de selección

Los artículos identificados en la fase de búsqueda fueron sometidos a una rigurosa selec-

ción, a partir de criterios de inclusión y exclusión predefinidos para determinar el conjunto

final de estudios que conformarían el corpus de la revisión. Estos criterios se detallan en la

tabla 1.

Tabla 1. Criterios de selección para la revisión

Criterios de inclusión Criterios de exclusión

Publicaciones correspondientes a artículos de

investigación originales (estudios primarios) en

revistas científicas con revisión por pares o actas

de conferencias relevantes.

Documentos que no corresponden a literatura

científica peer-reviewed (por ejemplo: editoriales,

noticias, blogs, resúmenes extendidos sin

publicación completa asociada).

Estudios que describen la aplicación o el uso de

UAV o drones en contextos agrícolas.
Artículos de revisión o metaanálisis.

Trabajos que involucren la utilización de técnicas de

inteligencia artificial (IA), aprendizaje automático

(machine learning [ML]) o aprendizaje profundo

(deep learning [DL]) para el análisis de imágenes o

datos obtenidos por UAV.

Estudios que, si bien utilizan UAV o IA/ML/DL,

no aplican ambas tecnologías de forma combinada en el

análisis de datos para agricultura.

Artículos centrados en aplicaciones de agricultura

de precisión, específicamente relacionadas con el

monitoreo de cultivos, estimación de parámetros

(incluyendo fertilización, biomasa, rendimiento,

plagas, enfermedades).

Publicaciones enfocadas en aplicaciones de UAV o

IA/ML/DL fuera del ámbito de la agricultura de

precisión (por ejemplo: mapeo topográfico general,

inspección de infraestructura no agrícola).

Publicados dentro del rango de fechas establecido

(2020-2024).

Artículos duplicados que aparecieron en múltiples

bases de datos o búsquedas.

Artículos publicados en idioma inglés.

Estudios que, tras la revisión del texto completo,

resultaron no cumplir con los criterios de inclusión

definidos, a pesar de haber sido inicialmente

identificados por título o resumen.

Proceso de selección

La selección de artículos se llevó a cabo en las siguientes fases:

1. Gestión de duplicados. Tras consolidar los resultados de las bases de datos en Zotero, se

identificaron y eliminaron 768 artículos duplicados.

2. Cribado por título y resumen. Los 397 artículos restantes fueron evaluados inicialmente por

título y resumen, según los criterios de selección. Esta fase resultó en la exclusión de

268 artículos, principalmente debido a falta de relevancia temática o tipo de documento
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inadecuado (se excluyeron artículos de conferencias, libros y capítulos de libros, entre

otros).

3. Revisión de texto completo. Los 129 artículos que superaron el tamizaje inicial fueron leídos

en detalle para confirmar el cumplimiento de todos los criterios de inclusión/exclusión.

En esta fase, se excluyeron 67 adicionales.

Este proceso resultó en la identificación de un corpus final de 62 artículos para la revisión,

cuyo flujo completo se ilustra en la figura 2.

Figura 2. Diagrama de flujo del proceso de selección de artículos
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Extracción de datos

A partir del corpus final de 62 artículos seleccionados, se procedió a la extracción sistemá-

tica de información clave y relevante para los objetivos de la revisión. Se utilizó una hoja de

cálculo estructurada para asegurar la consistencia en la recolección de datos a través de todos

los estudios.

Esta extracción de datos estructurada proporcionó la base empírica necesaria para la poste-

rior síntesis y análisis de los hallazgos.

Síntesis y análisis de datos

Los datos extraídos de los estudios incluidos (estudios primarios) fueron objeto de un aná-

lisis comprensivo y estructurado. El enfoque principal fue la síntesis de los hallazgos empíricos

para reconocer las tendencias predominantes, las metodologías más empleadas y los resultados

clave reportados en las diversas aplicaciones de UAV e IA en agricultura de precisión. El aná-

lisis se organizó temáticamente; luego se agruparon los estudios según su aplicación principal,

lo cual hizo posible comparar y contrastar las tecnologías (sensores, UAV) y las técnicas usa-

das de inteligencia artificial (IA), aprendizaje automático (machine learning [ML]) o aprendizaje

profundo (deep learning [DL]); después se evaluaron sus fortalezas, debilidades y el desempeño

en diferentes contextos y cultivos. Se efectuó un análisis crítico para identificar patrones recu-

rrentes, evaluar la solidez de las metodologías reportadas, y así determinar las limitaciones y

desafíos comunes inherentes a la implementación de estas tecnologías en la práctica agrícola,

tal como fueron reportados por los autores de los estudios originales. Asimismo, se recono-

cieron las brechas de conocimiento y las direcciones futuras de investigación sugeridas en la

literatura primaria.

Resultados

En esta sección se sintetizan los hallazgos en los estudios primarios incluidos en la revi-

sión, organizados por áreas de aplicación principal. El análisis de estos trabajos proporciona

una visión general de las tecnologías (UAV, sensores, técnicas de IA/ML/DL) y metodologías

empleadas, el desempeño alcanzado y los contextos en los que se han aplicado en el ámbito de

la agricultura de precisión.

Estimación de niveles de nutrientes en cultivos

Autores como (16), al aplicar estas tecnologías en cultivos de trigo, revelaron una fuerte

correlación entre descriptores como el índice de área foliar (leaf area index [LAI]) y la biomasa
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fresca de la masa (fresh biomass mass [FBM]). Los autores describen correlaciones significativas

entre otros descriptores como la altura de la planta (plant height [PHT]) y la biomasa seca de

la masa (dry biomass [DBM]), que son esenciales para entender las características biofísicas del

dosel del trigo. A partir de sus hallazgos, sugieren la utilización de imágenes tomadas por UAV

para calcular el índice de nutrición nitrogenada (nitrogen nutrition index [NNI]) de los trigales

como métrica efectiva para estimar los niveles de nitrógeno del suelo. Esto determinaría si el

trigo está pobremente fertilizado o si sufre de sobrefertilización, y ayudaría a evitar los efectos

negativos asociados con ambos extremos de gestión del nitrógeno.

Asimismo, se destaca la aplicación de algoritmos de DL para el análisis de imágenes captu-

radas por UAV, porque ha demostrado su potencial aplicabilidad, al ofrecer información esen-

cial que facilita la toma de decisiones en tiempo real con un margen de error mínimo; de esta

manera se superan las metodologías tradicionales más fluctuantes e imprecisas (17).

Las cámaras de última generación se convierten en un actor importante, pues les brindan

la posibilidad a los UAV de obtener datos relacionados con el vigor y la tasa de crecimiento

de los cultivos. Entonces, la estimación precisa de los niveles de nutrientes en los cultivos es

fundamental para optimizar la fertilización y mejorar la productividad agrícola de manera sos-

tenible. La teledetección basada en UAV e IA ha emergido como una herramienta clave para

el monitoreo no destructivo y a escala de campo de parámetros nutricionales, principalmente

el nitrógeno (N), aunque también se abordan el fósforo (P) y el potasio (K) en ciertos culti-

vos (18–27).

Los índices de vegetación (vegetation index [VI]) derivados de imágenes multiespectrales y,

en estudios más avanzados, hiperespectrales, son las características más utilizadas para esti-

mar el estado nutricional. Se ha validado la correlación de VI como el índice de vegetación

de diferencia normalizada (normalized difference vegetation index [NDVI]), la diferencia norma-

lizada del borde rojo (normalized difference red edge [NDRE]) o índices relacionados con la clo-

rofila (por ejemplo: soil and plant analyzer development [SPAD]), con el contenido de N en las

hojas o en la biomasa total en diversos cultivos como arroz, trigo, maíz, vid y pastizales. Estos

IV (y las bandas espectrales) se utilizan como entrada para modelar sus potenciales relacio-

nales (posiblemente no lineales) con los parámetros nutricionales medidos en campo. Entre

los más reportados en los estudios revisados se encuentran random forest (RF), support vector
regression (SVM) y redes neuronales (artificial neural network [ANN]/ extreme learning machine
[ELM]) (18–23). Estudios han reportado altas precisiones (valores de R2 superiores a 0,70) en

la predicción de contenido de N, P o K, así como otros indicadores como SPAD o absorción

de nitrógeno (19, 21, 22). El algoritmo RF es frecuentemente destacado por su robustez y buen

desempeño (18, 22, 23). La tabla 2 sintetiza los estudios más destacados.
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Tabla 2. Estudios sobre estimación de niveles de nutrientes en cultivos utilizando UAV e IA

Cultivo Indicador Sensor UAV Métodos IA/ML Referencia

Arroz
SPAD, contenido de

nitrógeno (N)
HS (400-1000 nm)

ANN, ELM,

LASSO, SVR, MLR
(18)

Trigo LNC HS (400-1000 nm)
PPR, ANN, GPR-

mRMR

(Selección)

(28)

Trigo LNC, PNC, LNA, PNA CIR (NIR-G-B) multi-view SVR, ELM, RF (20)

Vid LNC, LKC, LPC MS (6 bandas)
PLS, RF, SVM,

ELM
(21)

Maíz, soya, alfalfa VWC, EC (Suelo) MS (5 bandas) + GPR/EM RF (27)

Sorgo
Contenido de nitrógeno

(N %)
RGB

MLR, MLP, CNN,

IA

Híbrida/Ensamble

(MLP+CNN)

(29)

Cítricos LNC
Multiespectral (MS) +

Textura (LBP)

Regresión

cooperativa

semisupervisada

(Ridge, SVR, RF),

BPNN, PLSR

(20)

Arroz LNC
Multisensores (RGB +

MS), fusión (método GS)

LR, GPR,

GPR+mRMR

(selección de

características.)

(30)

Trigo LNC, SPAD
Hiperespectral (HS, 400-

1000 nm)

ANN, ELM,

LASSO, SVR, MLR
(18)

HS: hiperespectral; MS: multiespectral, RGB: red, green, blue; CIR: color infrared; SPAD: soil and plant
analyzer development; LNC: leaf nitrogen content; PNC: plant nitrogen content; LNA: leaf nitrogen

accumulation; PNA: plant nitrogen accumulation; LKC: leaf potassium content; LPC: leaf phosphorus content;
VWC: volumetric water content; EC: electrical conductivity; N %: porcentaje de nitrógeno; LBP: local binary
pattern; ANN: artificial neural network; ELM: extreme learning machine; LASSO: least absolute shrinkage and

selection operator; SVR: support vector regression; MLR: multiple linear regression; PPR: projection pursuit
regression; GPR: gaussian process regression; mRMR: minimum redundancy maximum relevance; RF: random

forest; MLP: multilayer perceptron; CNN: convolutional neural network.

Si bien los VI espectrales son informativos, presentan limitaciones, particularmente la sa-

turación en etapas avanzadas de crecimiento o con alta densidad de cultivo, lo cual reduce

su sensibilidad a variaciones en el contenido de nutrientes en esos escenarios (18, 20). Para

superar esto, la incorporación de características estructurales del cultivo, como la altura o la

cobertura del dosel (derivadas de imágenes red, green, blue [RGB] o datos 3D como LiDAR), ha
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Tabla 3. Cámaras y sensores utilizados por UAV en la estimación de niveles de fertilización y crecimiento

Tipo de cámara Cultivo
Fertilizante

estudiado
Índice calculado Referencia

Multiespectral Trigo Nitrógeno
Índice de área foliar (LAI) y

materia seca foliar (LDM)
(32)

RGB Sorgo Nitrógeno VI (basados en color/verde) (29)

Hiperespectral Trigo Nitrógeno (LNC)
VI

(espectrales/hiperespectrales)
(28)

Multiespectral Cítricos
N, P, K (LNC,

LKC, LPC)
LNC + Textura (20)

Multiespectral Vid
N, P, K (LNC,

LKC, LPC)
VI (espectrales) (21)

demostrado mejorar la precisión de la estimación, especialmente para la biomasa y parámetros

relacionados con N (Nitrógeno) como N % o Nup (N uptake [absorción de nitrógeno]) (23–26).

Los enfoques de fusión de datos multimodales, que combinan información espectral con carac-

terísticas estructurales, texturales o de otro tipo (térmicas, topográficas), procesados a menudo

con técnicas de DL, se perfilan como métodos más robustos y precisos, capaces de capturar re-

laciones complejas y mitigar los efectos del fondo del suelo o la saturación (22,24–26). La fusión

de datos provenientes de diferentes bandas espectrales (por ejemplo: visible, red-edge, NIR near

InfraRed spectroscopy) o incluso de dominios espectrales distintos (por ejemplo: visible/near
infrared spectroscopy [NIR] con short-wavelength infrared [SWIR]) también es explorada para me-

jorar la sensibilidad y superar las limitaciones de las bandas tradicionales para detectar ciertos

nutrientes (31).

El análisis de la literatura en estimación de nutrientes mediante UAV e IA demuestra un

avance significativo, con precisiones considerables en diversos cultivos y contextos. La tabla 3

presenta una síntesis de los estudios más destacados desde el punto de vista del tipo de cámara

utilizado. Sin embargo, persisten desafíos que limitan la implementación práctica y la generali-

zación de los modelos: (i) la saturación de los VI implica explorar características estructurales o

el uso de bandas espectrales alternativas; (ii) la complejidad en la adquisición y procesamiento

de datos multimodales (por ejemplo: alineación geométrica, calibración radiométrica) y la ne-

cesidad de datos de campo extensos y precisos para el entrenamiento y validación de modelos;

(iii) la transferibilidad de los modelos a diferentes variedades de cultivo, etapas de crecimiento,

condiciones ambientales y tipos de suelo. Aunque se han logrado avances, la estandarización

de metodologías, la mejora en la robustez de los modelos ante la variabilidad contextual y la

reducción de la necesidad de datos de campo intensivos son áreas clave para futuras investiga-
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ciones que faciliten la adopción a gran escala de estas tecnologías para la gestión de nutrientes

en agricultura de precisión.

Estimación de biomasa

La estimación precisa de la biomasa aérea (above-ground biomass [AGB]) y la predicción del

rendimiento (Yield) son aplicaciones cruciales en la agricultura de precisión, donde la teledetec-

ción basada en UAV e IA ha mostrado un potencial significativo (22–26,31,33,34). Los estudios

primarios revisados en esta categoría exploran diversas combinaciones de plataformas UAV,

tipos de sensores y algoritmos de IA.

En este panorama, el LAI ha emergido como una variable clave en la estimación no des-

tructiva de biomasa aérea, al capturar aspectos estructurales del dosel que están asociados a la

acumulación de materia vegetal. Estudios recientes en de maíz, papa y cítricos han demostrado

que el LAI puede estimarse con alta precisión a partir de imágenes UAV, mediante el uso de mo-

delos como RF, SVR o técnicas de regresión multivariada, alcanzando valores de R2 superiores

a 0,80 (35–37). Estas investigaciones destacan el potencial de combinar información espectral,

textural y morfológica con algoritmos de aprendizaje automático para representar la dinámi-

ca foliar a lo largo del ciclo del cultivo; así se obtiene una estimación más robusta de la biomasa.

Por otro lado, en sistemas agrícolas diversos como quinua, pasturas y campos salinizados,

se ha explorado el uso del LAI como vínculo entre características espectrales complejas y va-

riables productivas o de calidad, como la materia seca o el contenido de nitrógeno (38–40). En

estos contextos, la aplicación de sensores multiespectrales e hiperespectrales (incluyendo ban-

das VNIR y SWIR (subregión del espectro de longitud de onda electromagnética), junto con

técnicas de selección de variables y fusión de datos, ha demostrado ser eficaz para capturar la

heterogeneidad del dosel vegetal (41). Estos hallazgos refuerzan el papel del LAI como variable

puente en los modelos de estimación de biomasa, a partir del cual se generan predicciones más

detalladas, adaptables a distintas condiciones de manejo y escalables en parcela o cultivo.

Los VI derivados de imágenes multiespectrales son quizás las variables más utilizadas, co-

mo entradas para los modelos de predicción de biomasa y rendimiento (22, 32–34). P)or ejem-

plo, (32) demostraron que la combinación de NDVI con RF fue efectiva para predecir el ren-

dimiento en trigo (R2 = 0,78), mientras que (33) lograron una alta precisión (R2 = 0,9) en la

predicción de rendimiento en algodón, con el uso de características de dosel e índices de ve-

getación con un modelo de red neuronal artificial. Sin embargo, varios estudios señalan una

limitación clave de los VI: tienden a saturarse en etapas de crecimiento avanzadas o con alta

densidad de cultivo, lo que reduce su precisión para estimar alta biomasa (26, 31, 34).
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Para mitigar la limitación de la saturación de los VI, la incorporación de características es-

tructurales del cultivo (como altura o cobertura del dosel) ha demostrado ser crucial. Estudios

como el de (34) en centeno y de (23) en pastizales confirmaron que la inclusión de altura y

cobertura mejoró significativamente la precisión de la estimación de biomasa, en comparación

con el uso exclusivo de VI. Estas características estructurales, a menudo derivadas de mode-

los 3D generados por fotogrametría de imágenes RGB o, en estudios más avanzados, de datos

LiDAR (25, 26), son menos susceptibles a la saturación y proporcionan información comple-

mentaria valiosa sobre la arquitectura del dosel.

La fusión multimodal (multimodal function [MMF]) que combina datos espectrales, estructu-

rales y, en algunos casos, térmicos, ha demostrado optimizar la precisión y robustez de la esti-

mación de biomasa y la predicción de rendimiento, sobre todo en contextos agrícolas complejos

o con terrenos irregulares. Por ejemplo, (24) propusieron un modelo MMF con aprendizaje mul-

titarea (MTL) que fusiona VI con características de imagen RGB para predecir simultáneamente

LAI (leaf area index), AGB (above-ground biomass), PH (plant height) y LCC (leaf chlorophyll content)
en trigo con acolchado, superando las limitaciones del fondo del suelo. Asimismo, (25) mos-

traron que la fusión de datos multiespectrales, térmicos, estructurales y topográficos mejoró la

predicción de AGB en trigo en terrenos ondulados.

El uso de DL, particularmente redes neuronales convolucionales (convolutional neural net-
work [CNN]) y modelos de fusión híbrida que integran imágenes 2D con nubes de puntos 3D,

ha demostrado un potencial superior para extraer características complejas y capturar relacio-

nes no lineales, con altas precisiones en la predicción de AGB como resultado (22, 26). Aunque

el estudio de (42) en acuicultura de kelp también explora el uso de UAV, detección espectral e

IA para biomasa, resalta desafíos de costos e infraestructura, aplicables también a la agricultu-

ra terrestre a gran escala. La exploración de nuevas longitudes de onda, como las del dominio

VNIR/SWIR, también señala potencial para superar la saturación y mejorar la estimación de

biomasa y nitrógeno (31).

La síntesis de los estudios primarios revisados en esta categoría revela una sólida capacidad

de las tecnologías UAV e IA para la estimación de biomasa aérea y la predicción de rendimiento

en diversos cultivos. Se observa una clara tendencia hacia el empleo de sensores multiespectra-

les y RGB, a menudo complementados con datos estructurales obtenidos mediante fotograme-

tría a partir de imágenes RGB. Los algoritmos de aprendizaje automático tradicionales como

RF y SVM registran un buen desempeño, aunque las técnicas de deep learning (CNN, fusión

multimodal) muestran un potencial superior, sobre todo al integrar múltiples fuentes de da-

tos y trabajar con grandes volúmenes de imágenes. Sin embargo, el análisis crítico de estos

hallazgos también pone de manifiesto desafíos persistentes. La saturación de los índices de ve-
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getación en etapas de crecimiento avanzadas o con alta densidad de cultivo sigue siendo una

limitación significativa para la estimación precisa (26,31,34). La complejidad del procesamiento

de datos multimodales y de fuentes como LiDAR o nubes de puntos, aunque mejora la preci-

sión, representa una barrera para la implementación a gran escala (25, 26). Adicionalmente, la

variabilidad en el desempeño de los modelos entre diferentes cultivos, etapas de crecimiento,

condiciones ambientales y contextos geográficos (22, 25, 34).

Predicción de rendimiento

La predicción precisa del rendimiento de los cultivos es una tarea crucial para la agricultura

de precisión; además, les facilita a los agricultores optimizar la gestión de insumos, planificar

la cosecha y la logística, y tomar decisiones informadas para maximizar la rentabilidad. Los

métodos tradicionales para este propósito, a menudo basados en muestreos destructivos o eva-

luaciones visuales, son laboriosos, costosos y no siempre evidencian la variabilidad espacial

dentro de un campo. La integración de vehículos aéreos no tripulados (UAV) equipados con

diversos sensores y técnicas avanzadas de visión por computador e inteligencia artificial (IA)

ofrece una alternativa potente para obtener predicciones de rendimiento no destructivas y a

alta resolución.

Los estudios recientes han explorado diversas aproximaciones para predecir el rendimiento

utilizando datos de UAV e IA en una variedad de cultivos, desde cereales y leguminosas hasta

frutales y hortalizas. Estos trabajos varían en los tipos de sensores empleados, las característi-

cas de imagen y otros datos integrados, los algoritmos de IA/ML aplicados y la escala de la

predicción (en planta, parcela o campo). Un objetivo común es aprovechar la capacidad de los

UAV para capturar información detallada sobre el estado del cultivo que se correlacione con el

rendimiento final.

Estudios recientes señalan el potencial de UAV e IA para la predicción de rendimiento. Se

observan diversas estrategias técnicas. Por ejemplo, (43) combinaron VI y fracción vegetada de

UAV con ANN para estimar rendimiento en viñedo; así, lograron RMSE = 0,5 kg/vid y RE

12,1 % con ANN al fusionar VI y Fc. Para trigo, (44) fusionaron datos multisensor (RGB, MS,

TIR) con un ensamble ML (stacking ensemble using ridge regression [StRR]), obteniendo R2 =-0,692

y RMSE = 0,916 t/ha, con lo cual superaron modelos individuales. En la tabla 4 se presenta una

síntesis de estudios sobre predicción de rendimiento de cosechas.

Integrar UAV con modelos de simulación también es viable: (45) asimilaron LAI de UAV en

WO-FOST mediante 4DVAR para col; de esta manera, se redujo el RMSE de rendimiento (1314-

2532 kg/ha sin asimilación vs. 1314-2498 kg/ha con asimilación). (46) emplearon regresión
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Tabla 4. Estudios sobre predicción de rendimiento mediante UAV e IA

Viñedo/rendimi

ento
Multiespectral

VI, fracción

vegetada (Fc)
ANN

1,0

(valida

ción)

0,5

kg/vi

d/12,1

%

(43)

Trigo/rendimien

to

Multisensor

(RGB, MS, TIR)

VI (espectrales),

textura (TIR),

modelos climáticos

ML (Cubist,

SVM, DNN, RR,

RF), ensamble

(stacking)

0,692
0,916

t/ha
(44)

Soja/rendimien

to

Multitemporal

RGB

Imágenes RGB

(multitemporales,

3D), rasgos

profundos

DL (3D CNN -

VGG, Res-Net,

DenseNet)

0,70

(mejor)

NRMS

E 10,08

%

(mejor)

(?)

Col

(cabbage)/rendim

iento

RGB,

multiespectral

LAI (estimado por

modelo de

segmentación)

Modelos de

simulación

(WOFOST) +

Asimilación de

datos (4DVAR)

RMSE

1314-

2532

kg/h

a/rR

MSE

15,8–

30,9 %

(45)

Trigo/rendimien

to, rasgos (CMT,

TKW, Gnm2)

Hiperespectral

Datos espectrales

(curvas de

reflectancia

funcional)

Regresión

funcional
–

MAE

13,42

%/RM

SE

869,20

kg/ha

(46)

Algodón/rendi

miento

Multiaño UAV

(MS, RGB) +

Suelo (ECa) +

Clima

Datos fusionados

(suelo, clima,

NDVI de UAV)

procesados por

CNN

DL (CNN +

GRU)

0,72–

0,84

MAE

247–

384 kg

/ha/

Error

8,9–

13,7 %

(47)

CM: cellular membrane thermostability; CMT: cellular membrane thermostability; DL: deep learning; ECa:
electrical conductivity apparent; GRU: gated recurrent unit; LAI: leaf area index; MAE: mean absolute error;

ML: machine learning; MS: multispectral; NRMSE: normalized root mean square error; RE: relative error; RGB:
red green blue; RMSE: root mean square error; UAV: unmanned aerial vehicle; VI: vegetation index.

Nota: la métrica R2 de 1,0 indicada en (43) corresponde a los resultados en la validación, no en el
conjunto de prueba final.
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funcional (Sigcomp) en datos hiperespectrales de UAV para predecir rendimiento de trigo, lo

cual arrojó MAPE 13,42 % y RMSE = 869,20 kg/ha, efectivo con datos reducidos. (47) fusionaron

datos multiaño de UAV (MS, RGB), suelo (ECa) y clima con DL (CNN + GRU) para predecir

rendimiento de algodón; esto evidenció errores medio (MAE) del 8,9 % al 13,7 % en un año

fuera del entrenamiento. La robustez y precisión varían según el cultivo, sensor, características

y modelo, pero la fusión de datos y el uso de algoritmos ML/DL avanzados (ANN, ensamble,

3D CNN) son tendencias clave para optimizar la predicción de rendimiento.

Detección y manejo de plagas, enfermedades y malezas

La integración de UAV con cámaras multiespectrales e hiperespectrales en la agricultura

inteligente ha revolucionado la detección temprana de plagas; lo cual permite una respuesta

rápida y precisa en el manejo de cultivos. Gracias a la combinación de tecnología de visión

por computador y soluciones de IA, es posible identificar patógenos como hongos, insectos,

bacterias, virus y especies invasoras; así, se proporciona un enfoque proactivo y eficiente en la

gestión de la salud del cultivo (48).

A partir de estas generalidades, en el estudio de (49), se destaca la aplicación de UAV para

la aspersión precisa de insecticidas y acaricidas, centrada en optimizar el control de plagas. Los

autores examinan cómo factores como el tamaño de gota, las condiciones meteorológicas y los

métodos de aplicación influyen en la deriva de aspersión, esenciales para calibrar la eficacia

de estas intervenciones. Además, se subraya la capacidad de los UAV equipados con cámaras

multiespectrales e hiperespectrales para detectar estrés en las plantas, tanto abiótico (sequía,

deficiencias de nutrientes) como biótico (patógenos, nematodos, malezas) (50, 53). El trabajo

de (54) se centra en la detección de una enfermedad específica en cacahuete: el tizón del sur, a

través de imágenes multiespectrales de UAV. Proponen un método que combina VI con índices

texturales (textural indices [TI]) construidos a partir de rasgos texturales originales. Mediante

algoritmos como KNN, PSO-SVM y AdaBoost, encontraron que la combinación de VI y TI,

particularmente con el modelo KNN, logra una alta precisión (91,89 %) y puntaje F1 (91,39 %)

en el conjunto de prueba. Esto subraya la importancia de integrar tanto la información espec-

tral como la textural para una detección más precisa de enfermedades.

La detección de otra enfermedad del trigo, la sarna, es abordada por (55), a través de imá-

genes RGB de UAV. Este estudio propone una arquitectura de red neuronal profunda perso-

nalizada (ASFFNet, basada en YOLOv5) que incluye mejoras de contraste y fusión adaptativa

espacial de rasgos. Según los resultados, este método logra una alta precisión media (AP) del

80,8 %, lo cual supera a otros detectores de objetos DL. La innovación radica en la capacidad de

ASFFNet para detectar manchas pequeñas de enfermedad al adaptar la fusión de característi-
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cas a diferentes escalas, lo cual es crucial dado el pequeño tamaño de las lesiones de sarna en

las imágenes.

La aplicabilidad a una gama más amplia de problemas fitosanitarios es explorada en (56),

a través de modelos de ML (SVM, RF, AdaBoost, Naive Bayes) aplicados a la gestión fitosani-

taria. No obstante, la información específica sobre el uso de UAV, como fuente de datos prima-

rios para la predicción directa de enfermedades en su estudio, no se detalla en los fragmentos

revisados. En la tabla 5 se sintetizan estudios relevantes sobre detección y manejo de plagas

mediante UAV e IA.

Estudios más específicos sobre la detección de enfermedades foliares en arroz, como el

de (57), demuestran la efectividad de adaptar arquitecturas DL existentes, como Tiny YOLOv4,

para la detección de manchas de enfermedad foliar (bacterial leaf blight, rice blast, brown spot).
Mediante la adición de módulos específicos y el entrenamiento con un dataset personalizado,

lograron una alta precisión media (AP 86 %), destacando la importancia de la arquitectura de

red optimizada para objetos pequeños en imágenes UAV y la calidad del conjunto de datos.

La detección de enfermedades en arándanos silvestres (Monilinia blight, Botrytis blight) y

la identificación de fenotipos susceptibles es abordada por (60). Con imágenes multiespectrales

de UAV y, potencialmente, datos LiDAR, junto con VI y rasgos fenológicos, aplicaron métodos

ML y clasificación supervisada (LDA, SVM). Sus hallazgos indican que los VI, en particular en

la región NIR, y los rasgos fenológicos son discriminatorios para identificar enfermedades y

fenotipos, con lo cual se obtuvo una precisión de clasificación global del 85 %.

Además de la detección directa, la evaluación de la susceptibilidad a enfermedades y la

zonificación del viñedo basadas en indicadores de salud son objeto de estudio en (58). En es-

te estudio se recurre a imágenes RGB+NIR (multiespectrales) de UAV y datos de campo de

nutrientes (N, P, K foliar y peciolo). Los autores trabajan el algoritmo YOLO para la detección

precisa de vides (90 % de precisión), lo cual sirve como base para la zonificación utilizando

K-means. Al integrar NDVI, contenido de nutrientes y coordenadas de ubicación en el proceso

de clustering, logran definir zonas de manejo homogéneas que reflejan diferencias en el estado

de salud; a su vez, proporcionan una herramienta valiosa para la gestión sitio-específica del

viñedo.

Finalmente, (61) proponen un sistema integrado más amplio para el monitoreo general de

campos agrícolas que incluye la detección de enfermedades. Combinan datos de UAV (MS,

HS, GPS) con sensores internet of things (IoT) ambientales en tierra, fusionando esta informa-

ción para alimentar un modelo de aprendizaje automático híbrido (hybrid machine learning model
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Tabla 5. Estudios relevantes sobre detección y manejo de plagas/Enfermedades mediante UAV e IA

Objetivo

(cultivo/problema)
Sensor(es) UAV Características utilizadas Métodos IA/ML

Referen

cia

Cacahuete/Tizón del

sur (enfermedad)

Multiespectral

(MS, 5 bandas)

VI (6 seleccionados),

texturales (3 TI construidos

a partir de TF)

KNN, PSO-SVM,

AdaBoost
(54)

Trigo/Sarna del trigo

(enfermedad)
RGB

Color, rasgos profundos

(ASFFNet, fusión

adaptativa espacial)

DL (ASFFNet - basado

en YOLOv5)
(55)

Vid/Zonificación

basada en salud

(relacionado con

susceptibilidad/

estado)

RGB+NIR (MS,

5 bandas),

muestras (N, P,

K foliar/peciolo)

NDVI, N, P, K

(hoja/peciolo), localización

(coordenadas)

YOLO (detección de

vides), K-means (pesos

variables)

(58)

Remolacha

azucarera/Cercospora
leaf spot (CLS)

(enfermedad)

Multiespectral

(MS, 5 bandas)

VI, sombra, resolución,

DSMf), parámetros de área

(AF, AH, AD, etc.)

ML (PLS-DA, SVML,

SVMR, RF, KNN),

pipeline combinando

ML

(59)

Arroz/Enfermedades

foliares (bacterial
leaf blight, rice blast,
brown spot)

UAV (implícito

RGB/MS)

Rasgos profundos

(extraídos por Tiny YO-

LOv4 modificado + SPP,

CBAM, SCFEM, Ghost)

DL (Tiny YOLOv4

modificado)
(57)

Arándano

silvestre/Enfermeda

des (Monilinia

blight, Botrytis

blight), fenología,

fenotipos

MSI, LiDAR

(potencial)

VI, Rasgos de

crecimiento/fenológicos

(LAI, altura)

ML (SMLR, RF, SVM),

clasificación

supervisada (LDA)

(60)

DSM: digital surface model; TF: rasgos texturales; TI: textural indices; VI: vegetation index; ML: machine
learning; DL: deep learning; UAV: unmanned aerial vehicle.

[HMLM]) que combina RF y SVM. Este sistema logra una precisión del 98,74 % en la clasifica-

ción general. El trabajo de (59) también contribuye a la detección de enfermedades específicas,

como el Cercospora leaf spot en remolacha azucarera, a nivel de pixel, por medio de imágenes

multiespectrales de UAV y rasgos extraídos de MS y DSM. Su pipeline, que combina diferentes

modelos ML, logra alta precisión (86,3 % overall) y destaca la utilidad de los rasgos basados en

DSM y los parámetros de área para diferenciar variedades y evaluar la severidad e incidencia

de la enfermedad; esto constituye una alternativa automatizada a la evaluación visual por ex-

pertos. La tendencia en detección y manejo de plagas y enfermedades mediante la integración

de UAV e IA, se orienta hacia enfoques que combinan múltiples fuentes de datos (imágenes

UAV de diversas bandas espectrales y rasgos, datos de sensores IoT, información de ubica-

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 28 Número 82 • Octubre - Diciembre de 2024 • pp. 75-103

[92]



Monitoreo de cultivos y suelos en agricultura de precisión con UAV e inteligencia artificial: una revisión
Buitrago Bolívar, E., et al.

ción/DSM). Las arquitecturas de aprendizaje profundo, en especial las adaptadas para objetos

pequeños o con mecanismos de atención y fusión avanzados (ASFFNet, YOLO modificado,

TSLM), así como los enfoques de ensamble (HMLM, combinaciones de ML), muestran un ren-

dimiento superior para tareas de detección y clasificación, con altas métricas de precisión y

F1-score. Si bien la necesidad de grandes datasets etiquetados sigue siendo un desafío, algunos

trabajos revisados exploran soluciones como el aumento de datos, los enfoques semisupervi-

sados y el aprovechamiento del transfer learning. Aunque se han logrado avances notables en

cultivos específicos y problemas concretos, la validación de la transferibilidad de los modelos

a nuevos entornos y la optimización continua de la complejidad computacional para la imple-

mentación en tiempo real en UAV de recursos limitados siguen siendo áreas críticas para la

investigación futura. La colaboración interdisciplinaria y la validación en campo a gran escala

serán esenciales para traducir estos hallazgos en herramientas agrícolas prácticas y confiables.

Conteo y fenotipado básico de plantas

El conteo preciso del número de plantas individuales o de partes específicas, como plán-

tulas, espigas o borlas, es una tarea fundamental en la agricultura de precisión y la mejora

genética. Esta información es esencial para evaluar la calidad de la siembra, estimar la den-

sidad de la población, predecir el rendimiento y tomar decisiones de manejo adaptadas a las

condiciones del cultivo. La flexibilidad y la capacidad de los UAV para capturar imágenes de

alta resolución a baja altitud los convierten en herramientas idóneas para obtener datos deta-

llados en planta.

En el caso del maíz, el conteo de plántulas y borlas ha sido objeto de múltiples investiga-

ciones. Por ejemplo, (62) compararon la detección de esquinas (Harris), la regresión lineal y el

aprendizaje profundo (Faster R-CNN) para contar plántulas de maíz a partir de imágenes RGB

de UAV. Demostraron que, aunque los tres métodos logran alta precisión (99 %), los modelos

de regresión lineal y DL son más robustos a los cambios en la resolución espacial de la imagen,

una consideración importante para la aplicabilidad en diferentes alturas de vuelo. La detección

de esquinas, si bien precisa, se ve más afectada por la resolución.

La detección y conteo de borlas (tassels) de maíz también se ha beneficiado de las técnicas

DL. (63) desarrollaron PConv-YOLOv8, un modelo ligero y robusto, para detectar borlas por

medio de imágenes RGB tanto de UAV como cerca del suelo. Su modelo alcanzó alta precisión

en la detección de borlas (AP >0,9) y un monitoreo preciso de la etapa de borla (R2 = 0,99,

RMSE = 0,21 día), además de robustez ante variaciones en resolución, variedad y etapa de

crecimiento. Un enfoque diferente es el de (64), quienes propusieron IntegrateNet, una red de

aprendizaje profundo multitarea que supervisa simultáneamente el aprendizaje de mapas de

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Volumen 28 Número 82 • Octubre - Diciembre de 2024 • pp. 75-103

[93]



Monitoreo de cultivos y suelos en agricultura de precisión con UAV e inteligencia artificial: una revisión
Buitrago Bolívar, E., et al.

densidad y mapas de conteo local para el maíz. Este modelo logró un error bajo (MAE = 1,62,

RMSE = 2,28) y un alto coeficiente de determinación (R2 = 0,9578) en el conjunto de prueba,

superando a enfoques previos basados en mapas de densidad. Aunque también se han pro-

puesto enfoques basados en métodos de ML clásicos como regresión SVM (65).

La aplicación de estas técnicas a otras partes de cultivos importantes se ve en el estudio

de (66), quienes compararon modelos DL como Faster R-CNN, YOLOv8 y RT-DETR para la

detección de espigas de trigo en imágenes RGB de UAV. Aunque YOLOv8 mostró la mayor

precisión, RT-DETR tuvo un mejor equilibrio entre precisión y recall; asimismo, se destacan los

desafíos en la detección precisa de objetos pequeños y superpuestos como las espigas. Inclu-

so en cultivos de árboles, donde el conteo manual puede ser aún más arduo, los UAV y la IA

ofrecen soluciones. Se ha utilizado una combinación de CNN y refinamiento basado en proce-

samiento de imagen (OBIA) para identificar y contar árboles de olivo individuales a partir de

imágenes RGB de UAV. Esta aplicación alcanzó una precisión general (99 %) en la detección y

conteo de árboles (67).

En conjunto, estos estudios demuestran el gran potencial de los UAV y las técnicas de visión

por computador e IA para automatizar y mejorar la precisión del conteo de plantas y partes de

plantas en diversos cultivos. Los avances se centran en el desarrollo de arquitecturas de apren-

dizaje profundo robustas, la integración de múltiples fuentes de datos y el refinamiento de los

algoritmos para manejar desafíos específicos como la superposición, la variabilidad morfológi-

ca y las diferentes resoluciones espaciales.

En cuanto a las técnicas de identificación y tipificación de plantas, se destacan los avances

en algoritmos de DL especializados, y en particular, las CNN. Por ejemplo, (68) describen los

avances recientes en este campo, en particular de la computación e informática modernas, y

expone una hoja de ruta detallada para la utilización estas técnicas en la identificación automá-

tica de plantas de pino, con una precisión más que interesante, al punto de que este trabajo fue

ampliado dos años después, para reforzar el gran potencial de la utilización de CNN en mo-

nitoreo remoto con imágenes captadas por drones para actividades propias de la agricultura

inteligente, tal y como se especifica en (69).

Discusión

Los resultados recopilados en esta revisión confirman que los UAV se han consolidado co-

mo herramientas fundamentales en la agricultura de precisión, y que se destacan por su capa-

cidad de recopilar imágenes de alta resolución y por su integración versátil con sensores mul-

tiespectrales, hiperespectrales, térmicos y LiDAR. Esta capacidad ha facilitado el monitoreo de
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variables agronómicas críticas como el estado nutricional, el crecimiento vegetativo, la biomasa

aérea (AGB) y los niveles de fertilización en diversos cultivos. Sin embargo, uno de los aportes

clave de esta revisión es evidenciar la transición que han tenido las metodologías tradicionales

(basadas en índices espectrales simples) hacia enfoques híbridos que incorporan modelos 3D,

fusión de datos y técnicas avanzadas de aprendizaje automático y profundo (ML/DL).

En el contexto de la estimación de biomasa y predicción del rendimiento de cosechas, las

técnicas basadas exclusivamente en índices de vegetación como NDVI o índice de vegetación

de diferencia normalizada verde (green normalized difference vegetation index [GNDVI]), han mos-

trado limitaciones significativas frente a cultivos en etapas avanzadas o con alta densidad foliar,

debido a fenómenos de saturación espectral. En contraste, la combinación de características es-

tructurales (altura de planta, cobertura del dosel), morfológicas (textura, volumen estimado),

y datos espectrales multibanda, ha demostrado ser más robusta. Modelos como random forest
(RF) y support vector regression (SVR) han mostrado desempeños sólidos (R2 >0,80 en varios es-

tudios); aunque son los enfoques basados en redes neuronales convolucionales (CNN), LSTM o

arquitecturas híbridas con mecanismos de atención los que actualmente dominan el panorama

metodológico, debido a su capacidad para aprender representaciones jerárquicas complejas.

De hecho, mientras algunos estudios recientes han logrado predicciones de rendimiento

con RM-SE inferiores a 1 t/ha en trigo mediante el uso de stacking ensembles que combinan

múltiples modelos (por ejemplo: Cubist, DNN, RF), otros han alcanzado niveles similares de

precisión por medio de CNN alimentadas con datos RGB multitemporales y morfología 3D, co-

mo en el caso de la soja. Asimismo, modelos multivariados aplicados a datos hiperespectrales

han evidenciado ser efectivos para estimar simultáneamente variables como LAI, contenido de

nitrógeno y biomasa, lo que favorece una integración agronómica más completa. No obstante,

la implementación práctica de estos sistemas enfrenta aún importantes barreras, como son: la

necesidad de grandes volúmenes de datos de entrenamiento en campo, la baja transferibilidad

de los modelos a diferentes ambientes y cultivos, y la alta demanda computacional asociada a

arquitecturas DL complejas.

Adicionalmente, la revisión muestra cómo la fusión multimodal de sensores (combinando

UAV con estaciones IoT en tierra o con imágenes satelitales) permite mejorar la generalización

de los modelos, sobre todo en escenarios de variabilidad topográfica o climática. Sin embar-

go, dicha integración introduce retos técnicos como la sincronización temporal, la calibración

geométrica cruzada y el tratamiento del desbalance entre datos espectrales y estructurales. En

este sentido, los modelos de aprendizaje multitarea y las redes neuronales con mecanismos de

atención adaptativa se posicionan como líneas prometedoras para abordar esta complejidad y

reducir el costo de adquisición de datos en campo.
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Conclusiones

Los avances recientes en el uso de vehículos aéreos no tripulados (unmanned aerial vehicle
[UAV]) combinados con inteligencia artificial (IA) son una alternativa para transformar prác-

ticas agrícolas tradicionales mediante monitoreo no destructivo, optimización del uso de in-

sumos y una mayor precisión en la toma de decisiones. A través de esta revisión se identificó

que, más allá de los índices tradicionales como índice de vegetación de diferencia normalizada

(normalized difference vegetation index [NDVI]) , los enfoques que combinan múltiples tipos de

características (espectrales, estructurales y texturales), junto con modelos avanzados de apren-

dizaje automático, se aporta a la precisión en la estimación de variables críticas como biomasa,

contenido de nutrientes y rendimiento de las cosechas. La integración de sensores hiperespec-

trales, térmicos y LiDAR ha llevado a superar algunas limitaciones clásicas como la saturación

espectral en cultivos densos o en etapas avanzadas de desarrollo. Sin embargo, el verdadero

impacto de estas tecnologías no se medirá únicamente en función de sus métricas de precisión,

sino en su capacidad para ser apropiadas, replicadas y sostenidas en contextos reales y diver-

sos.

En este sentido, la transición hacia una agricultura verdaderamente precisa e inteligente

requiere ir más allá del despliegue de tecnologías avanzadas; supone construir sistemas abier-

tos, inclusivos y orientados al bien común. Será fundamental democratizar el acceso a datos de

entrenamiento y validación, fomentar estándares abiertos para la interoperabilidad de platafor-

mas UAV, y diseñar soluciones tecnológicas pensadas desde y para los agricultores, especial-

mente aquellos que enfrentan limitaciones económicas o geográficas. Solo así se logrará una

adopción tecnológica equitativa, capaz de combinar el potencial del aprendizaje automático

con los saberes locales y las dinámicas agroecológicas del territorio.
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