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ABSTRACT

In this paper, we reconstruct a periodic signal 
by using two neural networks. The fi rst network 
is trained to approximate the period of a signal, 
and the second network estimates the corres-
ponding coeffi cients of the signal’s Fourier ex-
pansion. The reconstruction strategy consists in 
minimizing the mean-square error via backpro-
pagation algorithms over a single neuron with a 
sine transfer function. Additionally, this paper 
presents mathematical proof about the quality 
of the approximation as well as a fi rst modi-
fi cation of the algorithm, which requires less 
data to reach the same estimation; thus making 
the algorithm suitable for real-time implemen-
tations.

RESUMEN

En este artículo se reconstruye una señal periódi-
ca por medio de 2 redes neuronales. La primera es 
entrenada para aproximar el periodo de la señal, 
y la segunda sirve para estimar los coefi cientes 
de la expansión de Fourier correspondientes. La 
estrategia consiste en minimizar el error medio 
cuadrático por medio del algoritmo de propaga-
ción hacia atrás sobre una neurona con función 
de transferencia senoidal. Además, en este artí-
culo se presenta la prueba matemática acerca de 
la calidad de la aproximación, así como una pri-
mera modifi cación del algoritmo, la cual permite 
alcanzar el mismo resultado con menos datos, así 
entonces el algoritmo podría ser utilizado en apli-
caciones que requieran tiempo real.
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1. INTRODUCTION

Period estimation is important in signal process-
ing. A classical result in signal processing, the 
Sampling Theorem, asserts that reconstruction of 
a periodic target signals up to order n harmonic 
frequencies from sampling data requires 2n data 
points. Under these conditions, the Discrete Fou-
rier Transform (DFT) computes the period of a 
sampled signal, but only if a multiple of the sam-
pling rate matches the period of the signal. No 
other results are known to be applicable other-
wise. The signal is generally impossible to recon-
struct exactly without a priori knowledge of the 
period.

The most important challenge in approximating 
the period is the fact that a sampling may not 
match the period; moreover, in general that is not 
the case. For example, if a sampling is recorded 
every 12 hours, is well known that the difference 
between that sampling and an integer number of 
years will eventually be in the order of seconds. 
This is because the rotation of the earth does 
not match the translation of the earth. The most 
common adjustment of this difference is the ad-
ditional day every leap-year. The problem is that 
the ratio between rotation and translation for the 
earth may not be a rational number, and this has 
tragic consequences on prediction. The irrational 
ratio between sampling and period is considered 
negligible by current algorithms to approximate 
periodic systems, such as Fourier Transform or 
polynomial approximations, but it is evident that 
a prediction in the long term will be infl uenced by 
any error in the approximation.

The frequency estimation has been focused on 
single sinusoidal signals in [1] - [3]. In [1], au-
thors use an estimation method called phase 
unwrapping, which attempts to estimate the fre-
quency by performing a linear regression on the 

phase of the signal. This method is not useful 
in real-time applications due to the complexity 
of the algorithm. The method in [2] is a deter-
ministic method in noiseless conditions, and it 
is based on the solution of a system of linear 
equations using two DFTs. The method in [3] is 
iterative, starting from a matrix of elements that 
are converted to two unitary vectors, which are 
optimally combined to give the fi nal frequency 
estimate. Other works analyze signals with sev-
eral sinusoidal components. For instance, in [4] 
the estimate of the frequency for a power system 
is obtained by minimizing the squared error be-
tween an assumed signal model and the actual 
signal. In [5], authors suggest a time-varying 
sinusoidal representation to estimate frequency 
for signals such as speech. Experimental results 
show that, although is computationally intensive, 
the algorithm outperform FFT-based frequency 
approaches in nonstationary environments. Fi-
nally, a more general family of algorithms uses 
DFT as a basis to estimate the frequency. In [6], 
authors propose a method exclusively for com-
plex exponential waveforms under white noise. 
In [7], a noniterative method is consisting of two 
parts: a coarse estimation, given by the FFT, and 
a fi ne estimation, using least square minimiza-
tion of three spectrum lines.

In this paper, we take a discrete approach to solve 
the signal reconstruction problem, based purely 
on data from observations of the signal at a fi xed 
sampling rate. We provide one method to get a 
good approximation of the period, and we also 
provide some guarantees about the quality of the 
approximation. The algorithm proposed here are 
thus capable of estimating the period for a target 
function with unknown period, such as the Van 
der Pol nonlinear oscillator or a Duffi ng oscillator.

The organization of the paper is as follows: In Sec-
tion 2, we defi ne the problem in terms of general-

*   *   *
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izing a periodic dynamical system. In Section 3, 
a Fourier Neural Network is design to reconstruct 
the whole dynamics of a given periodic system. 
In Section 4, we present the main result of this 
paper. We say that approximating the fundamen-
tal frequency is enough to reconstruct a periodic 
behavior. In Section 5 the mathematical proof of 
the algorithm is addressed. Finally, some discus-
sions about the results, including a way to reduce 
the amount of data required for the algorithm, and 
some conclusions are presented in Section 6 and 
7, respectively.

2. METHODOLOGY

In the fi rst step of developing the approximation 
algorithm a set of neural networks were tested 
based on preliminary results given by [8]. The 
idea was to evaluate the learning capabilities of 
the neural networks having in mind the gene-
ralization that they can perform based on data. 
Since neural networks have been broadly used 
to generalize, they look like good candidates to 
solve the estimation problem for periodic sig-
nals. The process to train the neural network is 
the next: 

1.  The data set is presented to the neural net-
work; 

2.  The weights of the network are changed by a 
learning algorithm in such a way that the net-
work memorizes the samples that are used 
during the training. As a result, the network 
in addition to memorize also generalize; 

3.  Finally, the network is simulated with 
synthetic data. An example of the simulation 
step is shown in fi gure 1.

The target function in fi gure 1 is a perfect sine 
wave with period 2π and amplitude 1. Once the 
network has been trained, the output of the sys-

tem has perfectly learned the data, which is in 
this case a set of samples from 0 to 4π seconds. 
The prediction looks well for a quarter of a pe-
riod ahead, but as soon as the time at what the 
prediction is made overcomes that threshold 
the output of the system does not resemble the 
dynamic anymore. The network make a very 
soft interpolation of the sampling, which in this 
case correspond to 20 points per period, how-
ever when the input of the network is any time 
outside the training set then the prediction goes 
wrong. This experiment was repeated for the 
same target function, a pure sine wave, because 
it supposes to be an easy target. A large num-
ber of architectures were used, such as radial 
basis networks, cascade-forward backpropaga-
tion network, layered-recurrent network, feed-
forward backpropagation network, among many 
others. Also, a number of learning algorithms 
where tried, as well as different number of lay-
ers, and different neurons per layer. The conclu-
sion is that a traditional neural network is not 
capable to generalize a periodic target function, 
thus why another type of network is tried in the 
next section.

F igure 1.  Prediction of the dynamic given by an El-
man neural network 

Note: The training data set goes from 0 s through 4πs. 

Source: own work.
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3.  APPROXIMATION BY FOURIER   
NEURAL NETWORK

The literature review shows that one of the most 
common mathematical tools to deal with perio-
dical functions is the Fourier expansion, which 
is an approximation used to rebuild curves based 
on sinusoidal signals. An associated tool is the 
Fourier transform, which is a function that takes 
functions in the time domain and converts them 
into the frequency domain, as is indicated in 
equation (1). The transformation has some ad-
vantages especially about the arithmetic, for 
instance derivatives can be seen as multiplica-
tions of the function by angular frequency (in 
the frequency domain). This property makes the 
transformation ideal to solve linear differential 
equations. The transformation is also used to ob-
serve some aspects of the signal that are hidden 
in the time domain or that are hard to see, such 
as harmonic content.

          
(1)

A result that comes from the Fourier transform 
is exclusively applied to periodic functions. This 
says that a periodic function can be approxima-
ted by a sum of sinusoidal signals with appro-
priated coeffi cients and frequencies, as shown in 
equation (2).

  (2)

The target function is f(t), and a0/2 is the mean 
value of the signal, ω is the angular frequency in 
rad/s. The frequency of the sinusoidal components 
in equation (2) are multiples of ω. The fi rst value 
of mω, i.e., ω is called fundamental frequency, 
the second one, 2ω, is named second harmonic, 
and so on for other multiples. The coeffi cients am 
and bm are computed as shown in equation (3) and 
equation (4)

.
   

(3)

   
(4)

The result of the approximation of a sawtooth 
function using 128 harmonics is shown in fi gure 
2. The symmetry of the function makes all coeffi -
cients am zero. The fi rst part of the fi gure indi-
cates the number of the harmonic in the x axis, 
and the value of the coeffi cient in the y axis. The 
intermediate fi gure shows every harmonic plot-
ted in the time domain; the biggest signal is the 
fundamental signal with amplitude equal to two. 
The lower part of the fi gure is the sum of all the 
harmonics, and that is the approximation of the 
target function.

F igure 2. An approximation of a sawtooth function 
using Fourier expansion

Note: a) fi rst 20 harmonics, b) individual sinusoidal waves at 
multiples of the fundamental frequency, c) approximation of 
f (t). 

Source: own work.
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The work in [8] says that neural networks are 
good candidates to approximate dynamical sys-
tems. Three examples are presented in which 
the feedforward neural networks are used to 
approximate autonomous systems. The second 
work proves that a neural network with a unique 
neuron in the hidden layer can learn the Fourier 
transform of any function [9]; however nothing 
is said about the Fourier expansion. The third 
work says that a sinusoidal activation function 
improves the generalization of a neural network 
and this result is applied in problems called sta-
tistically neutral [10]. Those problems can be 
always reduced into two variables, and both va-
riables have the same probability of occurrence. 
According to the work in [11], the coeffi cients of 
the Fourier expansion can be learned by a Hop-
fi eld neural network.

References [9], [10] and [11] are particularly 
important, because they show that the imple-
mentation of a feedforward neural network do 
learn a Fourier expansion. For the current appli-
cation, that network has one input, the time, and 
one output, the prediction of the function value 
at the time indicated by the input. The network 
has only one hidden layer and the activation 
function is sinusoidal. This setup guarantees that 
the weights of the network, between input and 
hidden layer, are multiples of the fundamental 
frequency, whereas the weights between hidden 
layer and output are the coeffi cients of the Fou-
rier expansion. The activation function of the 
output neuron is a linear function. Bias signal 
for every neuron is fi xed on zero to reproduce 
the sine terms of the expansion, and π/2 for the 
terms associated with cosine. Bias of the out-
put neuron is the average value of the function. 
The mathematical form of the neural network is 
shown in equation (5).

 (5)

The comparison between the Fourier neural net-
work in equation (5) and the Fourier expansion 
in equation (2) shows that b0 is equivalent to 
a0/2; also ωn to mω; and bn to 0 or π/2; fi nally, an 
in equation (5) is equivalent to the coeffi cients an 
y bn in equation (2).

Once the architecture of the Fourier neural net-
work has been defi ned, as is indicated in equa-
tion (5), the remaining work is to train the net 
based on the data set. The chosen training algo-
rithm is the modifi ed backpropagation Leven-
berg-Marquardt. One of the best results is shown 
in fi gure 3.

The Fourier neural network in fi gure 3 is trained 
using 100 data points per period, and the target 
function is a sawtooth function. The training data 
covers two periods. The validation of the training 
is made using the next eight periods. The lower 
part in fi gure 3 shows the target function and 

F igure 3. Output of a Fourier neural network after the 
training process 

Note: The dashed line represents the end of the training data 
set. 

Source: own work.
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the approximation given by the network. The 
coeffi cients of the Fourier expansion as well 
as the approximations are plotted in the hig-
her part in fi gure 3. The result in fi gure 3 looks 
promising but actually it is not. The prediction 
is very good for times smaller than or equal to 
the validation time window, but the prediction 
degenerates as the time increases. This pro-
blem is associated with the error allowed by the 
coeffi cients and multiples of the fundamental 
frequency.

The error on the parameters after the learning 
process has two sources: errors in magnitude, 
and errors in frequency. The analysis of these 
errors leads to say that errors on the frequency 
computation infl uence the approximation more 
than the errors on magnitude. A study of the de-
viation of the frequency is shown in fi gure 4. 
That example in fi gure 4a shows a target func-
tion compounds by two sinusoidal signals: one 
with unitary frequency and the other with fre-
quency equal to 2 rad/s.

If the root mean square error RMSE for the two 
functions f1(t) and f2(t) is compared, is clear that 
the error is zero for ω2 = 2, and one else where. 
No matter how close the value of ω2 is, the error 
is there, except for ω2 = 2. Then, if ω2 is not the 
exact value then sooner or later the approxima-
tion will reach the maximum RMSE, and will 
come up with errors as bad as any other ap-
proximation. A derived result from fi gure 4.a is 
that the period of the combination f1(t) and f2(t) 
has a period that last about 104 seconds, and its 
value is two only when ω2 is exactly equal to 2. 
Even thought good approximations will remain 
good for more time than coarser approxima-
tions. Figure 4.c shows a window for the pre-
diction, which is useful to defi ne how long the 
approximation will be under certain RMSE, for 
example, in fi gure 4.c. that RMSE is 0,2 and the 
correspondent time is 493 s. Every approxima-
tion later than 493 s has RMSE bigger than 0,2.

 4. APPROXIMATION OF 
 THE FUNDAMENTAL FREQUENCY

The problem about approximating the fundamen-
tal frequency or its multiples using the Fourier 
Neural Network is that regardless of how close 
the estimation is the prediction gets worse and 
worse as the time goes. The next analysis has as 
a goal to answer why the learning algorithm, in 
this case backpropagation, causes that error. The 
answer is that the problem is precisely to minimi-
ze the RMSE, as shown in fi gure 5. To understand 
the problem let suppose that the data set has only 
two points t = 0 and t = 2π, and both are equal to 
one, because they come up from a square function 
with period 2π and amplitude equal to one. The 
analysis stars with the approximation given by 
only one harmonic, the fundamental frequency. 
The minimization of the RMSE is equivalent to 
fi nd the sinusoidal that minimizes the distance 
between the data points and the harmonic.

Figure 4. Error on the frequency computation 

Note: a) rmse over a period for “w” variable, b) composed 
period for f1(t) and f2(t), c) time window under a rmse bound. 

Source: own work.
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The fi rst observation coming out from the result 
in fi gure 5 is that it is not possible to fi x the error 
at zero, due to the difference in value between the 
approximation and the data at t = 0; and that di-
fference happens regardless of the number of data 
points in the sampling. The second observation 
is about the frequency that minimizes the error: 
that frequency is different than the true frequen-
cy, regardless of the number of data points, and it 
happens even if the sampling contains the true pe-
riod. That is because backpropagation minimizes 
the RMSE, then no matter how fi ner the sampling 

is the true frequency will not ever be reached, as 
shown by an asterisk in fi gure 5. For the next ex-
periment the data set has a sampling rate of one 
data point per period across 64 periods, as it is 
shown in fi gure 6.

The good news about using more data is that the 
minimum gets closer to the true frequency value, 
so the minimization of the RMSE will get a bet-
ter approximation if the data length is increased. 
Another characteristic is that the sampling does 
not need to match the true period, as shown in 
fi gure 7. The value 0,9 in fi gure 7 means than the 
sampling has been taken every 0,9 periods. The 
frequency that minimize the RMSE using just a 
couple of data points is within 10 % above and 
under the true value, in addition, as the quantity 
of data increases the maximum error shrinks, and 
makes the estimation closer to the true frequency. 
All the curves tend to 1 rad/s as the number of 
data points grows, it is the true frequency.

There are two problems that come from approxi-
mating the frequency if that is made by minimi-
zing RMSE. The fi rst one is that the error depends 
on the distribution of the samplings, in other 
words, different target functions require different 
amounts of data to get the same approximation; 
and the second problem is the learning algorithm 

 Figure 5. Root mean squared error for a couple of 
points approximated by a pure sine wave 

Note: The data length is N = 1 period. 

Source: own work.

F igure 6. RMSE for a square function. 64 periods, 
sampling every T 

Source: own work.

Fi gure 7. Approximation of the frequency at different 
sampling rates 

Source: own work.
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itself, because it makes a search of the local mini-
ma from an initial guess and gets stack at a local 
minimum that is not necessarily the desired one, 
so the initial estimation to start with the minimi-
zation is quite critical. The second problem is de-
tailed in fi gure 8 for a sawtooth target function. 
All cases were simulated using 15 points per pe-
riod; the lower curve represents RMSE when the 
data set has 15 points, it is one period, and subse-
quent curves are simulation for an increasing data 
set at the same sampling rate, so the length of the 
next curve is two periods, 4, 8, and fi nally 16 for 
the highest curve.

The number of local minima in fi gure 8 is incre-
mented as the data increases, as is shown also in 
fi gure 6. Then, the strategy starts with few data 
points, where the number of local minima is low. 
Then, the data set is enlarged iteratively, and once 
a local minimum is reached for the fi rst iteration, 
the data is incremented, for instance, to the dou-
ble. In the next step the initial frequency for the 
enlarged data set is the same frequency that mini-
mized RMSE in the fi rst stage of the algorithm. 
This algorithm is repeated as far as it is necessary 
or data available.

5.  MATHEMATICAL FACTS ABOUT   
THE APPROXIMATION

What is next is to prove mathematically that the 
minimization process already described certainly 
provides an approximation of the fundamental fre-
quency, regardless of what the target function is. 
The root mean squared error between a function 
f(t) and a sinusoidal wave with amplitude a1* and 
frequency ω* in discrete time is given in equation 
(6):

              (6)

Lemma 1 

The minimization of the RMSE does not result 
in the fundamental frequency, regardless of the 
number of data points used to approximate the 
period.

The mean squared error in continuous time is de-
fi ned in equation (7).

Fig ure 8. Successive approximations of the fundamental frequency 

Note: a) RMSE for different length of data, b) approximation algorithm strategy. 

Source: own work.
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  (7)

When n →∞, then msen → MSE, as Riemman 
sum says. In particular T in equation (7) can be 
T1 = (2π)/ω*. If the function f(t) is periodic, and 
in order to simplify the algebra, f(t) can be shifted 
back, so the fi rst component of the Fourier ex-
pansion is completely sinusoidal. From now on, 
and looking for simplicity, the proof will be made 
for target function that can be written as a sum of 
sinusoidal waves exclusively. The Fourier expan-
sion in equation (7) can be written as is shown in 
equation (8).

 
(8)

The computation of the integral is described in 
equation (9).

 (9)

The variable ∆j represents all the independent 
terms of ω*. The derivative dmse(ω*)/dω* is 
computed in equation (10) to fi nd the frequency 
ω* that minimize the root mean squared error.

(10)

Since T1 = (2π)/ω*, then in equation (11): 

(11)

The limit of ω* → ω. Using l’Hôpital’s rule in 
equation (12) and equation (13) is:

...

...                                                     (12)

(13)

Since the limit of ω* → ω for dmse(ω*)/dω* 
is different than zero, then the minimum MSE 
shows up at ω* = ω, when T = T1. So, we can 
conclude that minimizing the MSE, the ω* will 
not be ω at T = T1.

Lemma 2:

In the limit when T →  the frequency ω* → ω

The value of T1 from equation (11) will be re-
place for Tz to simplify the analysis, so Tz = Z*T1 
+ T1/8, and Z is the set of natural numbers.

...

...                                                                    ...

...                                                   (14)

To simplify equation (14) in equation (15) the 
l’Hôpital’s rule is applied to fi nde the limit when 
ω* → ω.

... 

...                                                           ...

...                                                               (15)
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(16)

The conclusion is that ω* in equation (16) gets 
closer a closer to the true ω when Z → .

Lemma 3:

The number of local minima of the RMSE around 
the fundamental frequency increases as the length 
of data set increases.

Let remember equation (11), but instead of T1 let 
use NT1 in equation (17) and equation (18), whe-
re N is a natural number.

... 

...                                                             ...

...                                                (17)

(18)

Since T1 = 2π/ω*, and the minimum for RMSE 
shows up at dmse(ω*)/dω* = 0, then in equation  
(19):

  (19)

The result to remark so far happens when N → 
, for this case the frequency of the cosine term 
grows linearly with N, so the number of local 
minima increases. The minimization of the MSE 
using backpropagation will get stack at the clo-
sest local minimum from the initial point of the 
search, and that initial frequency not necessarily 
is the one that makes the algorithm to halt at the 
minimum with a value closest to the true frequen-

cy. The limit of NT1 →  is ω* ≠ ω, as it is shown 
in equation (19).

6. RESULTS

The result of the three lemmas can be extended 
for an approximation of the second harmonic, in 
other words, when the minimization of the MSE 
estimates the double of the fundamental frequen-
cy. The intuitive idea is that a signal of period T 
is also periodic for an integer multiple of T, then 
if the data set has two periods, the approxima-
tion will provide two outputs, one close to T and 
another one close to 2T, and so on for any number 
of periods. The motivation for this intuitive idea 
is that instead of making approximations with 
one pure sinusoidal signal it is possible to use 
another signal, also periodic, with a shape like the 
function that is going to be approximate. The si-
milarity between signals can be understood as the 
smallest distance, using any metric, between the 
harmonics of the true target and the approximant 
function.

If the number of terms for the approximant 
function is one, as it is shown in equation (20), 
the function is a sinusoidal wave, and its amplitu-
de is one, in the same way that has been shown so 
far. If m is 2 then the approximation has 2 sinus-
oidal waves, and one has the double frequency of 
the other one, and so on. 

                
(20)

The difference between using only a sinusoidal 
wave and several harmonics looks subtle, but the 
result is remarkable. The number of data points 
required to make any approximation is reduced 
as it is shown in fi gure 9. For the experiment in 
fi gure 9 the sampling rate is 1,01T of a square 
signal, and the data set has only four data points. 
The x axis corresponds to the number of harmo-
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nics, n, and the result indicates that increasing the 
number of harmonics, leaving the number of data 
points fi xed, improves the approximation. When 
the multiples of a sinusoidal wave are included 
in the approximant, the size of the expression in 
equation (20) increases and this has a computatio-
nal cost; however the requirements for the length 
of the data sets are reduced. It seems that com-
bining the two strategies is a good way to deal 
with the approximation problem. The procedure 
requires to increase the number of data points per 
period, and to increase the number of periods in 
the data set, and also to increase the number of 
harmonics in an iterative process in order to avoid 
undesirable local minima. 

Once the frequency has been approximated, the 
approximation is used to train the Fourier neural 
network as it is shown in equation (5). The funda-
mental frequency and its multiples will be given 
by the approximation algorithm; in the same way 
as it is shown in fi gure 3. The network is the per-
ceptron shown in fi gure 10. That architecture has 
an additional advantage: the phase angle that was 
required to learn in  quation (5) is not required 
anymore, so the new goal is exclusively to learn 
the coeffi cients of the Fourier expansion using the 
weights of the network. By defi nition the coeffi -

cient of the Fourier expansion minimizes the 
mean square error, so running backpropagation, 
which minimizes MSE, is an ideal way to fi nd the 
coeffi cient.

Experiments show that the modifi ed backpropa-
gation algorithm called Levenberg-Marquardt 
gets stable after just one epoch; however there is 
an error on the value of the coeffi cients, they are 
just approximations. Even though, increasing the 
number of data points per period, it is refi ning the 
sampling improves the approximation. Results of 
the estimation of a triangular function are shown 
in fi gure 11. The approximation of the frequency 
used for running this experiments is 1,0001, and 
the true value is 1 (rad/s).

The prediction in fi gure 11 is very close to the 
true target for low values of time; and even af-
ter 500 seconds, which are 500 periods of the 
function, the approximation is relatively good; 
even thought the error is visible at times like 
1000 s. The approximations for other three types 
of function are shown in fi gure 12. The results 
are better for smooth functions like the oscillator, 
because of the effect well known as Gibbs pheno-
menon; this condition predicts problems around 
the discontinuities.

Figure 9.  Effect of harmonics on the approximant  
function 

Note: N = number of periods in the data set.

Source: own work.

Figure 10.  Perceptron architecture to learn the   
 Fourier expantion 

Source: own work.
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7. CONCLUSIONS

The reconstruction of periodic signals can be 
performed by approximating the period of the 
signal, which can be seen also as a approxima-
ting the fundamental frequency. This frequency 
is estimated using a single neuron with a sine 
transfer function and backpropagation as tra-
ining algorithm. The approximation leads to 
an inevitable error that can be minimized only 
increasing the amount of data in an iterative 
fashion. This paper presents an algorithm that 
smartly uses data samples, evenly spaced, to 
approximate the period of a signal trough suc-
cessive iterations. The fi rst iteration requires 
a rough approximation of the period and data 
points to cover at least the guessed period, and 
then the minimization of the mean squared 
error provides a fi rst estimation for the period. 
The estimation at the end of each iteration is 
used as the initial guess for the next iteration, at 
the same time, the data length is progressively 

F igure 11.  Prediction of the the value for a triangular  
 function 

Note: Phase shift = 60°, T = 1 s, ω1 = 1,0001*2π (rad/s). Con-
tinuous line = Target function, dashed line = approximation. 

Source: own work.

Fig ure 12. Prediction for three functions 

Note: a) Sawtooth, b) Van Der Pol, c) Square function. 

Source: own work.

increased every iteration, which guarantee that 
the next iteration will provide a better approxi-
mation than the previous one. This paper inclu-
des the mathematical proof about the quality 
of the estimation, and in addition proposes a 
fi rst modifi cation of the algorithm to reduce the 
amount of data required to make the estima-
tion, which is by means of approximating not 
only the fundamental frequency, but also the 
harmonics. Once the period is estimated, then a 
perceptron network can be used to approxima-
te the Fourier coeffi cients, which serves to re-
construct the entire dynamic of a periodic sys-
tem. Future works could study ways to reduce 
the quantity of data require for the algorithm, 
and also ways to validate the results of the al-
gorithm for quasi periodic signals.
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