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ABSTRACT

An enormous number of solutions have been
proposed from the field of artificial intelligen-
ce in order to endow machines with the ability
to make plans without human guidance. In this
paper, we suggest emulated emotions to endow
machines with the skills to make human-like de-
cisions. The model is described using dynamical
systems. Emotional states are defined in terms of
the difference between a reference model and the
trajectories of the system. For example, calmness
is defined as the ideal emotional state, where there
is agreement between the state of the system and
the reference model. Finally, a basic architectu-
re for this kind of emotional-based controller is
provided together with some experimental results
that illustrate its use.
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RESUMEN

Una cantidad enorme de propuestas han sido pro-
badas, desde la inteligencia artificial, para dotar a
las maquinas con la habilidad de hacer planes sin
guia humana. En este articulo se sugieren emo-
ciones emuladas para dotar a las maquinas con
una capacidad semejante a la de los humanos con
respecto a tomar decisiones. El modelo es proba-
do con sistemas dinamicos. Los estados emocio-
nales son definidos de acuerdo con la diferencia
entre un modelo de referencia y las trayectorias
del sistema. Por ejemplo, calma se define como
el estado emocional ideal, esto es, cuando las tra-
yectorias del sistema y del modelo de referencia
coinciden. Finalmente, una arquitectura basica
para esta clase de controladores basados en emo-
ciones es presentada con algunos resultados ex-
perimentales que ilustran su uso.



1. INTRODUCTION

Machines can not make their own plans or guide
themselves, but have to be programmed. As a re-
sult, it is necessary to build redundancy into sys-
tems for protection against faulty control, becau-
se the operation of the machine could be a threat
to its own integrity. Moreover, machine comple-
xity has been increasing, but their intelligence has
not evolved at a comparable pace. Some solutions
have been proposed from areas such as computa-
tional intelligence, fuzzy logic, neural networks,
swarm intelligence, even artificial immune sys-
tems [1]. However, we have not yet reached the
ability to create models of consciousness to instill
in machines the ability to decide what to do, or to
set their own goals or values.

Addressing these problems in machines requires
solutions from many areas of science. In this pa-
per, we consider two sub problems, namely adap-
tability and autonomy. Adaptability requires the
observation of two sources of information: the in-
side and the outside of the system. Outside infor-
mation requires changes in the environment, and
they can come in different degrees and rates. If
they come too slowly, the machine will not notice
them, but if they come too fast, the machine will
not have enough time to learn them [2], [3]. On
the other hand, the system could also be seen as a
source of internal information, if it is able to sense
itself. An autonomous system is by definition one
that performs tasks in a possibly unknown envi-
ronment without human supervision. This ability
requires that the system make decisions to eva-
luate current external or internal information that
defines what is desirable and what is not [4]. The
primary challenge for an autonomous machine is
motion planning; i.e., the ability to go from point
A to point B, while avoiding obstacles in an unk-
nown or changing environment. A solution for
motion planning will determine a strategy for fin-
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ding a route that is to be followed by the machine
as closely as possible. In particular, the machine
must adequately reference the actuators (e.g., the
motors or hydraulic cylinders that make it move).
This reference requires the specification of phy-
sical variables such as velocity and position,
which must be set at specific values. Therefore,
the machine must define how to go from an initial
state to a desired final state (e.g., from rest to a
given value). But again the same problem arises:
the machine does not have enough intelligence to
make its own decisions to follow its own paths.
Therefore, solving the lower-level problem of de-
veloping intelligent controllers would appear to
be a useful approach for solving the larger pro-
blem of motion planning.

One of the most adaptive and autonomous entities
in nature is the human being: We move around the
world, we gain experience, we learn, we make as-
sociations, and make decisions that are useful for
survival and reproduction. We have thus transfor-
med the environment to serve our purposes and
plans, and reasoning is definitely one of our most
powerful tools in that process. On the other hand,
machines are controlled by controllers designed
by engineers, through reasoning and logic, using
mathematical functions and algorithms, which
have proven to become difficult computing pro-
blems. Psychologists and neuroscientists have es-
tablished that it is not possible to learn and reason
effectively without emotions, and therefore emo-
tions play an important role in long-term memory,
learning, and decision-making [5].

In this paper, the working hypothesis is that emula-
ting emotions as part of control algorithms would
make them more adaptive and autonomous. Emo-
tion-based algorithms would then finally be able
to develop their own plans even under changing
environments and without human guidance. This
new type of control can be seen as the brain of an
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agent that moves over a landscape sculpted by the
dynamics of the system in the phase plane of the
controller. The controller serves as an advisor to
this agent and guides it as to what to do and what
the best road to reach the goal will be, as well as
some set of values similar to the ones experienced
by humans. The agent makes decisions based on
logic and emotion in order to pursue the referen-
ce model. The agent will thus become adaptable,
deal with environmental changes, and be able to
address new challenges for which the agent has
not originally been programmed.

The organization of the paper is as follows: In
Section two, a platform to define emotions is pre-
sented. In Section three, the phase plane is chosen
as the mathematical tool to represent the behavior
of the system. In the fourth Section, the definition
of a reference model related to the emotional state
is presented. In Section five, a range of emotional
states is characterized, going from calmness to
anger. In Section six, the controller architecture
is detailed. Section seven presents some experi-
mental results; and finally, some conclusions are
presented in Section eight.

2. COMPUTATIONAL MODELS
OF EMOTION

Researchers in cognitive science and related
areas have proposed computational models of
emotions. These are useful for demonstrating
or refuting theories about emotions. One of the
most complete models is based on neuroscience
and addresses the interaction between attention
and memory [6]. Other models are guided by the
cognitive process of decision making, especially
applied to robotic or virtual agents [7] - [9]. Two
of them have been used in dynamical systems
control, as is proposed in this paper. Although
originally not designed for adaptive control, the
model in [10] is relevant to this work. The authors
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of that paper aim at modeling the learning that
happens in the human amygdala and the orbito-
frontal cortex, which is related to emotional lear-
ning. Their basic equations express connections
among elements, and each component works
based on comparisons through four basic opera-
tions. The authors provide a helpful algorithm for
actual applications.

In this section, we assume a continuous model of
emotions. This means that there are theories in
which emotions are discrete, so some of them be-
come basics or principals. Due to the fact that the
discrete point of view has inspired engineering
applications, it is appropriate to mention some of
its theorists. For instance, Robert Plutchik, Paul
Ekman, and Nico Frijda, identify 8, 6, and 6 basic
emotions, respectively. Concerning control, some
studies based on discrete emotions make use of
anger and fear in search algorithms, as well as in
the generation of autonomy [11].

In contrast to the discrete theories of emotions,
the continuous theories show two focuses: one
known as the appraisal theory and the other as the
dimensional theory of affection. Two exponents
of the first proposal are psychologists Richard La-
zarus and Craig Smith. They seek to define emo-
tions as a result of the evaluation of a situation;
this definition explains why the same condition
activates a variety of emotions in the same person,
according to the context, or different emotions in
different people. A particular kind of emotion is
defined by factors such as how expected the si-
tuation is, the importance of the goal, how well
the system can cope with the situation, how much
energy is available, and so on. Models of emotion
have reportedly used anywhere between 5 and 16
variables [12]. This type of theory has recently
received academic support from the field of neu-
roscience. It has also been complemented by the
use of the nonlinear dynamical system theory, and
the generation of computational models of emo-
tion [13].



An important type of continuous models of emo-
tion is the dimensional theory, proposed by Russell
in 1980. He measured emotional states in human
beings through two variables: valence and arousal
[14]. Russell represented the two variables in a
Cartesian coordinate system with the valence on
the horizontal axis. It became apparent then that
emotions occupied a circular region. This model
is sometimes referred to as the circumflex model
of affect. Although originated in psychology, this
model has also been supported by recent research
in neuroscience [15]. This model has made many
contributions to medicine, psychology, language
analysis, and music, among other specializations.
Recent results, closely related to this paper, are a
measurement of emotional states when changing
screen colors of a mobile phone [16], or the chan-
ging characteristics of a video game [17]. Another
contribution in robotics concerns the design and
construction of a robot, EDDIE, to regulate the
movement of its eyes, ears and mouth in the ge-
neration of emotional expressions [18]. These
models and applications are strong evidence that
dimensional theory is useful to build a control
strategy based on emotions.

3. METHODOLOGY

3.1 Plant identification

In this paper, we assume that the plant to be con-
trolled can be described by system on nonlinear
differential equations in one state variable. The
basic model of such systems is the phase plane
[19]. The system is usually described by two
equations in two variables, the second one of
which is the velocity; the other variable is the
position of the system. An example is shown in
equation (1) and (2), where “y(t)” is the output of
the system, “v(t)” is the rate of change of y(t), and
“u(t)” is the input.
d’y(1) | dy(r)

- + 20yl 0-02)=u0) (1)
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The phase plane can be described as a vector
field, as shown in figure 1. It associates a vector to
every pair (y(t),v(t)). The horizontal component
of the vector is v(t) and the vertical is dv(t)/dt,
as it is described in (2). Each arrow in the vector
field indicates the motion direction, so (y(t+At),
v(t+At)) can be predicted by current values of y(t)
and v(t). Each point in the phase plane is a des-
cription of the system at any given point in time.
The dynamic of the system changes the state of
the system as indicated by the arrows. The goal
of the controller is to change the direction of the
system through an actuating signal u(t) in order
to reach a desired state. Left unperturbed, the
dynamics of the system will take the plant to an
attractor, or else will have a divergent behavior
depending on the nature of the system. Different
conditions lead the system to different attractors
or global states.

If the reference does not change, the desired v(t)
will be zero. The algorithm driving the control
should make decisions in order to transform the
current y(t) into the desired reference value yr(t),

!

Initial point
(0,1.5)

v(t)

End point
(-0.447,0)

y(t)

Figure 1. Motion of states of a nonlinear system in the
phase plane. Each initial condition may lead
the system to different attractors. Here u(t) =
0 and simulation time is 30 s.

Source: own work
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through the external intervention of the input u(t)
to modify the dynamics of the system. The con-
trol algorithm therefore has only three possible
decisions: increase, decrease or maintain the cu-
rrent value. The algorithm is complicated by the
fact that it is necessary to determine when, how
much and exactly how long it will take to the sys-
tem to reach the target value.

3.2 The reference model

In this section we describe the reference model.
The reference model should be smooth in order
to avoid instantaneous changes in the state of the
system. If that is not the case, a low pass filter
can be used to smooth the reference r(t); such a
filter will be called the reference model —-(RM for
short.) Otherwise, it will be assumed that the re-
ference model meets all the technical constraints
that the overall system must accomplish, inclu-
ding an adequate peak response, a maximum sett-
ling time, and a given rise time. There are at least
two types of models that fulfill these constraints
and are well established, namely Bessel and ITAE
[20]. The first one has zero overshoot, and the se-
cond one is optimal in energy consumption. Once
the model has been selected, there only remains
to determine the settling time.

A reference model (RM) is an important compo-
nent of the controller, because it produces smooth
transitions, and also “teaches” the system how to
“behave”. The RM is the mentor, and everything
is measured according to its behavior with respect
to the target. Figure 2 shows an unstable system
which becomes stable when it follows the RM.
In this example, a classical PI controller uses the
distance between y(t) and RM output, and feeds
the input signal to the system proportionally.

It appears that the system is on pursuit of the re-

ference model. The reference model knows the
location of the target value, namely the reference
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Reference
Model
05 forTT
5 <
T 0
-0.5

0 0.5 1 1.5
y(t)

Figure 2. System going behind the reference model.
The simulation time is 6 s, and the initial
condition is (0,0). The vector field is omitted
intentionally to improve clarity.

Source: own work

point, while the system is on pursuit of the RM.
In this sense, a perfect controller is one that leads
the system to stay just one step behind RM. The-
refore the dynamic of the system has changed
from trying to reach an attractor to reaching the
reference points and having the same dynamic as
the RM. In the example shown in figure 2, RM
is 1/(S2 + S + 1), and the system is 1/(S — 1). In
addition, a unitary feedback is used, as well as a
classical PI controller with P=2,1=2.

Pursuit-evasion strategies have served as inspi-
ration for solving problems about evolutionary
computing, network security, motion planning,
cooperative robotics, and many others [21], [22].
In our case, there is a huge simplification in the
evader’s behavior. It does not try to slip away,
but, on the contrary, seeks the reference point,
while is the “mentor” for the dynamical system,
which follows it.

Once the continuous nature of the process is de-
fined by (1) and (2), it makes sense to choose a
geometric approach to measure the distance from
the system to the RM. figure 3 shows a snapshot
of the dynamic at a certain time t. Ideally, the sys-
tem should move towards the RM values along



Reference Model

dy(t)/dt

Figure 3. Distance vector definition —d (t)— according to
pursuit-evasion problem.

Source: own work

the line of sight between RM and the system’s
current state. The system in Figure 3 is described
by coordinates (yp(t),dyp(t)/dt), while RM repre-
sents the ideal output at every time t, with posi-
tion yr(t) and speed dyr(t)/dt.

The vector d(t) is defined in equation (3). It is
the difference between the position vector of RM
and the system behavior in the phase plane. The
ideal magnitude for d(t) is zero, and the way to
assess how much it should increase or decrease
is by computing a second vector dd(t), given by
equation (4).

dyr(t) _ dyp(t)

di) = (y,(z)—yp(z))-aﬂ[ T

j-ay 3)

— (@) ,®O) _ (v, dy,0O) .
dd(t):()iT— ; j~ax+[ ;2 - dt’; av (4)

Now, corresponding unit vectors Ud(t) and Udd(t)
are computed to simplify future analysis, becau-
se d(t) and dd(t) have different units and they are
used only to compare directions. For instance an
ideal situation happens when d(t) decreases, so
that dd(t) has exactly the opposite direction to that
of d(t), regardless of their magnitude. This is why
d(t) is multiplied by -1 in equation (5). Therefore,
the goal of the controller is to bring the system to
having zero angle between -d(t) and dd(t).
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In the best case, this angle is zero. In the worst
case the angle is @ rad. This angle is defined in
equation (7), and it is at the heart of the control
algorithm described next.

a(r) = cos (U, (1) o U 4y (1) (6)

3.3 The emotion model

In this section, we define a model of emotion
as mentioned above; the ideal emotional state
to solve hard problems is calmness. Genera-
lly, complex tasks will require lower emotional
arousal in order to get an equivalent performan-
ce than a simple task. This fact is known as the
Yerkes-Dodson law [23]. Therefore, the ideal
situation (o0 = 0) can be labeled calmness. This
ideal can be used by a new algorithm to avoid
other emotional states.

Since it would be too ambitious to attempt to defi-
ne at first a model with the full range of emotions
as they can be felt by humans, we will simply
define an adequate subset that helps to perform
control tasks. In particular, emotional disorders
such as stress, phobias, manias, and so on will
be excluded. Likewise, more complicated beha-
viors such as experiencing several emotions at the
same time, or mixing them up, will be excluded.

One way to visualize the emotional state of the
controller is to imagine them as being experien-
ced by a person carrying out the same control
task. The person may experience happiness when
encountering positive results after experien-
cing challenges; on the other hand, the person
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Table 1. Emotional State Definition

Emotion Definition

Calm Zero a has been reached, or the angle is small, (a. ~ 0).

Satisfaction The goal, a = 0, has not been reached yet, but it is within a permissible angle, (o = 11/6).

Happiness The distance between system and RM is at least decreasing. It is going to take some time to reach null
d(t), even though it is possible, (o = 11/3).

Excitement The system does not increase nor decrease, but maintains the ratio between RM and system stable,
so it oscillates around RM (o = 11/2).

Fear The ratio between RM and the system’s state is increasing, (o = 311/4).

Anger This is the worst case. The system is directed to the contrary of ideal, so it looks like that the goal,
a =0, is never going to be achieved, (o = ).

Source: own work

can experience fear or anger with the opposite
outcome. These emotions can be characterized
in terms of the angle a as shown in table 1. For
simplicity, we are assuming that the emotional
state of the controller depends exclusively on the
value of a. Previous values or future values are
not considered.

3.4 Control architecture

The next step is to specify an algorithm for the
emotion-based controller. The emotions are the
values of a as given by inputs to the controller.
This single number represents the state of the sys-
tem at the given time that can be used to make
decisions. Those decisions are externalized by
means of an actuating signal u(t), which drives
the system to follow a desired behavior.

The goal of this section is to describe in detail
the emotional component of the controller, as
shown in figure 4. The model includes an addi-
tional variable called mood. Mood is defined in
psychology as the fixation of an emotion that has
been felt for a period of time. For instance, if the
mood is anger, it can turn gradually from negative
to positive after experiencing a positive emotion
for some time. A simplified way to implement a
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mood module in our model is by means of a low
pass filter. The mood module uses o to stabili-
ze possible fluctuations of the system, especially
when they are caused by noise or faults.

The emotional controller also includes a nume-
rical integrator, which sums up the emotion and
mood outputs. The output of the integrator is UE
in figure 4. Calmness is associated with de equal
to zero, while anger is associated with the maxi-
mum value e, as described below. If the emotion
is calmness, the integral holds UE on the previous
value, which makes sense, because the decision is
to feed the plant using an actuating signal that has
proved effective in leading the system to a desi-

Controller

,\-’p(!)g. K "

i) LT ... Controller. ;

= Gurrent Controler

Figure 4. Control algorithm architecture.

Source: own work



red dynamic. When the emotion is different from
calmness, Ue is different from zero and the output
of the integral increases or decreases, according
to the emotion, changing the value of u(t) fed into
the system in order to compensate for any devia-
tion from the reference model.

The last component of the architecture is a tradi-
tional controller, for example a PID, as shown in
figure 4. It makes decisions to regulate a system
based on the difference between the reference,
yr(t), and the output, yp(t). That process is refe-
rred to as “logic” in this paper. The mixture of
logic and emotion is a powerful tool to define the
actuating signal by means of adapting decisions,
according to the dynamics of the plant. The rela-
tionship between the logical and emotional com-
ponents can be as simple as an additive algorithm,
as shown in figure 4. However, that control can
make more sophisticated choices and be replaced
by a soft algorithm, such as a fuzzy system.

4. RESULTS

In this section, we present several results of the
model in figure 4. The emotion model computes
two values: o and te, where e is the decision
made by the controller in order to keep the system
within limits and constraints. The simplest type of
computation is to multiply a by a constant to ob-
tain tie. That constant could be, for instance, a po-
sitive number. Unfortunately, kema is not enough
to control every dynamical system, because the
value of a does not capture how far the system is
from its goal. One way to overcome this problem
in our first example is by changing the intensity of
the emotion proportionally to the difference yp(t)
- yr(t). In the ulterior examples it is to multiply
kema by the sign of the difference between these
two values.

The results of the simulation of this model on a
first order system are shown in figure 5. The figu-
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Figure 5. Control of a first order system.
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Source: own work

re shows the comparison between the performan-
ce of the emotion based controller in reference to
the traditional PID controller under the following
parameters:

- Plant: H(S)=1/(S-1)

- RM(S) =25/(S2 + 10S + 25)
-Kp=7,Ki=10,and Kd =1

- The feedback has unitary gain
- Null Initial conditions

- kem = 7e3

- Simulink is configured to solve using varia-
ble-step, the maximum step size is 0,5¢-2 s,
and the relative tolerance is le-3.

The result is remarkable: the emotional controller
produces a maximum error of 5e-3, while the PID
controller shows an error of 0,3. However, this
performance cannot be generalized to second or
higher order systems.

The next example illustrates how calmness is not
a guaranty of none error, but a condition of the
controller seeking to shrink this value to zero, as
illustrated in figure 6 at t =4 s.
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y(t)

0 2 4 6 8 10
t, (s)

0 10 20 30 40

Figure 6. Relation between «, yr(t), and yp(t).

Source: own work
Parameters for simulation in figure 6 are:
-H(s)=1/(S+ 1)
-RM(S)=1/(S2+S+1)
-Kem =35
- The feedback has unitary gain
- Null Initial conditions

- step size for the solver in Simulink = 5e-3 s.

The third example illustrates the control over a
second order system, as shown in figure 7. The
maximum error for the emotion based controller
18 6e-3, which is 30 times smaller than maximum
PID error. The parameters of the simulation are:

-H(S)=1/(S2+2S+1)

-RM (S)=4/(S2+2S +4)
-Kp=5,Ki=5Kd=1

- kem = le4

- The feedback has unitary gain
- Null Initial conditions

- Simulink is configured to solve using fixed-
step at 1/800 s.

20  Tecnura | Vol. 16 | No. 33| julio-septiembre de 2012

Figure 7. Emotional component and control behavior.

Source: own work

The last example shows the performance of the
control on a nonlinear dynamical system, as
shown in figure 8. This is a discrete system with
dead zone and noise. The initial output of the
plant is different from the initial condition of the
RM, which makes the problem even harder. The
RM is 4/(S2 + 2S + 4). In addition, Simulink is
configured to run using a fixed-step of 1/800 s.
Finally, kem = 1e3.

1
1 » > > > > 1

s2+s+1 A
Dead Zone Quantizer
-0.2t00.2 5e-2

yp

Transfer Fcn
(with initial output = 2)

1
Random g 0.1s+1 > 5 Noise
Number - Gain

Variance 0.001 Filter

Y0y, ()

Figure 8. Control of a nonlinear dynamical system.



5. DISCUSSION AND CONCLUSIONS

The architecture of an emotion-based controller
has been defined in this paper. The use of the mo-
del has been illustrated with first and second order
linear and nonlinear dynamical systems. The mo-
del includes two novel modules, named emotion
and mood, and it could be extended to include a
traditional controller. The primary component of
the emotional-based controller is an angle o, as-
sociated with the distance between the plant dy-
namic value and the reference model output. This
is akin to the difference between expected current
scenarios triggering emotions in humans. Zero
angle is associated with calm, while the value of ©
is associated with anger. The heuristics of the mo-
del follows well known facts in psychology that
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the ideal emotional state is calmness. Therefore
in the model, when that emotion is “felt”, the best
decision of the controller is to leave the actuating
signal of the controller unchanged. In the model,
the system explores its phase space (landscape) in
pursuit of the reference model, which at the same
time pursues the set point. The strategy is con-
sistent with the Circumplex Model of Affect for
human emotions.

Four examples of application have been presen-
ted. They show that the representation of the
human emotions is useful to improve the perfor-
mance of controllers. These examples show that
these modules help control unstable and stable
first order linear systems, as well as linear and
nonlinear second order systems.
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