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Resumen

Contexto: la creciente demanda global de alimentos, junto con los retos ambientales y sociales asociados a la inten-
sificacion agricola, ha impulsado el desarrollo de soluciones tecnolégicas que mejoren la eficiencia y sostenibilidad
de la produccién. En este escenario, la agricultura de precision, apoyada en vehiculos aéreos no tripulados (unman-
ned aerial vehicle [UAV]) y en inteligencia artificial (IA), se posiciona como una herramienta clave para el monitoreo
detallado de cultivos y suelos.

Objetivo: este articulo presenta una revision estructurada de la literatura cientifica sobre técnicas de deteccién
remota basadas en UAV, con énfasis en aplicaciones orientadas a la estimacion de niveles de fertilizacién, biomasa
aérea, prediccion de rendimiento y deteccién de plagas y malezas en sistemas agricolas.

Metodologia: se efectu6 una buisqueda sistemética en bases de datos académicas (Scopus y Web of Science), me-
diante combinaciones de términos clave relacionados con agricultura de precisién, UAYV, teledeteccién, IA y moni-
toreo agrondmico. Se recurrio a criterios de seleccion rigurosos que resultaron en la inclusion de 62 articulos para
andlisis. La informacién se sintetiz6 mediante un enfoque comparativo de técnicas, sensores, algoritmos y métricas
de desempefio.

Resultados: la revisién evidencié una tendencia creciente hacia el uso de UAV equipados con sensores RGB, mul-
tiespectrales, hiperespectrales y LiDAR, junto con técnicas de aprendizaje automadtico y profundo, para estimar
parametros clave del cultivo como el indice de area foliar (leaf area index [LAI]), contenido de nitrégeno y rendi-
miento. Se identificaron enfoques prometedores basados en fusién multimodal de datos y modelos hibridos (CNN

+ GRU, ensambles), capaces de superar limitaciones de métodos cldsicos como la saturacion espectral. Sin embargo,
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se detect6 escasa disponibilidad de bases de datos abiertas y poca estandarizacién en los protocolos de adquisicién,
lo que dificulta la replicabilidad y generalizaciéon de los modelos.

Conclusiones: el uso integrado de UAV e IA representa una herramienta transformadora para la gestién agricola
inteligente. No obstante, su implementacion efectiva requiere superar barreras técnicas, econdémicas y estructura-
les; ademads, debe promover el acceso abierto a datos y el desarrollo de soluciones contextualizadas. Esta revisién
destaca la importancia de avanzar hacia sistemas mads explicables, ligeros y adaptables, asi como de fomentar una

transformacién digital agricola inclusiva y responsable.

Palabras clave: agricultura de precisién, UAV, deteccion remota, inteligencia artificial, aprendizaje automatico, fer-

tilizacién, biomasa, prediccién de rendimiento, apropiacién tecnoldgica.

Abstract

Background: The growing global demand for food, along with the environmental and social challenges associated
with agricultural intensification, has driven the development of technological solutions aimed at improving the ef-
ficiency and sustainability of food production. In this context, precision agriculture, supported by unmanned aerial
vehicles (UAVs) and artificial intelligence (Al), emerges as a key tool for the detailed monitoring of crops and soils.
Objective: This article presents a structured review of the scientific literature on UAV-based remote sensing tech-
niques, with an emphasis on applications aimed at estimating fertilization levels, aboveground biomass, yield pre-
diction, and the detection of pests and weeds in agricultural systems.

Methodology: A systematic search was conducted in academic databases (Scopus and Web of Science), using
combinations of key terms related to precision agriculture, UAV, remote sensing, Al, and agronomic monitoring.
Rigorous inclusion criteria were applied, resulting in the selection of 62 articles for analysis. The information was
synthesized through a comparative approach of techniques, sensors, algorithms, and performance metrics.
Results: The review highlights a growing trend in the use of UAVs equipped with RGB, multispectral, hypers-
pectral, and LiDAR sensors, combined with machine learning and deep learning techniques, to estimate key crop
parameters such as leaf area index (LAI), nitrogen content, and yield. Promising approaches were identified based
on multimodal data fusion and hybrid models (CNN + GRU, ensemble methods), capable of overcoming limitations
of classical methods such as spectral saturation. However, a lack of open-access datasets and limited standardiza-
tion in data acquisition protocols were observed, which hinders the replicability and generalization of models.
Conclusions: The integrated use of UAVs and Al represents a transformative tool for smart agricultural manage-
ment. Ne- vertheless, effective implementation requires overcoming technical, economic, and structural barriers, as
well as promoting open data access and the development of context-aware solutions. This review underscores the
importance of advancing toward more explainable, lightweight, and adaptable systems, and fostering an inclusive

and responsible digital transfor- mation of agriculture.

Keywords: Precision agriculture, UAV, remote sensing, artificial intelligence, machine learning, fertilization, bio-

mass, yield prediction, technological adoption.

Introduccion

A partir del estudio pionero de (1), a lo largo de la década de 1990 se llevaron a cabo una se-
rie de investigaciones centradas en el desarrollo de métodos de muestreo del suelo, para medir

eficazmente la calidad de la fertilizacién. Estos estudios incorporaron herramientas tecnol6gi-
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cas avanzadas a las précticas agricolas rutinarias; ademads, demostraron cémo las variaciones
en los niveles de fertilizantes del suelo podian atribuirse a la variabilidad introducida por los
métodos de muestreo del andlisis del suelo. Este conjunto de conocimientos ha dado lugar a
propuestas innovadoras para optimizar las estrategias de fertilizacién y garantizar una gestion
sostenible de los recursos agricolas. De ahi han surgido conceptos clave en la agricultura de
precisioén, como el muestreo estratégico de nutrientes, las evaluaciones de la toxicidad del suelo agrico-

la y la fertilizacion de precision con dosificacion variable para cultivos productivos (2).
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Figura 1. Analisis de imagenes hiperespectrales para predecir el contenido de agua de la hoja de la
planta. Tomado de (4).

La evolucién en estos métodos de estudio agricola ha facilitado la incorporacién de varia-
bles mas especificas y detalladas, y ha enriquecido significativamente el anélisis de suelos. Por
ejemplo, pueden medirse los efectos de la inclinacién del terreno en los indices de fertilizacién
o los impactos negativos de la sobredosificacién de fertilizantes en otros seres vivos del ecosis-
tema. Este progreso ha resultado en innovaciones significativas, como la integraciéon de mapas
de contornos tridimensionales, modelos geoestadisticos y técnicas cartograficas, sistemas de
informacién geografica (SIG), los sistemas de posicionamiento global (SPG) y las técnicas de

monitoreo remoto (3).

Los drones comerciales (unmanned aerial vehicles [UAV]) pueden equiparse con diversos sen-
sores y cdmaras para captar imdgenes y facilitar los procesos de telemetria (5) (véase figura 1).
Esta capacidad ha impulsado el desarrollo de aplicaciones de supervisién y control remotos
para la gestion de cultivos, por medio de la integracién activa de los UAV como herramientas
versétiles en la produccién agricola de nueva generacién (6). Las investigaciones en esta area
demuestran como las imagenes panordmicas captadas por UAV sirven para calcular indices de

vegetacion, los cuales pueden correlacionarse con varios aspectos de la salud y vitalidad de
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las plantas: crecimiento, altura, densidad y medidas geométricas de referencia especificas. Este
enfoque acenttia la utilidad de las imagenes basadas en UAV para proporcionar informacién
detallada y procesable sobre el estado y el desarrollo de los cultivos (7). Entonces, la literatu-
ra especializada resalta la decidida integracion de UAV para deteccion remota por medio de
distintas camaras, con sensores remotos, sistemas de informacién en tiempo real e inteligen-
cia artificial (IA), segtin requerimientos concretos y definidos. De hecho, la utilizacién de UAV
como apoyo a procesos agricolas representa un campo de investigacién y desarrollo en expan-
sién, con miras a lograr su integracion a los flujos de trabajo y a operaciones agroindustriales

de precision (8,9).

En la literatura hay una gran diversidad de indices de vegetacion (IV) y sus aplicaciones en
casos de uso bien definidos. Una primera aproximacion a indices primarios de vegetacién para
aplicaciones de deteccion remota, basadas en UAV la plantean (5). Los autores proponen una
clasificacién de los IV en dos grupos: térmicos y espectrales, y ponen de manifiesto un caso de
uso que era el foco en ese momento, la utilizacion de distintos IV para la deteccion de estrés
hidrico. Posteriormente, otros estudios han registrado la evolucién y aplicaciones de los IV ba-

sados en imagenes obtenidas por UAV, como se observa en los trabajos de (10-12) y (13).

La reciente disponibilidad de distintos sensores y cAmaras especializados para UAV ha im-
pulsado el desarrollo de nuevos usos para la teledeteccién de cultivos, lo cual amplia las capaci-
dades de la agricultura de precision a los siguientes campos: estrés hidrico, estado nutricional
de los cultivos (particularmente niveles de nitrégeno), y monitoreo de plagas y enfermeda-
des (14,15).

El objetivo de este articulo es presentar una revisién estructurada de la literatura cientifica
sobre el uso UAV e IA, en aplicaciones de agricultura de precision, con énfasis en la estimaciéon
de niveles de fertilizacién, biomasa aérea, deteccion de plagas y prediccion de rendimiento.
Esta revision se fundamenta en el andlisis de 62 estudios primarios recientes que integran ima-
genes captadas por UAV con técnicas de visién por computador y modelos de aprendizaje
automatico. El articulo se organiza como sigue: la introducciéon contextualiza los avances hist6-
ricos y tecnoldgicos en agricultura de precision con UAV; la metodologia detalla el proceso de
btisqueda, seleccién y anélisis de la literatura revisada; luego se sintetizan los resultados mas
relevantes organizados por area de aplicacién; las dltimas dos partes plantean una discusién
critica y las conclusiones generales; ademads, se resaltan los avances, limitaciones y oportunida-

des futuras identificadas en este campo.
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Metodologia

La presente revision de literatura se llevé a cabo siguiendo una metodologia estructurada,
disefiada para identificar, sintetizar y analizar de manera sistematica los estudios primarios
publicados recientemente sobre el uso de UAV y técnicas de IA en agricultura de precision.
Se enfatiz6 en las aplicaciones sobre monitoreo de cultivos y estimaciéon de parametros clave,
fertilizacion, estimacién de biomasa, deteccion de plagas y predicciéon de rendimiento. Este
enfoque buscé asegurar la transparencia y reproducibilidad de la seleccién de la literatura,

para asf iniciar el andlisis critico de los hallazgos empiricos.

Fuentes de informacién

La buisqueda de literatura relevante se realiz6 en las bases de datos Scopus y Web of Science
(WoS). Estas fueron elegidas estratégicamente debido a su indexacién de literatura peer-reviewed
de alto impacto, lo cual contribuy6 a garantizar la calidad y pertinencia de los estudios identi-

ficados.

Estrategia de basqueda

Para identificar los articulos relevantes, se emplearon las siguientes cadenas de btisqueda

en cada base de datos:

e Scopus. TITLE-ABS-KEY((UAV OR “unmanned aerial vehicle” OR UAS) AND
(“artificial intelligence” OR “machine learning” OR "deep learning”) AND (“pre-
cision agriculture” OR “precision farming”)) AND (crop* OR plant* OR vege-
tation OR field* OR agricul* OR soil* OR land OR fertiliz* OR nitrogen OR
phosphorus OR potassium OR biomass OR yield OR pest* OR disease* OR
“plant density” OR “vegetation index*” OR “spectral analysis*))

o Web of Science. ALL=(("UAV” OR “unmanned aerial vehicle” OR UAS) AND
(“artificial intelligence” OR “machine learning” OR “deep learning”) AND
(“precision agriculture” OR “precision farming”) AND ((“crop*” OR “plant*”
OR "vegetation.OR “field*” OR agricul*) OR (“soil** OR land) OR fertiliz* OR
nitrogen OR phosphorus OR potassium OR biomass OR yield OR pest* OR
disease* OR “plant density” OR “vegetation index*” OR “spectral analysis”))

La basqueda abarcé publicaciones entre los afios 2020 y 2024. Esta limitacién temporal per-
miti6 focalizar la revisién en los avances mads recientes y relevantes en el campo. La ejecucion
de esta estrategia de btisqueda en las plataformas seleccionadas resulté en una identificacién

inicial de un total de 1165 articulos.
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Criterios de selecciéon

Los articulos identificados en la fase de busqueda fueron sometidos a una rigurosa selec-
cién, a partir de criterios de inclusion y exclusion predefinidos para determinar el conjunto
final de estudios que conformarian el corpus de la revision. Estos criterios se detallan en la
tabla 1.

Tabla 1. Criterios de seleccién para la revision

Criterios de inclusién Criterios de exclusién
Publicaciones correspondientes a articulos de Documentos que no corresponden a literatura
investigacién originales (estudios primarios) en cientifica peer-reviewed (por ejemplo: editoriales,
revistas cientificas con revision por pares o actas noticias, blogs, restimenes extendidos sin
de conferencias relevantes. publicacién completa asociada).

Estudios que describen la aplicacién o el uso de 3 L .
j Articulos de revisiéon o metaanalisis.
UAV o drones en contextos agricolas.

Trabajos que involucren la utilizacién de técnicas de

inteligencia artificial (IA), aprendizaje automaético Estudios que, si bien utilizan UAV o IA/ML/DL,

(machine learning [ML]) o aprendizaje profundo no aplican ambas tecnologias de forma combinada en el
(deep learning [DL]) para el andlisis de imagenes o andlisis de datos para agricultura.
datos obtenidos por UAV.

Articulos centrados en aplicaciones de agricultura o .
Publicaciones enfocadas en aplicaciones de UAV o

IA/ML/DL fuera del ambito de la agricultura de

precisién (por ejemplo: mapeo topogréfico general,

de precision, especificamente relacionadas con el
monitoreo de cultivos, estimacién de pardmetros
(incluyendo fertilizacién, biomasa, rendimiento,

inspeccién de infraestructura no agricola).
plagas, enfermedades).

Publicados dentro del rango de fechas establecido Articulos duplicados que aparecieron en multiples
(2020-2024). bases de datos o busquedas.

Estudios que, tras la revisiéon del texto completo,

. . . L resultaron no cumplir con los criterios de inclusién
Articulos publicados en idioma inglés. o S
definidos, a pesar de haber sido inicialmente

identificados por titulo o resumen.

Proceso de seleccion

La seleccion de articulos se llevé a cabo en las siguientes fases:

1. Gestion de duplicados. Tras consolidar los resultados de las bases de datos en Zotero, se

identificaron y eliminaron 768 articulos duplicados.

2. Cribado por titulo y resumen. Los 397 articulos restantes fueron evaluados inicialmente por
titulo y resumen, segtn los criterios de seleccién. Esta fase result6 en la exclusion de

268 articulos, principalmente debido a falta de relevancia tematica o tipo de documento
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inadecuado (se excluyeron articulos de conferencias, libros y capitulos de libros, entre

otros).

3. Revision de texto completo. Los 129 articulos que superaron el tamizaje inicial fueron leidos
en detalle para confirmar el cumplimiento de todos los criterios de inclusién/exclusién.

En esta fase, se excluyeron 67 adicionales.

Este proceso result6 en la identificacion de un corpus final de 62 articulos para la revision,

cuyo flujo completo se ilustra en la figura 2.

[ Identificacion de nuevos estudios a través de bases de datos y archivos ]

)
5
§ Registros |dent|ﬂc§dos de.sde: Registros eliminados antes del cribado:
3} Base de datos (n = 1165): » . ;
= > Registros duplicados
= Scopus 655 (n=768)
o Web of Science 510
o
—
4
o
Registros examinados por titulo Registros excluidos: n =268
y resumen
(n =397) 1. Fuera del ambito de aplicacién n= 32
2. Tipo de documento
a. Conferencia: n=152
b. Capitulo de libro n= 31
c. Revisiones n= 27
d. Otro n= 5
3. Ao de publicacion n= 9
% 4. ldioma distinto a inglés n= 12
E A4
= Publicaciones examinadas texto Publicaciones excluidas: n=67
completo » 1. Fuera del ambito de aplicacion
(n =129) a.  No tratan sobre las n=35
Aplicaciones especificas
de agricultura de
precision y UAVS,
foco del articulo
b.  Otras aplicaciones que no n=17
incluyen IA, ML, DL
c.  Articulos de revision n=15
—
k.4

Publicaciones incluidas en la
revision
(n=62)

Figura 2. Diagrama de flujo del proceso de seleccién de articulos
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Extraccion de datos

A partir del corpus final de 62 articulos seleccionados, se procedi6 a la extraccion sistema-
tica de informacién clave y relevante para los objetivos de la revisién. Se utilizé una hoja de
calculo estructurada para asegurar la consistencia en la recoleccién de datos a través de todos

los estudios.

Esta extraccion de datos estructurada proporcioné la base empirica necesaria para la poste-

rior sintesis y andlisis de los hallazgos.

Sintesis y andlisis de datos

Los datos extraidos de los estudios incluidos (estudios primarios) fueron objeto de un ana-
lisis comprensivo y estructurado. El enfoque principal fue la sintesis de los hallazgos empiricos
para reconocer las tendencias predominantes, las metodologias mas empleadas y los resultados
clave reportados en las diversas aplicaciones de UAV e IA en agricultura de precision. El ané-
lisis se organiz6 teméticamente; luego se agruparon los estudios segtin su aplicacién principal,
lo cual hizo posible comparar y contrastar las tecnologias (sensores, UAV) y las técnicas usa-
das de inteligencia artificial (IA), aprendizaje automaético (machine learning [ML]) o aprendizaje
profundo (deep learning [DL]); después se evaluaron sus fortalezas, debilidades y el desempefio
en diferentes contextos y cultivos. Se efectué un anadlisis critico para identificar patrones recu-
rrentes, evaluar la solidez de las metodologias reportadas, y asi determinar las limitaciones y
desafios comunes inherentes a la implementacion de estas tecnologias en la practica agricola,
tal como fueron reportados por los autores de los estudios originales. Asimismo, se recono-
cieron las brechas de conocimiento y las direcciones futuras de investigacion sugeridas en la

literatura primaria.

Resultados

En esta seccion se sintetizan los hallazgos en los estudios primarios incluidos en la revi-
sién, organizados por dreas de aplicaciéon principal. El andlisis de estos trabajos proporciona
una visién general de las tecnologias (UAV, sensores, técnicas de IA/ML/DL) y metodologias
empleadas, el desempefio alcanzado y los contextos en los que se han aplicado en el &mbito de

la agricultura de precision.

Estimacidon de niveles de nutrientes en cultivos

Autores como (16), al aplicar estas tecnologias en cultivos de trigo, revelaron una fuerte

correlacion entre descriptores como el indice de érea foliar (leaf area index [LAI]) y la biomasa
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fresca de la masa (fresh biomass mass [FBM]). Los autores describen correlaciones significativas
entre otros descriptores como la altura de la planta (plant height [PHT]) y la biomasa seca de
la masa (dry biomass [DBM]), que son esenciales para entender las caracteristicas biofisicas del
dosel del trigo. A partir de sus hallazgos, sugieren la utilizacién de imdgenes tomadas por UAV
para calcular el indice de nutricién nitrogenada (nitrogen nutrition index [NNI]) de los trigales
como métrica efectiva para estimar los niveles de nitrégeno del suelo. Esto determinaria si el
trigo estd pobremente fertilizado o si sufre de sobrefertilizacion, y ayudaria a evitar los efectos

negativos asociados con ambos extremos de gestion del nitrégeno.

Asimismo, se destaca la aplicacién de algoritmos de DL para el andlisis de imédgenes captu-
radas por UAV, porque ha demostrado su potencial aplicabilidad, al ofrecer informacién esen-
cial que facilita la toma de decisiones en tiempo real con un margen de error minimo; de esta

manera se superan las metodologias tradicionales mds fluctuantes e imprecisas (17).

Las cdmaras de tltima generacién se convierten en un actor importante, pues les brindan
la posibilidad a los UAV de obtener datos relacionados con el vigor y la tasa de crecimiento
de los cultivos. Entonces, la estimacién precisa de los niveles de nutrientes en los cultivos es
fundamental para optimizar la fertilizacién y mejorar la productividad agricola de manera sos-
tenible. La teledeteccion basada en UAV e IA ha emergido como una herramienta clave para
el monitoreo no destructivo y a escala de campo de parametros nutricionales, principalmente
el nitrégeno (N), aunque también se abordan el fésforo (P) y el potasio (K) en ciertos culti-
vos (18-27).

Los indices de vegetacion (vegetation index [VI]) derivados de imdgenes multiespectrales y,
en estudios mds avanzados, hiperespectrales, son las caracteristicas mas utilizadas para esti-
mar el estado nutricional. Se ha validado la correlaciéon de VI como el indice de vegetacion
de diferencia normalizada (normalized difference vegetation index [NDVI]), la diferencia norma-
lizada del borde rojo (normalized difference red edge [NDRE]) o indices relacionados con la clo-
rofila (por ejemplo: soil and plant analyzer development [SPAD]), con el contenido de N en las
hojas o en la biomasa total en diversos cultivos como arroz, trigo, maiz, vid y pastizales. Estos
IV (y las bandas espectrales) se utilizan como entrada para modelar sus potenciales relacio-
nales (posiblemente no lineales) con los pardmetros nutricionales medidos en campo. Entre
los més reportados en los estudios revisados se encuentran random forest (RF), support vector
regression (SVM) y redes neuronales (artificial neural network [ANN]/ extreme learning machine
[ELM]) (18-23). Estudios han reportado altas precisiones (valores de R? superiores a 0,70) en
la predicciéon de contenido de N, P o K, asi como otros indicadores como SPAD o absorcién
de nitrégeno (19,21,22). El algoritmo RF es frecuentemente destacado por su robustez y buen

desempefio (18,22,23). La tabla 2 sintetiza los estudios més destacados.
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Tabla 2. Estudios sobre estimacién de niveles de nutrientes en cultivos utilizando UAV e IA

Cultivo Indicador Sensor UAV Métodos IA/ML | Referencia
SPAD, contenido d ANN, ELM,
Arroz A comendede g (400-1000 nm) (18)
nitrégeno (N) LASSO, SVR, MLR
PPR, ANN, GPR-
Trigo LNC HS (400-1000 nm) mRMR (28)
(Seleccion)
Trigo LNC, PNC, LNA, PNA | CIR (NIR-G-B) multi-view | SVR, ELM, RF (20)
PLS, RF, SVM,
Vid LNC, LKC, LPC MS (6 bandas) 21)
ELM
Maiz, soya, alfalfa | VWC, EC (Suelo) MS (5 bandas) + GPR/EM | RF 27)
MLR, MLP, CNN,
Sorgo Contenido de nitrégeno RGB IA ' (29)
(N %) Hibrida/Ensamble
(MLP+CNN)
Regresion
Multi tral (MS) + cooperativa
i T
Citricos LNC ttiespectia semisupervisada (20)
Textura (LBP) .
(Ridge, SVR, RF),
BPNN, PLSR
LR, GPR,
Arroz LNC MultiserTsores (RGB + GPR+1.nRMR (30)
MS), fusién (método GS) (seleccion de
caracteristicas.)
Hi tral (HS, 400- ANN, ELM,
Trigo LNC, SPAD iperespectral ( (13)
1000 nm) LASSO, SVR, MLR

HS: hiperespectral; MS: multiespectral, RGB: red, green, blue; CIR: color infrared; SPAD: soil and plant
analyzer development; LNC: leaf nitrogen content; PNC: plant nitrogen content; LNA: leaf nitrogen

accumulation; PNA: plant nitrogen accumulation; LKC: leaf potassium content; LPC: leaf phosphorus content;

VWC: volumetric water content; EC: electrical conductivity; N %: porcentaje de nitrégeno; LBP: local binary

pattern; ANN: artificial neural network; ELM: extreme learning machine; LASSQO: least absolute shrinkage and

selection operator; SVR: support vector regression; MLR: multiple linear regression; PPR: projection pursuit

regression; GPR: gaussian process regression; mRMR: minimum redundancy maximum relevance; RF: random

forest; MLP: multilayer perceptron; CNN: convolutional neural network.

Si bien los VI espectrales son informativos, presentan limitaciones, particularmente la sa-

turacién en etapas avanzadas de crecimiento o con alta densidad de cultivo, lo cual reduce

su sensibilidad a variaciones en el contenido de nutrientes en esos escenarios (18,20). Para

superar esto, la incorporacién de caracteristicas estructurales del cultivo, como la altura o la

cobertura del dosel (derivadas de imagenes red, green, blue [RGB] o datos 3D como LiDAR), ha
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Tabla 3. Cdmaras y sensores utilizados por UAV en la estimacién de niveles de fertilizacién y crecimiento

Fertilizante .
Tipo de cdmara = Cultivo . Indice calculado Referencia
estudiado

Indice de 4rea foliar (LAI
Multiespectral | Trigo Nitrégeno ndice de rea foliar (LAI) y (32)
materia seca foliar (LDM)

RGB Sorgo Nitrégeno VI (basados en color/verde) (29)
VI
Hiperespectral | Trigo Nitrégeno (LNC) ) (28)
(espectrales/hiperespectrales)
N, P, K (LNC,
Multiespectral | Citricos ( LNC + Textura (20)
LKC, LPC)
N, P, K (LNC,
Multiespectral | Vid ( VI (espectrales) (21)
LKC, LPC)

demostrado mejorar la precisién de la estimacién, especialmente para la biomasa y parametros
relacionados con N (Nitrégeno) como N % o Nup (N uptake [absorcién de nitrégeno]) (23-26).
Los enfoques de fusién de datos multimodales, que combinan informacién espectral con carac-
teristicas estructurales, texturales o de otro tipo (térmicas, topograficas), procesados a menudo
con técnicas de DL, se perfilan como métodos mds robustos y precisos, capaces de capturar re-
laciones complejas y mitigar los efectos del fondo del suelo o la saturacién (22,24-26). La fusién
de datos provenientes de diferentes bandas espectrales (por ejemplo: visible, red-edge, NIR near
InfraRed spectroscopy) o incluso de dominios espectrales distintos (por ejemplo: visible/near
infrared spectroscopy [NIR] con short-wavelength infrared [SWIR]) también es explorada para me-
jorar la sensibilidad y superar las limitaciones de las bandas tradicionales para detectar ciertos

nutrientes (31).

El andlisis de la literatura en estimacién de nutrientes mediante UAV e IA demuestra un
avance significativo, con precisiones considerables en diversos cultivos y contextos. La tabla 3
presenta una sintesis de los estudios méas destacados desde el punto de vista del tipo de cdmara
utilizado. Sin embargo, persisten desafios que limitan la implementacién practica y la generali-
zacion de los modelos: (i) la saturacién de los VI implica explorar caracteristicas estructurales o
el uso de bandas espectrales alternativas; (ii) la complejidad en la adquisicion y procesamiento
de datos multimodales (por ejemplo: alineaciéon geométrica, calibracién radiométrica) y la ne-
cesidad de datos de campo extensos y precisos para el entrenamiento y validaciéon de modelos;
(iii) la transferibilidad de los modelos a diferentes variedades de cultivo, etapas de crecimiento,
condiciones ambientales y tipos de suelo. Aunque se han logrado avances, la estandarizacién
de metodologias, la mejora en la robustez de los modelos ante la variabilidad contextual y la

reduccién de la necesidad de datos de campo intensivos son dreas clave para futuras investiga-
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ciones que faciliten la adopcién a gran escala de estas tecnologias para la gestion de nutrientes

en agricultura de precision.

Estimacion de biomasa

La estimacion precisa de la biomasa aérea (above-ground biomass [AGB]) y la prediccién del
rendimiento (Yield) son aplicaciones cruciales en la agricultura de precisién, donde la teledetec-
cién basada en UAV e IA ha mostrado un potencial significativo (22-26,31,33,34). Los estudios
primarios revisados en esta categoria exploran diversas combinaciones de plataformas UAV,

tipos de sensores y algoritmos de IA.

En este panorama, el LAI ha emergido como una variable clave en la estimacién no des-
tructiva de biomasa aérea, al capturar aspectos estructurales del dosel que estan asociados a la
acumulacién de materia vegetal. Estudios recientes en de maiz, papa y citricos han demostrado
que el LAl puede estimarse con alta precision a partir de imagenes UAV, mediante el uso de mo-
delos como RF, SVR o técnicas de regresion multivariada, alcanzando valores de R2 superiores
a 0,80 (35-37). Estas investigaciones destacan el potencial de combinar informacién espectral,
textural y morfolégica con algoritmos de aprendizaje automaético para representar la dinami-

ca foliar a lo largo del ciclo del cultivo; asi se obtiene una estimacién mas robusta de la biomasa.

Por otro lado, en sistemas agricolas diversos como quinua, pasturas y campos salinizados,
se ha explorado el uso del LAI como vinculo entre caracteristicas espectrales complejas y va-
riables productivas o de calidad, como la materia seca o el contenido de nitrégeno (38-40). En
estos contextos, la aplicaciéon de sensores multiespectrales e hiperespectrales (incluyendo ban-
das VNIR y SWIR (subregion del espectro de longitud de onda electromagnética), junto con
técnicas de seleccién de variables y fusion de datos, ha demostrado ser eficaz para capturar la
heterogeneidad del dosel vegetal (41). Estos hallazgos refuerzan el papel del LAI como variable
puente en los modelos de estimacién de biomasa, a partir del cual se generan predicciones mas

detalladas, adaptables a distintas condiciones de manejo y escalables en parcela o cultivo.

Los VI derivados de imagenes multiespectrales son quizés las variables més utilizadas, co-
mo entradas para los modelos de prediccién de biomasa y rendimiento (22, 32-34). P)or ejem-
plo, (32) demostraron que la combinacién de NDVI con RF fue efectiva para predecir el ren-
dimiento en trigo (R? = 0,78), mientras que (33) lograron una alta precisién (R? = 0,9) en la
prediccién de rendimiento en algodoén, con el uso de caracteristicas de dosel e indices de ve-
getaciéon con un modelo de red neuronal artificial. Sin embargo, varios estudios sefialan una
limitacién clave de los VI: tienden a saturarse en etapas de crecimiento avanzadas o con alta

densidad de cultivo, lo que reduce su precision para estimar alta biomasa (26,31, 34).
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Para mitigar la limitacién de la saturacién de los VI, la incorporacion de caracteristicas es-
tructurales del cultivo (como altura o cobertura del dosel) ha demostrado ser crucial. Estudios
como el de (34) en centeno y de (23) en pastizales confirmaron que la inclusién de altura y
cobertura mejor¢ significativamente la precisién de la estimacién de biomasa, en comparacioén
con el uso exclusivo de VI. Estas caracteristicas estructurales, a menudo derivadas de mode-
los 3D generados por fotogrametria de imdgenes RGB o, en estudios més avanzados, de datos
LiDAR (25, 26), son menos susceptibles a la saturacién y proporcionan informacién comple-

mentaria valiosa sobre la arquitectura del dosel.

La fusiéon multimodal (multimodal function [MMF]) que combina datos espectrales, estructu-
rales y, en algunos casos, térmicos, ha demostrado optimizar la precisién y robustez de la esti-
macién de biomasa y la prediccién de rendimiento, sobre todo en contextos agricolas complejos
o con terrenos irregulares. Por ejemplo, (24) propusieron un modelo MMF con aprendizaje mul-
titarea (MTL) que fusiona VI con caracteristicas de imagen RGB para predecir simultdneamente
LAI (leaf area index), AGB (above-ground biomass), PH (plant height) y LCC (leaf chlorophyll content)
en trigo con acolchado, superando las limitaciones del fondo del suelo. Asimismo, (25) mos-
traron que la fusién de datos multiespectrales, térmicos, estructurales y topogréficos mejor6 la

predicciéon de AGB en trigo en terrenos ondulados.

El uso de DL, particularmente redes neuronales convolucionales (convolutional neural net-
work [CNN]) y modelos de fusiéon hibrida que integran imédgenes 2D con nubes de puntos 3D,
ha demostrado un potencial superior para extraer caracteristicas complejas y capturar relacio-
nes no lineales, con altas precisiones en la prediccién de AGB como resultado (22,26). Aunque
el estudio de (42) en acuicultura de kelp también explora el uso de UAYV, deteccién espectral e
IA para biomasa, resalta desafios de costos e infraestructura, aplicables también a la agricultu-
ra terrestre a gran escala. La exploraciéon de nuevas longitudes de onda, como las del dominio
VNIR/SWIR, también sefiala potencial para superar la saturacién y mejorar la estimacién de

biomasa y nitrégeno (31).

La sintesis de los estudios primarios revisados en esta categoria revela una sélida capacidad
de las tecnologias UAV e IA para la estimacion de biomasa aérea y la prediccién de rendimiento
en diversos cultivos. Se observa una clara tendencia hacia el empleo de sensores multiespectra-
les y RGB, a menudo complementados con datos estructurales obtenidos mediante fotograme-
tria a partir de imdgenes RGB. Los algoritmos de aprendizaje automético tradicionales como
RF y SVM registran un buen desemperio, aunque las técnicas de deep learning (CNN, fusién
multimodal) muestran un potencial superior, sobre todo al integrar mdltiples fuentes de da-
tos y trabajar con grandes volimenes de imagenes. Sin embargo, el andlisis critico de estos

hallazgos también pone de manifiesto desafios persistentes. La saturacién de los indices de ve-
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getacion en etapas de crecimiento avanzadas o con alta densidad de cultivo sigue siendo una
limitacion significativa para la estimacion precisa (26,31,34). La complejidad del procesamiento
de datos multimodales y de fuentes como LiDAR o nubes de puntos, aunque mejora la preci-
sion, representa una barrera para la implementacién a gran escala (25,26). Adicionalmente, la
variabilidad en el desempefio de los modelos entre diferentes cultivos, etapas de crecimiento,

condiciones ambientales y contextos geograficos (22,25,34).

Predicciéon de rendimiento

La prediccién precisa del rendimiento de los cultivos es una tarea crucial para la agricultura
de precisién; ademads, les facilita a los agricultores optimizar la gestién de insumos, planificar
la cosecha y la logistica, y tomar decisiones informadas para maximizar la rentabilidad. Los
métodos tradicionales para este propoésito, a menudo basados en muestreos destructivos o eva-
luaciones visuales, son laboriosos, costosos y no siempre evidencian la variabilidad espacial
dentro de un campo. La integracién de vehiculos aéreos no tripulados (UAV) equipados con
diversos sensores y técnicas avanzadas de visién por computador e inteligencia artificial (IA)
ofrece una alternativa potente para obtener predicciones de rendimiento no destructivas y a

alta resolucion.

Los estudios recientes han explorado diversas aproximaciones para predecir el rendimiento
utilizando datos de UAV e IA en una variedad de cultivos, desde cereales y leguminosas hasta
frutales y hortalizas. Estos trabajos varian en los tipos de sensores empleados, las caracteristi-
cas de imagen y otros datos integrados, los algoritmos de IA/ML aplicados y la escala de la
prediccién (en planta, parcela o campo). Un objetivo comtn es aprovechar la capacidad de los
UAV para capturar informacién detallada sobre el estado del cultivo que se correlacione con el

rendimiento final.

Estudios recientes sefialan el potencial de UAV e IA para la prediccion de rendimiento. Se
observan diversas estrategias técnicas. Por ejemplo, (43) combinaron VI y fraccién vegetada de
UAYV con ANN para estimar rendimiento en vifiedo; asi, lograron RMSE = 0,5 kg/vid y RE
12,1 % con ANN al fusionar VI y Fc. Para trigo, (44) fusionaron datos multisensor (RGB, MS,
TIR) con un ensamble ML (stacking ensemble using ridge reqression [StRR]), obteniendo R? =-0,692
y RMSE = 0,916 t/ha, con lo cual superaron modelos individuales. En la tabla 4 se presenta una

sintesis de estudios sobre prediccién de rendimiento de cosechas.

Integrar UAV con modelos de simulacién también es viable: (45) asimilaron LAI de UAV en
WO-FOST mediante 4DVAR para col; de esta manera, se redujo el RMSE de rendimiento (1314-

2532 kg/ha sin asimilaciéon vs. 1314-2498 kg/ha con asimilacién). (46) emplearon regresion
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Tabla 4. Estudios sobre prediccién de rendimiento mediante UAV e IA

05
1,0
Vifiedo/rendimi VI, fraccion ke /vi
/ Multiespectral ANN (valida 8/ (43)
ento vegetada (Fc) » d/12,1
cion)
%
ML (Cubist,
. o . VI (espectrales),
Trigo/rendimien | Multisensor SVM, DNN, RR, 0,916 ,
textura (TIR), 0,692 (44)
to (RGB, MS, TIR) o RF), ensamble t/ha
modelos climaticos ]
(stacking)
Imégenes RGB NRMS
) o ) i DL (3D CNN -
Soja/rendimien Multitemporal | (multitemporales, 0,70 E 10,08
VGG, Res-Net, . ?)
to RGB 3D), rasgos (mejor) | %
DenseNet) .
profundos (mejor)
RMSE
1314-
Modelos de
. 2532
Col LAI (estimado por | simulacién
. RGB, kg/h
(cabbage) /rendim i modelo de (WOFOST) + (45)
) multiespectral . o a/rR
iento segmentacion) Asimilacién de MSE
datos (4DVAR)
15,8-
30,9 %
MAE
) o Datos espectrales 13,42
Trigo/rendimien .
. (curvas de Regresion % /RM
to, rasgos (CMT, | Hiperespectral ] ) - (46)
reflectancia funcional SE
TKW, Gnm?2) .
funcional) 869,20
kg/ha
MAE
L Datos fusionados 247-
Multiafio UAV .
. (suelo, clima, 384 kg
Algodoén/rendi (MS, RGB) + DL (CNN + 0,72-
) NDVI de UAV) /ha/ 47)
miento Suelo (ECa) + GRU) 0,84
. procesados por Error
Clima
CNN 8,9-
13,7 %

CM: cellular membrane thermostability; CMT: cellular membrane thermostability; DL: deep learning; ECa:

electrical conductivity apparent; GRU: gated recurrent unit; LAL leaf area index; MAE: mean absolute error;

ML: machine learning; MS: multispectral; NRMSE: normalized root mean square error; RE: relative error; RGB:

red green blue; RMSE: root mean square error; UAV: unmanned aerial vehicle; VI: vegetation index.

Nota: la métrica R? de 1,0 indicada en (43) corresponde a los resultados en la validacién, no en el

conjunto de prueba final.
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funcional (Sigcomp) en datos hiperespectrales de UAV para predecir rendimiento de trigo, lo
cual arroj6 MAPE 13,42 % y RMSE = 869,20 kg /ha, efectivo con datos reducidos. (47) fusionaron
datos multiafio de UAV (MS, RGB), suelo (ECa) y clima con DL (CNN + GRU) para predecir
rendimiento de algodén; esto evidencié errores medio (MAE) del 8,9 % al 13,7 % en un afio
fuera del entrenamiento. La robustez y precision varian segtin el cultivo, sensor, caracteristicas
y modelo, pero la fusién de datos y el uso de algoritmos ML /DL avanzados (ANN, ensamble,

3D CNN) son tendencias clave para optimizar la predicciéon de rendimiento.

Deteccion y manejo de plagas, enfermedades y malezas

La integracion de UAV con camaras multiespectrales e hiperespectrales en la agricultura
inteligente ha revolucionado la deteccién temprana de plagas; lo cual permite una respuesta
rapida y precisa en el manejo de cultivos. Gracias a la combinacién de tecnologia de visiéon
por computador y soluciones de IA, es posible identificar patégenos como hongos, insectos,
bacterias, virus y especies invasoras; asi, se proporciona un enfoque proactivo y eficiente en la

gestion de la salud del cultivo (48).

A partir de estas generalidades, en el estudio de (49), se destaca la aplicaciéon de UAV para
la aspersion precisa de insecticidas y acaricidas, centrada en optimizar el control de plagas. Los
autores examinan como factores como el tamafio de gota, las condiciones meteoroldgicas y los
métodos de aplicacién influyen en la deriva de aspersion, esenciales para calibrar la eficacia
de estas intervenciones. Ademads, se subraya la capacidad de los UAV equipados con cdmaras
multiespectrales e hiperespectrales para detectar estrés en las plantas, tanto abiético (sequia,
deficiencias de nutrientes) como biético (patégenos, nematodos, malezas) (50, 53). El trabajo
de (54) se centra en la deteccién de una enfermedad especifica en cacahuete: el tizén del sur, a
través de imagenes multiespectrales de UAV. Proponen un método que combina VI con indices
texturales (textural indices [TI]) construidos a partir de rasgos texturales originales. Mediante
algoritmos como KNN, PSO-SVM y AdaBoost, encontraron que la combinacién de VI y TI,
particularmente con el modelo KNN, logra una alta precisién (91,89 %) y puntaje F1 (91,39 %)
en el conjunto de prueba. Esto subraya la importancia de integrar tanto la informacién espec-

tral como la textural para una deteccién mds precisa de enfermedades.

La deteccion de otra enfermedad del trigo, la sarna, es abordada por (55), a través de ima-
genes RGB de UAV. Este estudio propone una arquitectura de red neuronal profunda perso-
nalizada (ASFFNet, basada en YOLOV5) que incluye mejoras de contraste y fusiéon adaptativa
espacial de rasgos. Segtin los resultados, este método logra una alta precision media (AP) del
80,8 %, lo cual supera a otros detectores de objetos DL. La innovacién radica en la capacidad de

ASFFNet para detectar manchas pequefias de enfermedad al adaptar la fusién de caracteristi-
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cas a diferentes escalas, lo cual es crucial dado el pequefio tamarfio de las lesiones de sarna en

las imagenes.

La aplicabilidad a una gama més amplia de problemas fitosanitarios es explorada en (56),
a través de modelos de ML (SVM, RE, AdaBoost, Naive Bayes) aplicados a la gestion fitosani-
taria. No obstante, la informacién especifica sobre el uso de UAV, como fuente de datos prima-
rios para la prediccién directa de enfermedades en su estudio, no se detalla en los fragmentos
revisados. En la tabla 5 se sintetizan estudios relevantes sobre deteccién y manejo de plagas
mediante UAV e IA.

Estudios mas especificos sobre la deteccion de enfermedades foliares en arroz, como el
de (57), demuestran la efectividad de adaptar arquitecturas DL existentes, como Tiny YOLOv4,
para la deteccién de manchas de enfermedad foliar (bacterial leaf blight, rice blast, brown spot).
Mediante la adicién de médulos especificos y el entrenamiento con un dataset personalizado,
lograron una alta precisiéon media (AP 86 %), destacando la importancia de la arquitectura de

red optimizada para objetos pequefios en imdgenes UAV y la calidad del conjunto de datos.

La deteccién de enfermedades en arandanos silvestres (Monilinia blight, Botrytis blight) y
la identificacion de fenotipos susceptibles es abordada por (60). Con imdgenes multiespectrales
de UAV y, potencialmente, datos LiDAR, junto con VI y rasgos fenolégicos, aplicaron métodos
ML vy clasificaciéon supervisada (LDA, SVM). Sus hallazgos indican que los VI, en particular en
la regién NIR, y los rasgos fenolégicos son discriminatorios para identificar enfermedades y

fenotipos, con lo cual se obtuvo una precision de clasificacion global del 85 %.

Ademaés de la deteccién directa, la evaluacién de la susceptibilidad a enfermedades y la
zonificacion del vifiedo basadas en indicadores de salud son objeto de estudio en (58). En es-
te estudio se recurre a imdgenes RGB+NIR (multiespectrales) de UAV y datos de campo de
nutrientes (N, P, K foliar y peciolo). Los autores trabajan el algoritmo YOLO para la deteccién
precisa de vides (90 % de precisién), lo cual sirve como base para la zonificacién utilizando
K-means. Al integrar NDVI, contenido de nutrientes y coordenadas de ubicacién en el proceso
de clustering, logran definir zonas de manejo homogéneas que reflejan diferencias en el estado
de salud; a su vez, proporcionan una herramienta valiosa para la gestién sitio-especifica del

vifiedo.

Finalmente, (61) proponen un sistema integrado mds amplio para el monitoreo general de
campos agricolas que incluye la deteccién de enfermedades. Combinan datos de UAV (MS,
HS, GPS) con sensores internet of things (IoT) ambientales en tierra, fusionando esta informa-

cién para alimentar un modelo de aprendizaje automatico hibrido (hybrid machine learning model
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Tabla 5. Estudios relevantes sobre deteccién y manejo de plagas/Enfermedades mediante UAV e IA

Objeti Ref
Jetvo Sensor(es) UAV | Caracteristicas utilizadas Métodos IA/ML eterent
(cultivo/problema) cia
. . VI (6 seleccionados),
Cacahuete/Tizén del | Multiespectral . KNN, PSO-5VM, _
texturales (3 TI construidos (54)
sur (enfermedad) (MS, 5 bandas) . AdaBoost
a partir de TF)
. . Color, rasgos profundos
Trigo/Sarna del trigo By DL (ASFFNet - basado -
RGB (ASFFNet, fusién (55)
(enfermedad) . . en YOLOV5)
adaptativa espacial)
Vid/Zonificacién
RGB+NIR (MS, .
basada en salud 5 bandas) NDVI, N, P, K YOLO (deteccién de
andas),
(relacionado con (hoja/peciolo), localizacién | vides), K-means (pesos (58)
o muestras (N, P, .
susceptibilidad / . . (coordenadas) variables)
K foliar/peciolo)
estado)
Remolacha . ML (PLS-DA, SVML,
. VI, sombra, resolucién,
azucarera/Cercospora | Multiespectral SVMR, RF, KNN), -
DSMY(), pardmetros de drea o ) 59)
leaf spot (CLS) (MS, 5 bandas) pipeline combinando
(AF, AH, AD, etc.)
(enfermedad) ML
Arroz/Enfermedades Rasgos profundos
foliares (bacterial UAV (implicito (extraidos por Tiny YO- DL (Tiny YOLOv4 57)
J
leaf blight, rice blast, RGB/MS) LOv4 modificado + SPP, modificado)
brown spot) CBAM, SCFEM, Ghost)
Arandano
silvestre/Enfermeda
o ) VI, Rasgos de ML (SMLR, RF, SVM),
des (Monilinia MSI, LiDAR L. . e .
. . . crecimiento/fenolégicos clasificacién (60)
blight, Botrytis (potencial) .
. (LAI, altura) supervisada (LDA)
blight), fenologia,
fenotipos

DSM: digital surface model; TF: rasgos texturales; TI: textural indices; VI: vegetation index; ML: machine

learning; DL: deep learning; UAV: unmanned aerial vehicle.

[HMLM]) que combina RF y SVM. Este sistema logra una precisién del 98,74 % en la clasifica-

cién general. El trabajo de (59) también contribuye a la deteccién de enfermedades especificas,

como el Cercospora leaf spot en remolacha azucarera, a nivel de pixel, por medio de imédgenes

multiespectrales de UAV y rasgos extraidos de MS y DSM. Su pipeline, que combina diferentes

modelos ML, logra alta precisién (86,3 % overall) y destaca la utilidad de los rasgos basados en

DSM y los pardmetros de area para diferenciar variedades y evaluar la severidad e incidencia

de la enfermedad; esto constituye una alternativa automatizada a la evaluacién visual por ex-

pertos. La tendencia en deteccién y manejo de plagas y enfermedades mediante la integracion

de UAV e IA, se orienta hacia enfoques que combinan mdltiples fuentes de datos (imédgenes

UAV de diversas bandas espectrales y rasgos, datos de sensores IoT, informacién de ubica-
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cién/DSM). Las arquitecturas de aprendizaje profundo, en especial las adaptadas para objetos
pequefios o con mecanismos de atencién y fusién avanzados (ASFFNet, YOLO modificado,
TSLM), asi como los enfoques de ensamble (HMLM, combinaciones de ML), muestran un ren-
dimiento superior para tareas de deteccion y clasificacion, con altas métricas de precision y
F1-score. Si bien la necesidad de grandes datasets etiquetados sigue siendo un desafio, algunos
trabajos revisados exploran soluciones como el aumento de datos, los enfoques semisupervi-
sados y el aprovechamiento del transfer learning. Aunque se han logrado avances notables en
cultivos especificos y problemas concretos, la validacion de la transferibilidad de los modelos
a nuevos entornos y la optimizaciéon continua de la complejidad computacional para la imple-
mentacion en tiempo real en UAV de recursos limitados siguen siendo areas criticas para la
investigacion futura. La colaboracién interdisciplinaria y la validacién en campo a gran escala

serdn esenciales para traducir estos hallazgos en herramientas agricolas précticas y confiables.

Conteo y fenotipado basico de plantas

El conteo preciso del ntiimero de plantas individuales o de partes especificas, como plan-
tulas, espigas o borlas, es una tarea fundamental en la agricultura de precision y la mejora
genética. Esta informacién es esencial para evaluar la calidad de la siembra, estimar la den-
sidad de la poblacién, predecir el rendimiento y tomar decisiones de manejo adaptadas a las
condiciones del cultivo. La flexibilidad y la capacidad de los UAV para capturar imagenes de
alta resolucion a baja altitud los convierten en herramientas idéneas para obtener datos deta-

llados en planta.

En el caso del maiz, el conteo de plantulas y borlas ha sido objeto de mltiples investiga-
ciones. Por ejemplo, (62) compararon la deteccién de esquinas (Harris), la regresion lineal y el
aprendizaje profundo (Faster R-CNN) para contar plantulas de maiz a partir de imdgenes RGB
de UAV. Demostraron que, aunque los tres métodos logran alta precisién (99 %), los modelos
de regresion lineal y DL son mds robustos a los cambios en la resolucién espacial de la imagen,
una consideracion importante para la aplicabilidad en diferentes alturas de vuelo. La detecciéon

de esquinas, si bien precisa, se ve més afectada por la resolucion.

La deteccién y conteo de borlas (tassels) de maiz también se ha beneficiado de las técnicas
DL. (63) desarrollaron PConv-YOLOvVS, un modelo ligero y robusto, para detectar borlas por
medio de imdgenes RGB tanto de UAV como cerca del suelo. Su modelo alcanzé alta precision
en la detecciéon de borlas (AP >0,9) y un monitoreo preciso de la etapa de borla (R? = 0,99,
RMSE = 0,21 dia), ademads de robustez ante variaciones en resolucién, variedad y etapa de
crecimiento. Un enfoque diferente es el de (64), quienes propusieron IntegrateNet, una red de

aprendizaje profundo multitarea que supervisa simultdneamente el aprendizaje de mapas de
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densidad y mapas de conteo local para el maiz. Este modelo logré un error bajo (M AE = 1,62,
RMSE =2,28) y un alto coeficiente de determinacién (R? = 0,9578) en el conjunto de prueba,
superando a enfoques previos basados en mapas de densidad. Aunque también se han pro-

puesto enfoques basados en métodos de ML clasicos como regresiéon SVM (65).

La aplicacién de estas técnicas a otras partes de cultivos importantes se ve en el estudio
de (66), quienes compararon modelos DL como Faster R-CNN, YOLOvS8 y RT-DETR para la
deteccién de espigas de trigo en imdgenes RGB de UAV. Aunque YOLOV8 mostré la mayor
precisién, RT-DETR tuvo un mejor equilibrio entre precisiéon y recall; asimismo, se destacan los
desafios en la deteccion precisa de objetos pequefios y superpuestos como las espigas. Inclu-
so en cultivos de 4rboles, donde el conteo manual puede ser atin mas arduo, los UAV y la IA
ofrecen soluciones. Se ha utilizado una combinacién de CNN y refinamiento basado en proce-
samiento de imagen (OBIA) para identificar y contar drboles de olivo individuales a partir de
imédgenes RGB de UAV. Esta aplicacién alcanz6 una precision general (99 %) en la deteccion y

conteo de arboles (67).

En conjunto, estos estudios demuestran el gran potencial de los UAV y las técnicas de visién
por computador e IA para automatizar y mejorar la precisién del conteo de plantas y partes de
plantas en diversos cultivos. Los avances se centran en el desarrollo de arquitecturas de apren-
dizaje profundo robustas, la integracién de multiples fuentes de datos y el refinamiento de los
algoritmos para manejar desafios especificos como la superposicion, la variabilidad morfol6gi-

ca y las diferentes resoluciones espaciales.

En cuanto a las técnicas de identificacién y tipificacion de plantas, se destacan los avances
en algoritmos de DL especializados, y en particular, las CNN. Por ejemplo, (68) describen los
avances recientes en este campo, en particular de la computacién e informética modernas, y
expone una hoja de ruta detallada para la utilizacion estas técnicas en la identificacién automa-
tica de plantas de pino, con una precisién mds que interesante, al punto de que este trabajo fue
ampliado dos afios después, para reforzar el gran potencial de la utilizacion de CNN en mo-
nitoreo remoto con imégenes captadas por drones para actividades propias de la agricultura

inteligente, tal y como se especifica en (69).

Discusion

Los resultados recopilados en esta revisiéon confirman que los UAV se han consolidado co-
mo herramientas fundamentales en la agricultura de precisién, y que se destacan por su capa-
cidad de recopilar imagenes de alta resolucién y por su integracion versatil con sensores mul-

tiespectrales, hiperespectrales, térmicos y LIDAR. Esta capacidad ha facilitado el monitoreo de
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variables agrondmicas criticas como el estado nutricional, el crecimiento vegetativo, la biomasa
aérea (AGB) y los niveles de fertilizacion en diversos cultivos. Sin embargo, uno de los aportes
clave de esta revision es evidenciar la transicién que han tenido las metodologias tradicionales
(basadas en indices espectrales simples) hacia enfoques hibridos que incorporan modelos 3D,

fusién de datos y técnicas avanzadas de aprendizaje automatico y profundo (ML/DL).

En el contexto de la estimacién de biomasa y predicciéon del rendimiento de cosechas, las
técnicas basadas exclusivamente en indices de vegetacion como NDVI o indice de vegetacion
de diferencia normalizada verde (green normalized difference vegetation index [GNDVI]), han mos-
trado limitaciones significativas frente a cultivos en etapas avanzadas o con alta densidad foliar,
debido a fenémenos de saturacién espectral. En contraste, la combinacién de caracteristicas es-
tructurales (altura de planta, cobertura del dosel), morfoldgicas (textura, volumen estimado),
y datos espectrales multibanda, ha demostrado ser méas robusta. Modelos como random forest
(RF) y support vector regression (SVR) han mostrado desempefios sélidos (R? >0,80 en varios es-
tudios); aunque son los enfoques basados en redes neuronales convolucionales (CNN), LSTM o
arquitecturas hibridas con mecanismos de atencién los que actualmente dominan el panorama

metodoldgico, debido a su capacidad para aprender representaciones jerarquicas complejas.

De hecho, mientras algunos estudios recientes han logrado predicciones de rendimiento
con RM-SE inferiores a 1 t/ha en trigo mediante el uso de stacking ensembles que combinan
mdultiples modelos (por ejemplo: Cubist, DNN, RF), otros han alcanzado niveles similares de
precision por medio de CNN alimentadas con datos RGB multitemporales y morfologia 3D, co-
mo en el caso de la soja. Asimismo, modelos multivariados aplicados a datos hiperespectrales
han evidenciado ser efectivos para estimar simultdineamente variables como LAI, contenido de
nitrégeno y biomasa, lo que favorece una integracién agronémica méas completa. No obstante,
la implementacién practica de estos sistemas enfrenta atin importantes barreras, como son: la
necesidad de grandes voliimenes de datos de entrenamiento en campo, la baja transferibilidad
de los modelos a diferentes ambientes y cultivos, y la alta demanda computacional asociada a

arquitecturas DL complejas.

Adicionalmente, la revisién muestra cémo la fusién multimodal de sensores (combinando
UAV con estaciones IoT en tierra o con imagenes satelitales) permite mejorar la generalizacion
de los modelos, sobre todo en escenarios de variabilidad topografica o climatica. Sin embar-
go, dicha integracién introduce retos técnicos como la sincronizacién temporal, la calibracién
geométrica cruzada y el tratamiento del desbalance entre datos espectrales y estructurales. En
este sentido, los modelos de aprendizaje multitarea y las redes neuronales con mecanismos de
atencion adaptativa se posicionan como lineas prometedoras para abordar esta complejidad y

reducir el costo de adquisicion de datos en campo.
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Conclusiones

Los avances recientes en el uso de vehiculos aéreos no tripulados (unmanned aerial vehicle
[UAV]) combinados con inteligencia artificial (IA) son una alternativa para transformar préc-
ticas agricolas tradicionales mediante monitoreo no destructivo, optimizaciéon del uso de in-
sumos y una mayor precision en la toma de decisiones. A través de esta revision se identifico
que, més alla de los indices tradicionales como indice de vegetacién de diferencia normalizada
(normalized difference vegetation index [NDVI]) , los enfoques que combinan miultiples tipos de
caracteristicas (espectrales, estructurales y texturales), junto con modelos avanzados de apren-
dizaje automatico, se aporta a la precision en la estimacién de variables criticas como biomasa,
contenido de nutrientes y rendimiento de las cosechas. La integracién de sensores hiperespec-
trales, térmicos y LiDAR ha llevado a superar algunas limitaciones cldsicas como la saturacién
espectral en cultivos densos o en etapas avanzadas de desarrollo. Sin embargo, el verdadero
impacto de estas tecnologias no se medird tiinicamente en funcién de sus métricas de precision,
sino en su capacidad para ser apropiadas, replicadas y sostenidas en contextos reales y diver-

SOS.

En este sentido, la transicién hacia una agricultura verdaderamente precisa e inteligente
requiere ir més alld del despliegue de tecnologias avanzadas; supone construir sistemas abier-
tos, inclusivos y orientados al bien comun. Serd fundamental democratizar el acceso a datos de
entrenamiento y validacién, fomentar estdndares abiertos para la interoperabilidad de platafor-
mas UAV, y disefiar soluciones tecnolégicas pensadas desde y para los agricultores, especial-
mente aquellos que enfrentan limitaciones econémicas o geogréficas. Solo asi se logrard una
adopcion tecnoldgica equitativa, capaz de combinar el potencial del aprendizaje automético

con los saberes locales y las dinamicas agroecoldgicas del territorio.

Referencias

[1] D. W. James, y K. L. Wells, Soil sample collection and handling: technique based on source and
degree of field variability, Hoboken, NJ: John Wiley & Sons, 1990, pp. 25-44.

[2] M. B. Stuart, A. J. S. McGonigle, y J. R. Willmott, “Hyperspectral imaging in environmental
monitoring: a review of recent developments and technological advances in compact field

deployable systems”, Sensors, vol. 19, n.° 1414, p. 3071, en. 2019.

[3] S. Khanal, K. C. Kushal, J. P. Fulton, et al., “Remote sensing in agricultura— Accomplish-

ments, limitations, and opportunities”, Remote Sensing, vol. 12, n.” 22, p. 3783, nov. 2020.

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[96]



Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién
Buitrago Bolivar, E., et al.

[4] Y. Ge, G. Bai, V. Stoerger, et al., “Temporal dynamics of maize plant growth, water use,
and leaf water content using automated high throughput RGB and hyperspectral imaging”,
Computers and Electronics in Agriculture, vol. 127, pp. 625632, sep. 2016. Disponible en https:
/ /www.sciencedirect.com/science/article/pii/S0168169916305464

[5] E. Salami, C. Barrado, y E. Pastor, “UAV flight experiments applied to the remote sensing
of vegetated areas”, Remote Sensing, vol. 6, n.° 11, pp. 11051-11081, nov. 2014. Disponible en
https:/ /www.mdpi.com/2072-4292/6/11/11051

[6] H. Yao, R. Qin, y X. Chen, “Unmanned aerial vehicle for remote sensing applications—A
review”, Remote Sensing, vol. 11, n.° 1212, p. 1443, en. 2019.

[7] G. Pajares, “Overview and current status of remote sensing applications based on unman-
ned aerial vehicles (UAVs)”, Photogrammetric Engineering Remote Sensing, vol. 81, n.° 4, pp.
281-329, abr. 2015.

[8] I. Colomina, y P. Molina, “Unmanned aerial systems for photogrammetry and remote sen-
sing: a review”, ISPRS Journal of Photogrammetry and Remote Sensing, vol. 92, pp. 79-97, jun.
2014.

[9] P. Daponte, L. De Vito, L. Glielmo, et al., “A review on the use of drones for precision
agriculture”, IOP Conference Series: Earth and Environmental Science, vol. 275, n.° 1, p. 012022,
my. 2019.Disponible en https:/ /dx.doi.org/10.1088/1755-1315/275/1/012022

[10] J. Xue, y B. Su, “Significant remote sensing vegetation indices: a review of developments
and applications”, Journal of Sensors, vol. 2017, n.° 1, p. 1353691, en. 2017. Disponible en https:
/ /onlinelibrary.wiley.com/doi/abs/10.1155/2017 /1353691

[11] X. Zhang, E. Zhang, Y. Qj, et al., “New research methods for vegetation information extrac-
tion based on visible light remote sensing images from an unmanned aerial vehicle (UAV)”,
International Journal of Applied Earth Observation and Geoinformation, vol. 78, pp. 215-226, jun.
2019. Disponible en https:/ /linkinghub.elsevier.com/retrieve/pii/S0303243418306305

[12] R. Vidican, A. Mdlinas, O. Ranta, et al., “Using remote sensing vegetation indices for the
discrimination and monitoring of agricultural crops: a critical review”, Agronomy, vol. 13, n.°
12, p. 3040, dic. 2023. Disponible en https://www.mdpi.com/2073-4395/13/12 /3040

[13] D. Radocaj, A. Silieg, R. Marinovié, et al., “State of major vegetation indices in precision
agriculture studies indexed in Web of Science: a review”, Agriculture, vol. 13, n.° 3, p. 707,
mzo. 2023. Disponible en https:/ /www.mdpi.com /2077-0472/13/3/707

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Niimero 82 ® Octubre - Diciembre de 2024 ¢ pp. 75-103
[97]


https://www.sciencedirect.com/science/article/pii/S0168169916305464
https://www.sciencedirect.com/science/article/pii/S0168169916305464
https://www.mdpi.com/2072-4292/6/11/11051
https://dx.doi.org/10.1088/1755-1315/275/1/012022
https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/1353691
https://onlinelibrary.wiley.com/doi/abs/10.1155/2017/1353691
https://linkinghub.elsevier.com/retrieve/pii/S0303243418306305
https://www.mdpi.com/2073-4395/13/12/3040
https://www.mdpi.com/2077-0472/13/3/707

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[14] ]J. G. A. Barbedo, “A review on the use of unmanned aerial vehicles and imaging sensors
for monitoring and assessing plant stresses”, Drones, vol. 3, n.° 2, p. 40, jun. 2019. Disponible
en https:/ /www.mdpi.com/2504-446X/3/2/404

[15] S. Gokool, M. Mahomed, R. Kunz, et al., “Crop monitoring in smallholder farms using
unmanned aerial vehicles to facilitate precision agriculture practices: a scoping review and
bibliometric analysis”, Sustainability, vol. 15, n.° 4, p. 3557, en. 2023. Disponible en https:
/ /www.mdpi.com/2071-1050/15/4 /3557

[16] M. Schirrmann, A. Giebel, F. Gleiniger, et al., “Monitoring agronomic parameters of winter
wheat crops with low-cost UAV imagery”, Remote Sensing, vol. 8, n.” 99, p. 706, sep. 2016.
https:/ /doi.org/10.3390/rs8090706

[17] J. Wu, D. Zheng, Z. Wu, et al., “Prediction of buckwheat maturity in UAV-RGB images
based on recursive feature elimination cross-validation: a case study in Jinzhong, northern
China”, Plants, vol. 11, n.° 2323, p. 3257, en. 2022. Disponible en https://doi.org/10.3390/
plants11233257

[18] S. B. Khose, y D. R. Mailapalli, “UAV-based multispectral image analytics and machine
learning for predicting crop nitrogen in rice”, Geocarto International, vol. 39, n.° 1, en. 2024.
Disponible en https://doi.org/10.1080/10106049.2024.2373867

[19] R. N. Sahoo, R. G. Rejith, S. Gakhar, et al., “Drone remote sensing of wheat N using hy-
perspectral sensor and machine learning”, Precision Agriculture, vol. 25, n.° 2, pp. 704-728,
abr. 2024. Disponible en https://doi.org/10.1007/s11119-023-10089-7

[20] N. Lu, Y. Wu, H. Zheng, et al., “An assessment of multi-view spectral information from
UAV-based color-infrared images for improved estimation of nitrogen nutrition status in

winter wheat”, Precision Agriculture, vol. 23, n.° 5, pp. 1653-1674, oct. 2022.

[21] X. Peng, D. Chen, Z. Zhou, et al., “Prediction of the nitrogen, phosphorus and potassium
contents in grape leaves at different growth stages based on UAV multispectral remote sen-

sing”, Remote Sensing, vol. 14, n.° 11, jun. 2022.

[22] H. Zha, Y. Miao, T. Wang, et al., “Improving unmanned aerial vehicle remote sensing-
based rice nitrogen nutrition index prediction with machine learning”, Remote Sensing, vol.
12, n.° 2, en. 2020.

[23] U. Lussem, A. Bolten, I. Kleppert, et al., “Herbage mass, N concentration, and N uptake
of temperate grasslands can adequately be estimated from UAV-based image data using

machine learning”, Remote Sensing, vol. 14, n.° 13, jul. 2022.

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[98]


https://www.mdpi.com/2504-446X/3/2/404
https://www.mdpi.com/2071-1050/15/4/3557
https://www.mdpi.com/2071-1050/15/4/3557
https://doi.org/10.3390/rs8090706
https://doi.org/10.3390/plants11233257
https://doi.org/10.3390/plants11233257
https://doi.org/10.1080/10106049.2024.2373867
https://doi.org/10.1007/s11119-023-10089-7

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[24] Z. Cheng, X. Gu, Y. Du, et al., “Multi-modal fusion and multi-task deep learning for mo-
nitoring the growth of film-mulched winter wheat”, Precision Agriculture, vol. 25, n.° 4, pp.
1933-1957, ag. 2024.

[25] S.-H. Zhang, L. He, J.-Z. Duan, et al., “Aboveground wheat biomass estimation from a
low-altitude UAV platform based on multimodal remote sensing data fusion with the intro-
duction of terrain factors”, Precision Agriculture, vol. 25, n.° 1, pp. 119-145, feb. 2024.

[26] S. Zhu, W. Zhang, T. Yang, et al., “Combining 2D image and point cloud deep learning to
predict wheat above ground biomass”, Precision Agriculture, vol. 25, n.° 6, pp. 3139-3166, dic.
2024.

[27] Y. Guan, K. Grote, J. Schott, et al., “Prediction of soil water content and electrical conducti-
vity using random forest methods with UAV multispectral and ground-coupled geophysical
data”, Remote Sensing, vol. 14, n.° 4, feb. 2022.

[28] R. N. Sahoo, S. Gakhar, R. Rejith, et al., “Unmanned aerial vehicle (UAV)-based imaging
spectroscopy for predicting wheat leaf nitrogen”, Photogrammetric Engineering & Remote Sen-
sing, vol. 89, n.° 2, pp. 107-116, feb. 2023.

[29] H. Hammouch, S. Patil, S. Choudhary, et al., “Hybrid-Al and model ensembling to exploit
UAV-based RGB imagery: an evaluation of sorghum crop’s nitrogen content”, Agriculture-
Basel, vol. 14, n.° 10, oct. 2024.

[30] S. Xu, X. Xu, Q. Zhu, et al., “Monitoring leaf nitrogen content in rice based on information
fusion of multi-sensor imagery from UAV”, Precision Agriculture, vol. 24,n.° 6, pp. 2327-2349,
dic. 2023.

. Jenal, 1. Hueging, H. E. rends, et al., “Investigating the potential of a new evelo-

[31] A.]Jenal, H. Hueging, H. E. Ahrend | igating the p ial of ly devel
ped UAV-mounted VNIR/SWIR imaging system for monitoring crop traits-a case study for
winter wheat”, Remote Sensing, vol. 13, n.° 9, my. 2021.

[32] Z. Fu, J. Jiang, Y. Gao, et al., “Wheat growth monitoring and yield estimation based on
multi-rotor unmanned aerial vehicle”, Remote Sensing, vol. 12, n.° 3, p. 508, en. 2020. Dispo-
nible en https://www.mdpi.com/2072-4292/12/3 /508

[33] A. Ashapure, J. Jung, A. Chang, et al., “Developing a machine learning based cotton yield
estimation frame-work using multi-temporal UAS data”, ISPRS Journal of Photogrammetry
and Remote Sensing, vol. 169, pp. 180-194, nov. 2020.

[34] K. C. Kushal, M. Romanko, A. Perrault, et al., “On-farm cereal rye biomass estimation
using machine learning on images from an unmanned aerial system”, Precision Agriculture,
vol. 25, n.° 5, pp. 2198-2225, oct. 2024.

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[99]


https://www.mdpi.com/2072-4292/12/3/508

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[35] M. Bian, Z. Chen, Y. Fan, et al., “Integrating spectral, textural, and morphological data for
potato LAI estimation from UAV images”, Agronomy-Basel, vol. 13, n.° 12, dic. 2023.

[36] Q. Cheng, E. Ding, H. Xu, et al., “Quantifying corn LAI using machine learning and UAV
multispectral imaging”, Precision Agriculture, vol. 25, n.° 4, pp. 1777-1799, ag. 2024.

[37] X.Lu, W. Li, ]. Xiao, et al., “Inversion of leaf area index in citrus trees based on multi-modal

data fusion from UAV platform”, Remote Sensing, vol. 15, n.” 14, jul. 2023.

[38] J. Jiang, K. Johansen, C. S. Stanschewski, et al., “Phenotyping a diversity panel of qui-
noa using UAV-retrieved leaf area index, SPAD-based chlorophyll and a random forest ap-
proach”, Precision Agriculture, vol. 23, n.° 3, pp. 961-983, jun. 2022.

[39] R. A.QOliveira, R. Naesi, P. Korhonen, et al., “High-precision estimation of grass quality and
quantity using UAS-based VNIR and SWIR hyperspectral cameras and machine learning”,
Precision Agriculture, vol. 25, n.° 1, pp. 186-220, febr. 2024.

[40] R. Mukhamediev, Y. Amirgaliyev, Y. Kuchin, et al., “Operational mapping of salinization
areas in agricultural fields using machine learning models based on low-altitude multispec-

tral images”, Drones, vol. 7, n.° 6, jun. 2023.

[41] Y. Gan, Q. Wang, T. Matsuzawa, et al., “Multivariate regressions coupling colorimetric and
textural features derived from UAV-based RGB images can trace spatiotemporal variations
of LAI well in a deciduous forest”, International Journal of Remote Sensing, vol. 44, n.° 15, pp.
4559-4577, ag. 2023.

[42] T. W. Bell, N. J. Nidzieko, D. A. Siegel, et al., “The utility of satellites and autonomous
remote sensing platforms for monitoring offshore aquaculture farms: a case study for canopy
forming kelps”, Frontiers in Marine Science, vol. 7, dic. 2020. Disponible en https://www.

frontiersin.org/journals/marine-science/articles/10.3389 /fmars.2020.520223 / full

[43] R. Ballesteros, D. S. Intrigliolo, J. E. Ortega, et al., “Vineyard yield estimation by combi-
ning remote sensing, computer vision and artificial neural network techniques”, Precision
Agriculture, vol. 21, n.° 6, pp. 1242-1262, dic. 2020.

[44] S. Fei, M. A. Hassan, Y. Xiao, et al., “UAV-based multi-sensor data fusion and machine
learning algorithm for yield prediction in wheat”, Precision Agriculture, vol. 24, n.° 1, pp.
187-212, febr. 2023.

[45] Y. Yokoyama, A. de Wit, T. Matsui, et al., “ Accuracy and robustness of a plant-level cabbage
yield prediction system generated by assimilating UAV-based remote sensing data into a
crop simulation model”, Precision Agriculture, vol. 25, n.° 6, pp. 2685-2702, dic. 2024.

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[100]


https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.520223/full
https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.520223/full

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[46] L. Costa, J. McBreen, Y. Ampatzidis, et al., “Using UAV-based hyperspectral imaging and
functional regression to assist in predicting grain yield and related traits in wheat under
heat-related stress environments for the purpose of stable yielding genotypes”, Precision
Agriculture, vol. 23, n.° 2, pp. 622-642, abr. 2022.

[47] A.Feng,]. Zhou, E. Vories, et al., “Prediction of cotton yield based on soil texture, weather
conditions and UAV imagery using deep learning”, Precision Agriculture, vol. 25, n.° 1, pp.
303-326, febr. 2024.

[48] E. C. Tetila, B. B. Machado, G. Astolfi, et al., “Detection and classification of soybean
pests using deep learning with UAV images”, Computers and Electronics in Agriculture,
vol. 179, art. 105836, dic. 2020. Disponible en https:/ /linkinghub.elsevier.com/retrieve /pii/
S016816991831055X

[49] F. H. Iost Filho, W. B. Heldens, Z. Kong, et al., “Drones: innovative technology for use in
& 8y
precision pest management”, Journal of Economic Entomology, vol. 113, n.° 1, pp. 1-25, febr.
2020.

[50] M. Darbyshire, S. Coutts, P. Bosilj, et al., “Review of weed recognition: a global agriculture
Yy ) g g g
perspective”, Computers and Electronics in Agriculture, vol. 227, n.° 1, dic. 2024.

[51] J. Kaivosoja, J. Hautsalo, J. Heikkinen, et al., “Reference measurements in developing UAV

systems for detecting pests, weeds, and diseases”, Remote Sensing, vol. 13, n.° 7, abr. 2021.

[52] R. Rosle, N. N. Che’Ya, Y. Ang, et al., “Weed detection in rice fields using remote sensing
technique: a review”, Applied Sciences-Basel, vol. 11, n.° 22, nov. 2021. Disponible en https:
//doi.org/10.3390/app112210701

[53] M. H. M. Roslim, A. S. Juraimi, et al., “Using remote sensing and an unmanned aerial
system for weed management in agricultural crops: a review”, Agronomy-Basel, vol. 11,n.°9,
sept. 2021.

[54] W. Guo, Z. Gong, C. Gao, et al., “An accurate monitoring method of peanut southern
blight using unmanned aerial vehicle remote sensing”, Precision Agriculture, vol. 25, n.° 4,
pp. 1857-1876, ag. 2024.

[65] W. Bao, W. Liu, X. Yang, et al., “Adaptively spatial feature fusion network: an improved
UAV detection method for wheat scab”, Precision Agriculture, vol. 24, n.° 3, pp. 1154-1180,
jun. 2023.

[56] B. Das, y C. S. Raghuvanshi, “Advanced UAV-based leaf disease detection: deep radial
basis function networks with multidimensional mixed attention”, Multimedia Tools and Ap-
plications, dic. 2024. Disponible en https://doi.org/10.1007 /s11042-024-20462-x

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[101]


https://linkinghub.elsevier.com/retrieve/pii/S016816991831055X
https://linkinghub.elsevier.com/retrieve/pii/S016816991831055X
https://doi.org/10.3390/app112210701
https://doi.org/10.3390/app112210701
https://doi.org/10.1007/s11042-024-20462-x

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[57] A. K. Sangaiah, E-N. Yu, Y.-B. Lin, et al., “UAV T-YOLO-rice: an enhanced tiny YO-
LO networks for rice leaves diseases detection in paddy agronomy”, IEEE Transactions
on Network Science and Engineering, vol. 11, n.° 6, pp. 5201-5216, nov. 2024. Disponible en
https:/ /ieeexplore.ieee.org/document/10387738

[68] M. Gavrilovic, D. Jovanovic, P. Bozovig, et al., “Vineyard zoning and vine detection using
machine learning in unmanned aerial vehicle imagery”, Remote Sensing, vol. 16, n.° 3, febr.
2024.

[59] A.Barreto, F. R. 1. Yamati, M. Varrelmann, et al., “Disease incidence and severity of cercos-
pora leaf spot in sugar beet assessed by multispectral unmanned aerial images and machine
learning”, Plant Disease, vol. 107, n.° 1, pp. 188-200, en. 2023.

[60] D. Percival, K. Anku, y J. Langdon, “Phenotype, phenology, and disease pressure assess-
ments in wild blueberry fields through the use of remote sensing technologies”, Acta Horti-
culturae, n.° 1381, pp. 123-130, nov. 2023. Disponible en https:/ /www.actahort.org/books/
1381/1381_17.htm

[61] G. B. C. Narayanappa, S. H. Abbas, L. Annamalai, et al., “Revolutionizing UAV: experi-
mental evaluation of IoT-enabled unmanned aerial vehicle-based agricultural field monito-
ring using remote sensing strategy”, Remote Sensing in Earth Systems Sciences, vol. 7, n.° 4, pp.
411-425, dic. 2024. Disponible en https:/ /doi.org/10.1007/s41976-024-00134-y

[62] S. Liu, D. Yin, H. Feng, et al., “Estimating maize seedling number with UAV RGB images
and advanced image processing methods”, Precision Agriculture, vol. 23, n.° 5, pp. 1604-1632,
oct. 2022.

[63] X.Yu, D.Yin, H. Xu, et al., “Maize tassel number and tasseling stage monitoring based on
near-ground and UAV RGB images by improved YoloV8”, Precision Agriculture, vol. 25, n.°
4, pp. 1800-1838, ag. 2024.

[64] W. Liu, J. Zhou, B. Wang, et al., “IntegrateNet: a deep learning network for maize stand
counting from UAV imagery by integrating density and local count maps”, IEEE Geoscience
and Remote Sensing Letters, vol. 19, pp. 1-5, jun. 2022. Disponible en https:/ /iceexplore.ieee.
org/document /9807329

[65] A.Bawa, S. Samanta, S. K. Himanshu, et al., “A support vector machine and image pro-
cessing based approach for counting open cotton bolls and estimating lint yield from UAV

imagery”, Smart Agricultural Technology, vol. 3, febr. 2023.

[66] M. SmajlhodZi¢-Deljo, M. Hundur Hiyari, L. Gurbeta Pokvi¢, et al., “Using data-driven
computer vision techniques to improve wheat yield prediction”, AgriEngineering, vol. 6, n.°
4, pp. 4704-4719, dic. 2024. Disponible en https://www.mdpi.com /2624-7402/6/4 /26920

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntuimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[102]


https://ieeexplore.ieee.org/document/10387738
https://www.actahort.org/books/1381/1381_17.htm
https://www.actahort.org/books/1381/1381_17.htm
https://doi.org/10.1007/s41976-024-00134-y
https://ieeexplore.ieee.org/document/9807329
https://ieeexplore.ieee.org/document/9807329
https://www.mdpi.com/2624-7402/6/4/26920

Monitoreo de cultivos y suelos en agricultura de precisiéon con UAV e inteligencia artificial: una revisién

Buitrago Bolivar, E., et al.

[67] O. Ameslek, H. Zahir, S. Mitro, et al., “Identification and mapping of individual trees from
unmanned aerial vehicle imagery using an object-based convolutional neural network”, Re-
mote Sensing in Earth Systems Sciences, vol. 7, n.° 3, pp. 172-182, sept. 2024. Disponible en
https:/ /doi.org/10.1007 /s41976-024-00117-z

[68] T. Kattenborn, J. Eichel, y F. E. Fassnacht, “Convolutional neural networks enable effi-
cient, accurate and fine-grained segmentation of plant species and communities from high-

resolution uav imagery”, Scientific Reports, vol. 9, n.° 11, art. 17656, nov, 2019.

[69] T. Kattenborn, J. Leitloff, F. Schiefer, et al., “Review on convolutional neural networks
(CNN) in vegetation remote sensing”, ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 173, pp. 24-49, mzo. 2021.

(ool

Tecnura ® p-ISSN: 0123-921X e e-ISSN: 2248-7638 ¢ Volumen 28 Ntimero 82 ¢ Octubre - Diciembre de 2024 ¢ pp. 75-103
[103]


https://doi.org/10.1007/s41976-024-00117-z
https://creativecommons.org/licenses/by-sa/4.0/

	Introducción
	Metodología
	Fuentes de información
	Estrategia de búsqueda
	Criterios de selección
	Proceso de selección
	Extracción de datos
	Síntesis y análisis de datos

	Resultados
	Estimación de niveles de nutrientes en cultivos
	Estimación de biomasa
	Predicción de rendimiento
	Detección y manejo de plagas, enfermedades y malezas
	Conteo y fenotipado básico de plantas

	Discusión
	Conclusiones
	Referencias

