PROGRAMACIÓN DEL MICROCONTROLADOR PIC 16C64 COMO CONTROLADOR MULTIEJE PARA MOTORES PASO

Gustavo Caamaño*
Coordinador de Tecnología en Electrónica

En este artículo se describe la programación de un PIC 16C64 para que funcione como un generador universal de secuencia para cuatro motores paso a paso, con selectores de medio paso o paso completo, tipo de secuencia, sentido de giro y entradas independientes de reloj para cada motor. Se describe el algoritmo para la discriminación de los flancos de subida al trabajar con la característica de interrupción por cambio de la parte alta del puerto B. La programación es también un ejemplo de utilización de todos los puertos del microcontrolador.

Introducción

Los motores paso a paso son ampliamente utilizados en aplicaciones electrónicas, con la particularidad de que la señal de avance debe ser entregada por un circuito secuenciador.

Existen varios fabricantes de circuitos integrados que ofrecen secuenciadores para motores paso a paso de diversos tipos¹.

En este artículo mostraremos cómo se pueden programar cuatro secuenciadores universales en un solo circuito integrado, el cual no es mas que un microcontrolador: el PIC 16C64 de Microchip (ver Figura 1).

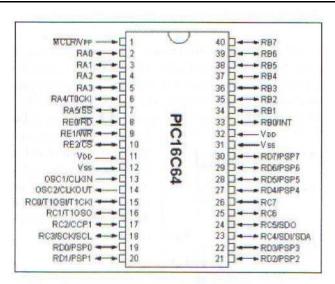
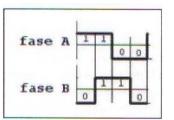



Figura 1 Distribución de pines del PIC16C64

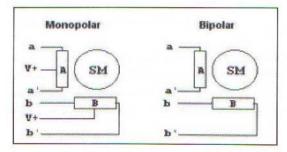
* Ingeniero Electrónico, Coordinador de Tecnología en Electrónica. Especialización en Bioingeniería de la Universidad Distrital. Actualmente se encuentra desarrollando el Doctorado en telecomunicaciones con la Universidad Central de las Villas Santa Clara de Cuba.

Básicamente, los motores paso a paso son motores bifásicos con separación eléctrica entre polos de 90° (ver Figura 2*). Por ser bifásicos necesitan un par de bobinas de excitación (el campo es producido, generalmente, por imán

Figura 2 Señal bifásica (90⁴) permanente en el rotor). necesaria para excitar un motor paso a paso

Dependiendo de la conexión que se haga a las bobinas de excitación, estos motores se clasifican en *monopolares* y *bipolares* (ver Figura 3.), en donde la forma general es el motor bipolar llamado así porque es necesario emplear una fuente de poder dual de corriente directa² para invertir el flujo del campo magnético en el núcleo de las bobinas. Sin embargo, la presentación más usual es el motor monopolar, ya que con él se logra utilizar una fuente de polaridad única y un driver más sencillo a expensas del tamaño del motor pues en realidad lo que se hace es duplicar las bobinas.

Ternura Con-Ciencias 18.


¹ Un ejemplo es la pastilla LS297 fabricada por la SGS.

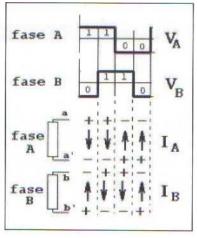
² También es usual utilizar un puente de transistores para evitar el empleo de una fuente dual.

En la Figura 4 se describe la secuencia de manejo de un motor bipolar y en la 5 la de uno monopolar³.

La secuencia

Es fácil ver que las polaridades necesarias para accionar un motor paso a paso tienen una traducción al lenguaje de unos y ceros utilizado en la electrónica digital como se muestra en la Figura 6.

Figura 3 Esquema de un motor monopolar y uno bipolar.

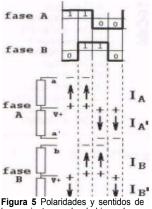

La secuencia de señales binarias entregadas por el circuito generador será traducida por el driver de potencia adecuado para producir las correspondientes corrientes en las bobinas del motor con el fin de hacerlo rotar en un sentido determinado; si se invierte la secuencia, se invierte el sentido de giro del motor.

Si se alarga la secuencia intercalando un estado de apagado cada vez que se va a invertir la polaridad sobre una bobina, se obtendrá como consecuencia lo que se llama el modo de medio paso. Este consiste en hacer que el rotor se estacione a mitad de camino entre los polos magnéticos. La secuencia de medio paso también se muestra en la Figura 6.

Para el motor monopolar existe, además, otra secuencia (ver figura 7) llamada wave, muy utilizada por ser más fácil de implementar que las anteriores con circuitos discretos⁴, y consiste en alimentar una sola bobina a la vez, consecutivamente. También se emplea la secuencia wave de dos bobinas en la cual se alimentan dos bobinas a la vez. Al igual que en las secuencias clásicas, de la secuencia wave se puede derivar una de medio paso⁵.

El programa

Nos proponemos diseñar un programa que permita manejar cuatro motores paso a paso con la adecuada cantidad de controles que rijan el funcionamiento de cada uno de ellos por separado. Estos controles se muestran


controlador ya que los tres restantes tienen idéntico comportamiento. Nótese que para lograr el avance de un motor necesario que exista un frente de subida en la entrada de reloi (xCK). Además, se desea funcionaque miento de los secuenciadores sea

más independiente

corrientes en las bobinas de un \boldsymbol{q} motor paso a paso bipolar.

Asignación de pines

En la Figura 8. Se muestra la asignación de pines, con la cual se empieza a trabajar el diseño del programa. Se ha tenido especial cuidado en reservar la mitad alta del puerto B para las entradas de reloj y así aprovechar la característica del PIC de interrupción por cambio en la parte alta del puerto B. En

Figura 5 Polaridades y sentidos de las corrientes en las bobinas de un motor monopolar paso *a* paso.

la Figura 8. se pueden observar con facilidad los pines que son entradas y los que son salidas. Así es como deben configurarse desde el principio de la ejecución del programa.

A En la Ficha de programa 1 se encuentran estas asignaciones.

Primero se clarean todos los registros de los puertos a modo de inicialización y después se accede al banco 1, con el fin de alterar los registros de dirección de entrada — salida, de los cuales sólo tocamos los del puerto C

³ En algunos textos se refieren al motor monopolar como motor unipolar de cuatro fases.

⁴ Ver http://www.lonestar.texas.net/~diana/stepper.gif

⁵ La secuencia wave de medio paso no se implemento en este programa

y del D pues, por defecto, en el arranque todos los puertos se configuran automáticamente como entradas. El siguiente paso es leer qué tipo de secuencia se desea para cada motor, inspeccionando los pines xWAVE y xFULL (ver Tabla 1). Así, se determinan y anotan, por única vez cuales son las tablas con las que se quiere trabajar (ver Ficha de programa 3).

Paso Completo Fase A Fase B				Fas	ledio		
a	a*	b	p,	a	a'	b	b'
0	1	0	1	0	1	0	1
0	1	1	0	0	1	0	0
1	0	1	0	0	1	1	0
1	0	0	1	0	0	1	0
		mark.		1	0	1	0
				1	0	0	0
				1	0	0	1
				0	0	0	1

Figura 6 Secuencia binaria para los modos de paso completo *y* medio paso.

Las posibles secuencias se tienen en unas tablas o bloques de memoria (ver Ficha de programa 2), a saber: paso completo (FULL), medio paso (HALF), wave sencilla (WAVE1) y wave de dos bobinas al tiempo (WAVE2); cuyos valores concuerdan con los que se muestran en las Figuras 6 y 7.

El propósito es que la tabla informe acerca del siguiente valor de la secuencia para el avance del motor, ya sea en sentido horario o antihorario. Se utiliza aquí la convención de que si el sentido deseado para el eje del motor es horario se leerá la tabla en forma ascendente; en el caso contrario se lee la tabla de manera descendente.

101	1WAVE	TFULL	1CW	OPERACION
Ť	0	0	0	Medio paso. Sentido antihomnio
1	0	0	1	Medio paso. Sentido homario.
t	0	1	0	Paso completo. Sentido antihomico.
1	0	1	1	Paso completo. Sentido homino.
t	1	0	0	Wave sencillo, Sentido antihomnio.
1	1	0	1	Wave sencillo, Sentido horario,
1	1	1	0	Wave dos bobbas Sentido antihomrio
1	1	1	1	Wave dos bobinas. Sentido antihouario

Para anotar el bloque de memoria que se usará para cada motor, se lee el bit xWAVE; si es cero, se trata de la primera o segunda tabla (FULL o HALF) y por el contrario, si es uno, se refiere entonces a la tercera o cuarta (WAVE1 O WAVE2). La información se completa leyendo el BIT xFULL: si es cero se requiere la primera o tercera tabla, pero si es uno podría ser la segunda o la cuarta.

Figura 7 Secuencia WAVE sencilla

En k rutina QUER se determinan y anotan, por única vez, cuales son las tablas con las que se quiere trabajar inspeccionando los pines xWAVE y xFULL. Hay cuatro registros en los que se va a guardar ésta información: TAB_M4, TAB_M3, TAB_M2, TAB_M1, en los cuales se guardará el modo de funcionamiento de cada motor así: O si es paso completo, 1 si es medio paso, 2 si es wave sencillo y 3 si es wave de dos bobinas (Ver Ficha de programa 3).

Interrupciones

Otro de los procesos preparatorios a realizar es la selección de las fuentes de interrupciones⁶. En nuestro caso sólo se utilizará una fuente de interrupción: la interrupción por cambio de la mitad alta del puerto B.

	MOVF FLAGA,0							
	ADDWF	PCL,	1					
	RETLW	5		0101				
	RETLW	6	;	0110				
	RETLW	0A	2	1010				
	RETLW	9	;	1001				
HALF:	MOVF FL.	AGA,0						
	ADDWF	PCL.	1					
	KETLW	5	;	0101				
	RETLW	4		0100				
	RETLW	6	3	0110				
	RETLW	2	;	0010				
	RETLW	OA	2	1010				
	RETLW	8	:	1000				
	KETLW	9	;	1001				
	RETLW	1	÷	0001				
WAVE	: Mo							
	ADDWF	PCL,	1	1000000				
	RETLW	8	2	1000				
	RETLW	4	7	0100				
	RETLW	2	;	0010				
	RETLW	1	;	0001				
WAVE2	: Mo	VF FLAC	A,O					
	ADDWF	PCL,	1					
	RETLW	0C	2	1100				
	RETLW	6	:	0110				
	RETLW	3	2	0011				
	RETLW	9		1001				

Para disponer esta fuente se requiere únicamente activar el bit de habilitación RBIE, aunque por precaución se recomienda clarear previamente la bandera testigo de interrupción RBIF. Además es necesario preparar los habilitadores globales de interrupción (ver Ficha de Programa 4).

Servicio a las interrupciones

Otro elemento de la programación es la subrutina de servicio a las interrupciones, pues es la encargada de discriminar cuál de las entradas de reloj, xCK, produjo

un frente de subida y hacer que el motor correspondiente se mueva en el sentido indicado por xCW (recordar la

QUEK	MOVL	W	4
	MOVW	F	CONTRO
QE1:	CLRF	INDF	$TAB_M = 0$
	REF	FLAG	B.1
	BTFSC		
	GOTO		
	KKF	FLAG	A,1
	BTFSS		JS,C
	GOTÔ	QE2	
	INCF	INDF,	1;TAB_MX = 1
	MOVF	FSR,0	
	MOVW		CKT
	MOVLV	۸Ţ	8
	SUBWF	FSE,1	
	BSF	INDF.	2
	MOVE	CKT,0	
	MOVW	F	FSK
	GOTO		
ONDA	S:	BSF	$INDF,1;TAB_Mx = 2$
	RRF	FLAGA	4,1
	BTFSC	STATE	JS,C
-	INCF	INDF,	$1;TAB_MX = 3$
QE2:	INCF	FSR,1	
	DECFS	Z	CONTRO,1
	GOTO	QE1	
Cieber	L D	n	a rutina QUER define e

Hay un inconveniente inicial a salvar: la interrupción por cambio, como su nombre lo indica, se produce cuando en la entrada xCK ocurre un flanco de subida o un flanco de bajada de la señal de reloj, y no solamente en los flancos de subida como se dictaminó en el planteamiento del diseño. Entonces se requiere un algoritmo que discrimine los tipos de flancos e ignore los de bajada (ver Ficha de Programa 5), lo cual se puede lograr si se conoce el valor anterior del puerto, así:

$$ES = (^{\mathcal{X}}CK^{\perp} \oplus ^{\mathcal{X}}CK^{\perp -1}) \bullet ^{\mathcal{X}}CK^{\perp}$$

Donde FS es uno si el valor anterior del puerto, x _p es cero y el valor actual, xCKp es uno. De lo contrario FS es cero. A continuación puede preguntarse para cada

⁶ De hecho el PIC16C64 tiene 9 fuentes de interrupción. 21.

secuenciador si se requiere desplazar el apuntador de tabla respectivo dependiendo del resultado particular de FS⁷.

Nótese que el valor del puerto siempre es actualizado sin importar si cambia o no. Ya que quien realmente refleja el movimiento del motor es el índice o apuntador de tabla (IND_Mx), el cual se decrementa si se requiere sentido de giro antihorario, se incrementa si es horario, o simplemente no varía si no se desea que el motor ejecute alguna acción.

El resultado final de la programación se muestra en la Tabla 2.1istado general del Programa.

⁷ Como se puede apreciar en listado general del programa a partir

Conclusiones y recomendaciones

El interés principal del presente experimento es ilustrar la utilidad que tiene un microcontrolador cuando se requiere implementar algunos tipos de circuitos secuenciales. El programa podría ser más simple o el microcontrolador más pequeño pues no siempre se requiere comandar cuatro motores paso a paso en una misma aplicación. Una recomendación que se deja al lector es el estudio de las características mecánicas del motor, de acuerdo con el tipo de secuencia que se use.

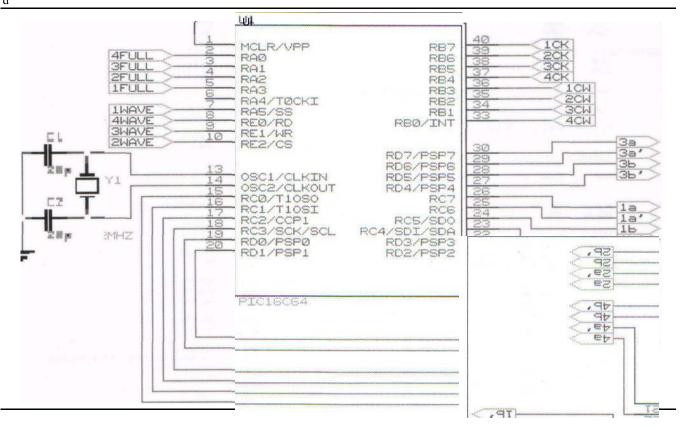


Figura No. 8 Asignación de Pines

LISTADO GENERAL DEL PROGRAMA

	LIST	P=16C64	LISTADO GENE			OGIVAIVI	
	INCLUDE	"p16c64.¡nc"					
CONTEO	EQU	20	;REGISTRO AUXILIAR	ESK2:	MOVWF	FLAGA	
PLAGA FLAGB	EQU EQU	21 22	;REGISTRO AUXILIAR ;REGISTRO AUXILIAR	SWAPF MOVF		FLAGA.1 PORTC.O	
	EQU			ANDLW		∩E	•
MAS_M4 MAS_M3	EQU	23 24	¡MASCARA MOTOR 4 • ;MASCARA MOTOR 3	IORWF	FLAGA,0		
MAS M2 MAS_M1	EQU EQU	25 26	;MASCARA MOTOR 2 ;MASCARA MOTOR 1	MOVWF		PORTC	
IND M4	EQU	27	;INDICE SECUENCIA MOTOR 4	SEGUMOT: BTFSS		FS,6 "	
IND M3 IND M2	EQU EQU	28 29	;INDICE SECUENCIA MOTOR 3 ;INDICE SECUENCIA MOTOR 2	GOTO		TERMOT	
IND_M1	EQU	2A	;INDICE SECUENCIA MOTOR 1	BTFSC GOTO		PORTB.2 HORAR2	•
TAB M4 TAB M3	EQU EQU	28 2C	;MODO OPERACIÓN MOTOR 4 ;MODO OPERACIÓN MOTOR 3	ANTIH2:	DECF	IND M2,1	
TAB_M2 TAB_M1	EQU EQU	20 2E	;MODO OPERACIÓN MOTOR 2 ;MODO OPERACIÓN MOTOR 1	GOTO		HH2	
CKT	EQU	2F	;VALOR ACTUAL MITAD ALTA DEL PTO. B	HORAR2: HH2:	INCF MOVF	IND M2,1 MAS_M2,0	
CKT_1 FS	EQU EQU	30 31	;VALOR ANTERIOR MITAD ALTA PTO. B ¡FLANCOS DE SUBIDA MITAD ALTA PTO. B	ANDWF		IND_M2,1	
	240	01	I B WOOD BE GODIEN WITH B TREIN TO. B	MOVF MOVWF		IND_M2,0 FLAGA	
CONFIG:	ORG	0X00		BCF		STATUS, C	
	CLRF CLRF	PORTA PORTE		RLF		TAB_M2,0	;MULTIPLICA X 2 LA DIRECCIÓN
	CLRF GOTO	PORTC CONFIG_CO	DNT	ADDWF		PCL.1	
	ORG	0X04	٠	GOTO		FULL ESK3	
	GOTO	ISER		CALL GOTO		HALF ESK3	
CONFIG	CLRF	PORTO	٠.	CALL GOTO		WAVE1 ESK3	
	CLRF	PORTE		CALL GOTO		WAVE2 ESK3	
	BSF CLRF	STATUS, RF PORTC	O ;Sube al banco 1 para configurar puertos. ; PUERTO C ES SALIDA	ESK3:	MOVWF	FLAGA	
	OLIVI	; MOTOR 1 Y		MOVF	WOVW	PORTC.O	
	CLRF	PORTO ; MOTOR 3 Y	; PUERTO D ES SALIDA ′ MOTOR 4	ANDLW IORWF		OFO FLAGA.O	
	;LOS DEMÁS F	PUERTOS SON	I ENTRADAS	MOVWF		PORTC	· · · · · · · · · · · · · · · · · · ·
	BCF	STATUS.RP	;REGRESA AL BANCO 0				
				TERMOT: BTFSS		FS,5	
	MOVLW MOVWF	MAS_M4 FSR		GOTO		CUARMOT	
	MOVLW	4		BTFSC GOTO		PORTB.1 HORAR3	. ,
	MOVWF CONT	EO ;So	on cuatro motores	ANTIH3:	DECF	IND M3,1	
P1:	MOVLW MOVWF	3 INDF	:	GOTO		HH3	
	INCF DECFSZ	FSR.1 CONTE0.1		HORAR3: HH3:	INCF MOVF	IND_M3,1 MAS M3,0	
	GOTO	P1		ANDWF		IND_M3,1	
	MOVLW MOVWF	4 CONTEO		MOVF MOVWF		IND M3,0 FLAGA	
P2:	CLRF INCF	INDF FSR.1		BCF		STATUS.C	
	DECFSZ GOTO	CONTEO.1 P2		RLF		TAB_M3,0	;MULTIPLICA X 2 LA DIRECCIÓN
MOVF	PORTE, 0			ADDWF		PCL.1	
	ANDLW MOVWF	07 FLAGB		CALL GOTO		FULL ESK4	
	RLF RLF	FLAGB.1 FLAGB.1		CALL GOTO		HALF ESK4	
	MOVF MOVWF	PORTA.O FLAGA		CALL GOTO		WAVE1 ESK4	
	ANDLW IORWF	20 FLAGB.1		CALL GOTO		WAVE2 ESK4	
	RRF RRF	FLAGB.1 FLAGB.1				2014	
		. 2.00.1		<u> </u>			

QUER:	MOVLW MOVWF	4 CONTEO		ESK4:	MOVWF SWAPF	FLAGA FLAGA,1			
QE1:	CLRF RRF BTFSC GOTO	INDF FLAGB,1 STATUS,C ONDAS	;TAB_Mx = 0		MOVF ANDLW IORWF MOVWF	PORTD,0 0F FLAGA,0 PORTD			
	RRF BTFSS GOTO	FLAGA,1 STATUS,C QE2		CUARMOT:	BTFSS GOTO	FS,4 NONA			
	INCF MOVF MOVWF MOVLW SUBWF BSF	INDF,1 FSR,0 CKT 8 FSR,1 INDF,2	;TAB_MX = 1 ;Salva temporalmente el FSR. ;Enmascara hasta el tercer bit.	ANTIH4:	BTFSC GOTO DECF GOTO	PORTB,0 HORAR4 IND_M4,1 HH4			
	MOVF MOVWF GOTO	CKT,0 FSR QE2	;indicando tabla de ocho valores.	HORAR4: HH4:	INCF MOVF ANDWF	IND_M4,1 MAS_M4,0 IND_M4,1			
ONDAS:	BSF	INDF,1	;TAB_Mx = 2	- 12	MOVF MOVWF	IND_M4,0 FLAGA			
	BTFSC	FLAGA,1 STATUS,C	:TAB MX = 3		BCF RLF	STATUS,C TAB_M4,0	;MULTII	PLICA X 2 LA	A DIRECCION
QE2:	INCF	INDF,1 FSR,1	; [AB_MX = 3		ADDWF	PCL,1			
PREPAINT:	DECFSZ GOTO	CONTEO,1 QE1	IF.		CALL GOTO CALL GOTO CALL	FULL ESK5 HALF ESK5 WAVE1			
	BSF	INTCON, RB			GOTO CALL	ESK5 WAVE2			
	GOTO	\$		ESK5:	MOVWF MOVF	FLAGA PORTD,0			
ISER:	BCF MOVF ANDLW MOVWF XORWF ANDWF MOVWF	INTCON,RB PORTB,0 0F0 CKT CKT_1,0 CKT,0 FS	IF	NONA:	ANDLW IORWF MOVWF	0F0 FLAGA,0 PORTD			
PRIMOT:	MOVF MOVWF	CKT,0 CKT_1		FULL:	MOVF ADDWF RETLW	FLAGA,0 PCL,1	5	;	0101
PHIMOT.	BTFSS GOTO	FS,7 SEGUMOT			RETLW RETLW RETLW		6 0A 9		0110 1010 1001
	BTFSC GOTO	PORTB,3 HORAR1		HALF:	MOVF ADDWF	FLAGA,0 PCL,1			
ANTIH1:	DECF GOTO	IND_M1,1 HH1			RETLW RETLW RETLW		5 4 6		0101 0100 0110
HORAR1: HH1:	INCF MOVF ANDWF	IND_M1,1 MAS_M1,0 IND_M1,1			RETLW RETLW RETLW RETLW		2 0A 8 9		0010 1010 1000 1001
	MOVF MOVWF	IND_M1,0 FLAGA		WAVE1:	MOVF.	FLAGA,0	1		0001
	BCF RLF	STATUS,C TAB_M1,0	;MULTIPLICA X 2 LA DIRECCION	13/11/21/2	ADDWF RETLW RETLW	PCL,1	8	i	1000
	ADDWF	PCL,1			RETLW		2		0010
	CALL GOTO CALL GOTO CALL GOTO CALL	FULL ESK2 HALF ESK2 WAVE1 ESK2 WAVE2		WAVE2:	MOVF ADDWF RETLW RETLW RETLW RETLW	FLAGA,0 PCL,1	0C 6 3		1100 0110 0011 1001
					END			1	1001

