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RESUMEN

Las sentencias de control utilizadas en el entorno ~ momentos de ser ejecutadas debido a que tienden
de programacion de las tarjetas graficas de video  a minimizar el nivel de ocupacion, el cual es una
(GPUs), tales como sentencias condicionales ¢ = medida que nos permite establecer el numero de
iterativas, presentan problemas de concurrencia al ~ procesos que se estan ejecutando de forma concu-



rrente en las GPUs. A diferencia de las unidades
de procesamiento de datos tradicionales presentes
en un microprocesador de propodsito general, una
GPU no puede ceder el control de flujo de datos
a la CPU debido a que actualmente no existe un
mecanismo que permita dicho control de flujo sin
comprometer la integridad de los datos procesa-
dos en dichas arquitecturas.

En este articulo se proponen y evaliian dos nuevas
técnicas de optimizacion a nivel de instrucciones
enfocadas a hacer un mejor uso de los recursos de
tipo hardware de las GPUs, en la arquitectura NV-
DIA G80. Estas técnicas llamadas Loop splitting
and branch splitting incrementan de forma con-
trolada la redundancia de codigo, lo cual puede
ser considerado como “no optimo” en una arqui-
tectura convencional como la CPU; sin embargo
en la arquitectura multiprocesador NVIDIA G80
dicha redundancia se ve reflejada en el incremento
de la ocupacién de sus multiprocesadores y en un
aumento del paralelismo de los programas ejecu-
tados en este tipo de arquitectura. Los resultados
obtenidos a partir del banco de pruebas, basados
en el algoritmo del método de Lattice Boltzmann
(LBM), muestra que estas técnicas incrementan
la ocupacion y el paralelismo de la arquitectura
NVIDIA G80 comparado con la ejecucion de la
version non-splitting del mismo algoritmo.

1. Introduction

GPUs have become the most powerful compu-
tation devices in modern of-the-shelf PCs. Until
recently, it was a challenge to implement an al-
gorithm efficiently to run on a GPU because the
functionality of such a device was plainly geared
toward graphics acceleration, and didn’t offer an
interface to perform non-graphics operations. The
introduction of the Compute Unified Device Ar-
chitecture (CUDA) programming framework [1]
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ABSTRACT

Control statements in a Graphic Processing Units
(GPU) program such as loops and branches pose
serious challenges for the efficient usage of GPU
resources because those control statements will
lead to the serialization of threads and conse-
quently ruin the occupancy of GPU, that is, the
number of threads running concurrently. Unlike
traditional vector processing units that are insi-
de a general purpose processor, the GPU cannot
leave the control statements to the CPU because
fine-grain statement scheduling between GPU and
CPU is impossible.

In this paper, we propose novel techniques to trans-
form control statements so that they can be exe-
cuted efficiently on a GPU called NVIDIA G80.
Our techniques smartly increase code redundancy,
which might be deemed as “de-optimization™ for
CPU, to improve the occupancy of a program on
GPU and therefore improve performance. We fo-
cus our attention on how common programming
structures such as loops and branches decrease the
occupancy of single kernels and how to counter
that. We demonstrate our optimizations on a ben-
chmark for a complex parallel algorithm, the Lat-
tice Boltzmann Method (LBM). Our results show
that these techniques are very efficient and can
lead to an increase in occupancy and a drastic im-
provement in performance compared to non-split
version of the programs.

makes the computational power of GPUs easier
to utilize. However, even though the problem of
writing a program that can work on a GPU seems
to have been solved, the question of how to tune
a program to make it work well on a GPU is only
rudimentary understood and insufficiently inves-
tigated.

A detailed description about CUDA and its su-
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pporting hardware can be found in [1]. Here we
briefly discuss the most important factors that
impact the performance of CUDA programs. The
factors are new and unique to CUDA, hence are
not considered in the traditional CPU optimization
techniques.

The CUDA defines a new architecture called
SIMT (single instruction, multiple-thread) [1]
which allows a multiprocessor GPU chip map an
individual thread to one scalar processor core, and
each scalar thread executes independently with its
own instruction address and register state. This is
a cost-effective hardware model to exploit data
parallelism. The SIMT architecture can be ineffec-
tive for algorithms that require diverging control
flow decisions, such as those generated from if-
else statements, because the concurrency among
threads will be reduced if threads within the same
thread group (called warp in CUDA) follow diffe-
rent branches [2].

One of the main tasks of optimizing a program
for CUDA is find the optimal numbers of threads
and blocks that will keep the GPU fully occu-
pied. Factors affecting the resource occupancy
include the size of the global data set, the maxi-
mum amount of local data that blocks of threads
can share, the number of thread processors in the
GPU, and the sizes of the on-chip local memories
[1]. One important limit of occupancy of a pro-
gram is the number of registers each thread of the
program requires. For example, to reach the maxi-
mum possible number of 12,288 active threads in
a 128-processor GeForce 8, the compiler cannot
assign more than 10 registers per thread. Howe-
ver, the CUDA compiler usually over assigns re-
gisters per thread, which decrease the occupancy
of the kernel, because the CUDA compiler tries
to optimize the single-thread performance while
ignoring the overall resource pressure of a multi-
thread program.

This paper presents new instruction level trans-
formation techniques that improve the utilization
of hardware resources of the NVIDIA CUDA pla-
tform. Our techniques are novel applications of
seemingly common program transformations. In
other words, they smartly increase code redundan-
cy, which might be deemed as “de-optimization”

for CPU, to improve the occupancy of a program
on GPU and therefore improve performance.

The rest of the paper is organized as followed. In
Section 2 we present the proposed approach to im-
prove the occupancy and parallelism for the NVI-
DIA G80 architecture. In sections 3 we evaluate
the performance of our optimizations on a ben-
chmark based on the Lattice Boltzmann Method.
The conclusions are given in Section 4.

2. Proposed loop and branch optimi-
zation techniques

Optimizing a CUDA kernel for better occupancy
allows for better usage of the devices computa-
tional resources and better hiding of memory la-
tency, and usually gives a better performance. The
basic idea of our techniques is freeing hardware
resources by purposefully increasing code size by
splitting common control structures.

2.1. Loop splitting

Loop splitting or Loop fission is a simple optimi-
zation that breaks a /oop into two or more sma-
ller loops. Loop splitting is especially useful for
reducing the register pressure of a CUDA kernel,
which can be translated to better occupancy and
overall performance improvement. If a kernel
contains a /oop where in the /oop body multiple
operations are performed and each operation re-
lies on different inputs and those operations are
independent, this optimization can be applied. The
splitting leads to smaller /oop bodies and hence
reduces the loop register pressure. Therefore, this
optimization is applicable to kernels that don’t
reach 100% occupancy because of register usage.
Figure 1 left, shows a pseudo code segment from
a CUDA kernel where we can split the loop. Af-
ter splitting, only ptrl and ptr2 have to be kept in
registers for the first loop and p#r3 and ptr4 for
the second loop. This can be done because all the
pointers are parameters passed to the kernel and
if we only use those parameters in the /oop body,
we don’t have to load the data into registers be-
fore the actual usage. Therefore ptrl and ptr2 are
getting loaded into registers when the first loop is
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executed and ptr3 and ptr4 are loaded when the
second /oop is executed. This frees at least 2 re-
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gister which can in many cases give an increase in
occupancy of up to 33%.

1| kernel (ptrl, ptr2 , pte3, ptrd , ptr_result) |
3| for i=0 to N

x 4= pirl[i] = pte2[i];
5 y += pir3[i] / ptrd[i];

end

~3

kernel(ptrl, ptr2 , ptr3, pted , ptr_result)|

for i=0 to N

x 4= ptel[i] = pte2[i];
end
for i=0 to N

y += ptr3[i] / ptrd[i];
end

Figure 1. (left): Pseudo code for a kernel that qualifies for loop splitting. (right): The same code after loop splitting.

2.2. Branch splitting

As loop splitting, the general idea behind branch
splitting is to reduce the usage of hardware resour-
ces such as registers and shared memory of a ker-
nel or at least part of the kernel. Branch splitting
can be applied for any kernel that doesn’t run with
100% occupancy, works on independent data and
contains branching where the branches differ in
complexity and therefore in the usage of hardware
resources, especially registers or shared memory.
This means that if one branch makes excessive
usage of registers or shared memory so that the
occupancy drops below 100%, the whole kernel
will always run with that minimal occupancy even
if the branch that leads to the lower occupancy is
never executed.

The idea is to split the branches of the initial ker-
nel into two kernels, where one kernel executes
only the if-branch and the other kernel only exe-

cutes the else-branch. The benefit of a two ker-
nel version is that even we have a little overhead
from the additional kernel invocation; we get an
increase in performance since we could increase
the occupancy for at least part of the initial kernel.

The worst case scenario for using the single kernel
approach is when at least one thread per warp steps
through another branch as the rest of the threads,
because of the SIMT architecture acts in such as
way that in this case every thread of a warp has to
step through the instructions of all branches and
the device can only be utilized to the minimum
occupancy defined by the branch with the highest
usage of hardware resources. As an example we
can see the figure 6, where the arithmetic calcula-
tions are chosen so that the if~branch uses fewer
registers than the else-branch. In the split version
shown in Figure 2 the if-kernel uses an overall
number of 6 registers compared to 13 for the e/se-
kernel. This results in occupancy of 100% for the
if-branch and 67% for the else-branch.

branchedkenrnel () |

2| load decision mask
load input data used by both branches
4 if decision mask[tid] == 0
load input data for if branch
6 perform calculations using 6 registers
else if decision mask[lid] == 1
8 load input data for else branch

s»er[orm calculations using 13 register
end if

1| ifkernel ()|
load decision mask
3 if decision mask[tid] == 0
load all input data
5 perform calculations using 6 registers
end if
71

9| elsekernel ()|
load decision mask
1 if decision mask[tid] == 1
load all input data
perform calculations using 13 register
end if

Figure 2. (left): Pseudo codes for the single kernel version. (right): the split/two-kernel version
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2.3 Theoretical Analysis of Branch and
Loop splitting

Experiments as the benchmark discussed in the
next section have shown that this transformation
in many cases can drastically improve performan-
ce. To get an idea of the theoretical speedup for
the worst case the following formula can be used
(Ec. 1):

T
£ X 0
i p.m’” +0
i—] i

speedup = (1)

n
2

Where 7T, is defined as the runtime for the worst
case of the branch-version when the instructions
of all n branches are executed. In ideal conditions,
neglecting all optimizations that are applied at
hardware level, this 7 can roughly be expected to
be T= X #Xp,
i=1

Where p; is defined as the occupancy for i-th
branch when it run on its own p, .. is the occu-
pancy when the branched version gets executed, o
is the invocation overhead produced every time a
kernel is called, and 7, is the runtime of the single
branch before the splitting.

The calculated speedup just gives an idea of what
theoretic speedup can be expected if the kernel
doesn’t get limited by other factors e.g. the me-
mory bank conflicts. There are some more fac-
tors that might reduce the speedup or prevent this
transformation of being applied. As said before
the kernel in its original setup might already have
saturated the memory bandwidth where maybe the
increased occupancy might help to hide part of the
memory latency but as an overall the performance
increase for this case might be marginal. The run-
time of the single branches also plays a major roll,
if the kernel that might run with 100% occupancy
has a runtime that is much lower than the kernel
running with 67%, then the additional occupan-
cy might not outperform the overhead added. As
a guideline we can consider the following condi-
tions for a kernel to be considered for a branch

splitting:

*  Akernel that does not run at 100% occupancy

* A kernel that contains two or more major
branches

* A kernel where the branches utilizing a di-
fferent amount of hardware resources and the
branches easily can be separated

3. Benchmark

In this section we demonstrate our optimizations
on a complex parallel algorithm, the Lattice Boltz-
mann Method (LBM) that is already optimized for
NVIDIA CUDA. First we present a brief introduc-
tion about the LBM, and then we show the appli-
cation of our method to increases the performance
of the algorithm.

3.1. Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) models
Boltzmann particle dynamics on a 2D or 3D latti-
ce [3], [4]. It is a microscopically inspired method
designed to solve macroscopic fluid dynamics pro-
blems. It lives at the interface between the micros-
copic (molecular) and macroscopic (continuum)
worlds. The Boltzmann equation expresses the
variation of the average number of microscopic
particles moving with a given velocity between
each pair of neighboring sites. Such variation is
caused by inter-particle interactions and ballistic
motion of the particles. The variables associated
with each lattice site are the particle distributions
that represent the probability of particle presence
with a given velocity. Particles stream synchro-
nously along links from each site to its neighbors
in discrete time steps and perform collision bet-
ween consecutive streaming steps. The LBM is
second-order accurate both in time and space, and
in the limit of zero time step and lattice spacing, it
yields the Navier-Stokes equations for an incom-
pressible fluid [5], [6]. The time dependent move-
ment of fluid particles at each lattice node satisfies
the following particle propagation equation 2:
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F(x +e,t+1)=Fax,7) —

Where F, is the non-equilibrium distribution
function, F*/=(x,t) is the equilibrium distribu-
tion function, and e is the microscopic velocity at
lattice node x at time ¢, respectively, and 7 is the
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~ =

[F(en) = Fe(x,0)] ()

relaxation time which is a function of fluid vis-
cosity. The subscript 7 represents the lattice direc-
tions around the node as shown in figure 3 [3], [4].

\ @

Figure 3. Particles advected based on D209 LBM model

The function is given in the following form for the
two-dimensional model with nine microscopic ve-
locity vectors (D2Q9) and three dimensional mo-
dels with nineteen microscopic velocity vectors
(D30Q19) (Ec. 3):

F = ol Lo xw + e xw? — 2wxw| 3
4= wip| Sk w 4 S exw? - S wxw| @)

Where p is the density of the node, and w; is the
weight factor in the i-#4 direction. The weight fac-
tors (w;) for the D2Q9 LBM model are: wy = ;—2
4 . .
for rest particle,w; = - - for particles stre]amlng
to the face connected neighbors and w) = 6
for particles streaming to the edge-connected
neighbors as shown in figure 3. The weight factors
are derived based on the lattice type (DxQy) and
the derivations can be found in [3].

The macroscopic properties, density (p), momen-
tum (U), and velocity (u) of the nodes are calcu-
lated using the following relations (Ec. 4, Ec. 5,
Ec 6):

3.2. LBM Benchmark: A branch and
Loop splitting approach

The implementation of our LBM algorithm has
two computational intensive kernel, Figure 4 and
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Figure 5 show the pseudo code for both kernel;
the first one called boundary kernel has to alloca-
te the boundary values of the arrows and columns
for each particles, and the second one called velo-

cities_and_densities_kernel is in charge to calcu-
late the velocity and density values for each parti-
cle inside the system.

non_split_loop_boundary_kernel () {
load geometry
load input data

L

4 if geometry[tid] == solid boundary
for(each particle on the boundary)
6 work on the boundary rows
work on the boundary columns
8 store result

Figure 4. Pseudo code for the non-split loop kernel version used in the LBM ben-

chmark to allocate the boundary values of the arrows and columns for each particle

l|branch_velocities_densities_kernel (){
load geometry
3 load input data
if particles
5 load temporal data
for (each particle)
7 if geometry[tid] == solid boundary
load temporal data
9 work on boundary
store result
11 else
load temporal data
13 work on fluid
store result
15 }

Figure 5. Pseudo code for the non split branch kernel version used in the LBM
benchmark to calculate the velocity and density values for each particle

Because of to the nature and the geometry of the
problem we need to identify each particle before
we can calculate its value, for this application we
work with two different kinds of particles: fluid
and solid boundaries. For that reason both ker-
nels we were using implement flow control ins-
tructions, if and for loop statements, which allows
to differentiate the particles, but at the same time
can significantly impact the effective instruction
throughput by causing threads of the same warp
to diverge[3].

To obtain best performance, and in order to mini-
mize the number of divergent warps and reduce

the number of register used in the non-split ker-
nel, we took in advantage that the first kernel was
working on sets the solid boundary conditions of
the system for both row and columns, hence, as
is shown in figure 6; we split the /oop statement
into two loop statements, one for the rows and one
for the columns. the reason to do that is because
when we have the four array (two for the rows and
two for the columns) inside the loop, we need to
have four register dedicated to keep the value of
the base address for each array, but when we split
the for loop we just need two register (on for the
columns and one for the rows) per loop instead of
4 register for one /oop.

12 Tecnura| afio13 No.25 segundo semestre de 2009



con-ciencias

split_loop_boundary_kernel () {
load geometry

3 load input data
if geometry[tid] == solid boundary
5 for(each particle on the boundary)
work on the boundary rows
7 store result
for (each particle on the boundary)
9 work on the boundary columns

store result

Figure 6. Pseudo code for the split loop kernel version used in the LBM benchmark to allocate the boun-

dary values using one /oop statement for the arrows, and another /oop statement for the columns

Following the same idea, we applied a branch
splitting on the second kernel trying to reduce
the number of register. Taking in advances that
branch velocities densities kernel is working with
solid or fluid particles, and the number of register

used inside the kernel is more than 10, which leads
not to get 100% occupancy. The figure 7 shows
the split version of the branch velocities densities
kernel which help to obtain a 100% occupancy for
each kernel.

1) ifovelocities . densities_ kernel () {
load geometry

3 load input data

if particles

5 load temporal data
for(each particle)
7 If geometry[tid] == boundary
load temporal data
9 work on boundary

store result
1}

13| else.velocities.densities_kernel ()|
load geometry

15| lead input data

If particles

17] load temporal data
for(each particle)
19 if geometry[tid] == fluid
load rtemporal data
21 work on fluid

store result

Figure 7. Pseudo code for the split branch kernel version used in the LBM bench-
mark to calculate the velocity and density values for each particle

Our results show that these techniques, depending
on the problem layout and the algorithm, can lead
to increase the occupancy and a drastic improve-
ment in performance compared to non-split ver-
sion of the algorithm. To Apply the branch and
loop splitting method to the LBM problem shows
that the non-split version algorithm take more time
to compute the velocities and densities compared

with the split version, and due to the nature of the
problem, as much as we decrease the ratio of the
system, which is defined as wb, the algorithm at-
tempts to increase the number of step in order to
converge to the wa results, leading in a speed up
for the computation of the algorithm because of
the use of specialized kernel for each branch of
the code. In figure 8, for a 128x128 problem la-
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yout, we can see that the split version increase the
performance of the application in 30.1%, and for a
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Figure 8. Time per system ratio of a D2Q9 LMB simulation (left): for a 128x128
problem layout. (right) for a 256x256 problem layout.

4. Conclusion

To run kernels with the highest possible occupan-
cy is one of the major tasks for any GPGPU pro-
grammer. Any transformation or optimization that
can reduce the usage of hardware resources that
reduce the occupancy are a big contribution to the
overall performance of a GPGPU program execu-
tion. Our /oop and branch transformation helps to
increase the occupancy and parallelism for some
special cases of loops and a more general case of
branches.

The Loop splitting is an example for a transforma-
tion that might seem counterproductive on most
other architectures than a GPU, but here where
occupancy is a major player in the performance
game, it can have a positive impact on the overall

performance.

In any case branches are not a good thing to use
in any SIMD or SIMT architecture, but for some
algorithms there are not that many other efficient
ways to implement them without using branching.
Therefore optimizing branches in a way that ei-
ther the number of instructions per branch gets
minimized or the input data set reduces the pro-
bability of warps where both branches have to
be executed is a major task for GPGPU progra-
mmers. In many cases there is no way to prevent
both branches from being executed within a warp.
Furthermore in many cases the branches differ in
complexity and therefore in the usage of hardware
resources. In those cases branch splitting is a pro-
mising transformation that can drastically impro-
ve the performance of a GPGPU application.
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