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Investigación

Abstract
One of the greatest drawbacks in wind energy 
generation is the high maintenance cost associated 
to mechanical faults. This problem becomes more 
evident in utility scale wind turbines, where the 
increased size and nominal capacity comes with 
additional problems associated with structural 
vibrations and aeroelastic effects in the blades. Due 
to the increased operation capability, it is imperative 
to detect system degradation and faults in an efficient 
manner, maintaining system integrity, reliability 
and reducing operation costs. This paper presents 
a comprehensive comparison of four different Fault 
Detection and Isolation (FDI) filters based on “Data 
Driven” (DD) techniques. In order to enhance FDI 
performance, a multi-level strategy is used where: 
(i) the first level detects the occurrence of any given 
fault (detection), while (ii) the second identifies the 
source of the fault (isolation). Four different DD 
classification techniques (namely Support Vector 
Machines, Artificial Neural Networks, K Nearest 
Neighbors and Gaussian Mixture Models) were 
studied and compared for each of the proposed 
classification levels. The best strategy at each level 

could be selected to build the final data driven FDI 
system. The performance of the proposed scheme is 
evaluated on a benchmark model of a commercial 
wind turbine.
Keywords: data mining, fault detection, wind energy.

Resumen
Uno de los mayores inconvenientes presentes en la 
generación de energía eólica son los altos costos de 
mantenimiento asociados a fallas mecánicas. Este 
problema se hace más evidente en las turbinas de 
viento de escala industrial, en donde incrementos 
en el tamaño y la capacidad nominal traen consigo 
problemas adicionales asociados a vibraciones 
estructurales y efectos aeroelásticos en las hojas. 
Debido al incremento en la capacidad de operación, 
es imprescindible detectar de manera eficiente 
fallas y degradaciones en el sistema, garantizando 
la integridad, su fiabilidad y reduciendo los costos 
de operación. Este artículo presenta un sistema para 
la detección y aislamiento de fallas (FDI), basado 
en técnicas "Guiadas por los datos" (Data driven, 
abreviado DD). La arquitectura propuesta es una 
estrategia de varios niveles en donde: (i) el primer nivel 
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INTRODUCTION

Energy generation is one of humanities greatest 
concerns, as most social activity has been built 
around its consumption. This highlights the fact that 
we need to introduce new sources of “green” energy 
that are reliable, accessible, and economically 
attractive. Within this context, wind energy has 
become one of the most popular options, observing 
a market growth of approximately 24% in the last 
decade (GWEC Global Energy Conuncil, 2011). 
Wind power and its transformation into electrical 
energy is a simple idea that comes along with 
many challenges. The underlying idea is that wind 
power absorption is proportional to the square of 
the blade length and to the wind velocity cubed. 
As the demand of installed capacity increases, so 
does the need to design generators with higher 
rated capacity. This may only be achieved either 
by increasing the wind speed (which is generally 
unfeasible) or increasing the size of the blades. At 
these sizes a significant increases in the structural 
loads and vibrations are introduced. If these 
increase in load is not properly addressed the 
system may be more prone to malfunction in its 
mechanical components, and consequently less 
cost efficient. Although the efficiency of wind 
turbines has improved greatly, their reliability has 
decreased. This leads to an increase in maintenance 
costs, which translates into longer down times and 
captured energy losses.

Modern active control techniques can 
optimize efficiency and increase system reliability. 
Nonetheless, faults are likely to occur and have a 
negative impact on system performance, or even 

result in catastrophic events if not detected on 
time. In addition, wind turbines are located in 
remote locations, under extreme environmental 
conditions, making it difficult to implement 
preventive maintenance plans. It has been 
reported (Walford, 2006) that approximately 10%-
15% of the total revenues due to wind energy 
generation has to be reinvested into maintenance. 
Analytical Fault Detection and Isolation (FDI) may 
offer a cost efficient solution that allows for early 
fault detection. It is believed that FDI techniques, 
and the early detection of faults, can reduce the 
mean down time of wind turbines and repair costs 
associated with their operation. Industrial demand 
for such FDI systems has seen an exponential 
growth in recent years, and has been accompanied 
by higher performance and reliability demands. FDI 
techniques have become an essential component 
in the development of intelligent autonomous 
systems where it is necessary to constantly monitor 
the health state (detect, isolate and estimate severity 
of the failure mode) of the system.

Model based techniques are the most common 
approach to building analytic FDI systems, where 
many techniques have been proposed including 
Kalman filters (Bergantino & S, 2009) , unknown 
input observers (Chen & Saif, 2006), and H∞/H2 
filters (Verhaegen, 2008), have been used. The 
underlying idea behind model based FDI is to use 
a mathematical model of the system as the source 
of redundant information, and produce estimates 
of the systems measured outputs, this model is 
usually developed based on some fundamental 
understanding of the physics of the process. The 
disadvantage of this approach is the need for an 

detecta la ocurrencia de una falla (detección), mientras 
que (ii) el segundo identifica su origen (aislamiento). 
Se estudiaron y compararon cuatro técnicas de 
clasificación para cada uno de los niveles (Máquinas 
de Vectores de Soporte, Redes Neuronales Artificiales, 
K vecinos cercanos y Mezcla de Gaussianas). La 

mejor estrategia en cada nivel fue seleccionada para 
construir el sistema FDI. El rendimiento del sistema 
propuesto se evalúa en un modelo de referencia de 
una turbina eólica de escala comercial.
Palabras clave: energía eólica, detección de fallas, 
minería de datos.
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accurate model of the process; in other words, 
model based techniques are affected by model 
uncertainties, plant disturbances and measurement 
noise. An alternative approach known as “Data 
Driven” (DD) FDI uses a collection of measured 
data to unearth patterns of normal and faulty 
behavior. DD FDI is based on the advances in 
areas such as data mining, machine learning and 
computational intelligence. Some of the most 
popular DD FDI techniques used Artificial Neural 
Networks (Zhou, 2004), (Kusiak & Shah, 2006) 
and Bayesian Networks (Sylvain & Kobi, 2010), 
amongst others.

This article presents the application of data 
mining techniques to a Fault Detection and 
Isolation problem setup. The main contribution is 
the proposition of a multi-level architecture where 
the first level must evaluate the existence of a fault, 
while the objective of the second level is to isolate 
the source of the fault. This strategy, in combination 
with a FCTW, proved to enhance performance of 
the FDI filters, hence making them comply with 
industrial standards and readily available for the 
practitioner. The paper starts with a brief outline 
of the classification techniques used; it follows by 
describing the DD FDI architecture proposed and 
its application to a benchmark model of a utility 
scale wind turbine as proposed in (Odgaard, 2009); 
the DD FDI system is constructed and simulation 
results are presented to highlight the usefulness of 
the data driven approach; finally some concluding 
remarks are given.

WIND TURBINE CONFIGURATION

The basic wind turbine configuration is as follows. 
The nacelle contains main components including 
the generator and gearbox, and sits on top of the 
tower structure. The blades are connected to the 
rotor, which in turn is connected to the generator 
via the gearbox. The nacelle contains a yaw motor 
that allows the blades to face the wind. Large utility 
scale generators are generally variable speed and 
have mechanisms that change the blade pitch angle 

and control the lift produced by the wind. Wind 
turbines have additional actuators and sensors that 
can be used for control. The generator torque load 
can be used to dictate the amount of electrical 
power absorbed from the mechanical system, and 
act as a breaking system to control the acceleration 
of the rotor; a breaking system can set the rotor to 
a full stop. The main measurements are the rotor 
and generator speeds and blade pitch angles. As 
one of the main premises is that the system must 
remain low cost, high cost and redundant sensors 
are generally avoided, which entail additional 
challenges to the closed loop control and FDI 
problems.

Figure 1. Ideal wind turbine power curve and 
operating zones.

Source: own work.

The turbine operates at four distinct regions, 
figure 1: (i) cut in speed, where winds are insufficient; 
(ii) the interim region, i.e. the region between the 
cut in and rated wind speed; (iii) maximum power 
capture region, which starts at the minimum rated 
wind speed; (iv) cut out speed, where wind speeds 
are too high. The general control objective is to 
maximize power absorption while operating in 
region (ii) and minimize structural loads when 
operating in region (iii); regions (i) and (iv) are not 
contemplated.

The data set was generated from simulation 
results of a “benchmark” wind turbine model built 
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for the development and analysis of FDI systems 
(Odgaard, 2009). In figure 2 the components of 
the model used and the relationship between them 
are represented. This model is a simplification 
of a three blade, utility scale (horizontal) wind 
turbine with a reated power of 4.8 MW. Each 
blade has independent pitch motion, hence the 
control system provides three separate pitch 
command signals, i.e βi,r where i = [1,2,3]; the 
actual pitch position is measured by sensors that 
provide signals βi,m. Although the model has (dual) 
physical redundancy for the pitch sensors, the aim 
of this paper is to analyze the performance of an 
analytical DD FDI system so we will eliminate 
redundant measurements.

Figure 2. Wind Turbine Model: System 
Interconnection.

Source: (Odgaard, 2009).

The torque transmitted to the generator and the 
rotor is denoted τg and τr respectively, while the 

angular velocity of the generator and the rotor are 
denoted by ωg (rad/s) and ωr (rad/s) (respectively). 
The complete set of measurements (in addition to 
pitch angle measurements) includes the transmitted 
torques, angular velocities and the wind speed 
(νw ). The captured power is approximately given 
by equation (1).

	 �� � ������� � 1
2 ����
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where τaero (N) is the aerodynamic torque, ωr is the 
rotor speed, ρ (kg/m2) is the air density, A (m2) is 
the area swept by the rotor, νw (m/s) is the wind 
speed. Cp is the power coefficient which represents 
how much power available in wind is captured. 
Cp is a function of blade pitch angle β (deg) and 
tip speed ratio � � ���

�� ,   R (m) is the rotor radius. 
The pitch actuators on the system are represented 
by a transfer function Gact(s) (ecuation (2) with 

).

	  	  (2)

The generator’s dynamics are modeled with a 
first-order transfer function, equation (3).

	  	  (3)

The drive train and generator are modeled by a 
two mass model, equation (4).
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Where θΔ is the drivetrain torsion, Jr and Jg are 
the rotor and generator inertia, Br and Bg are the 
viscous damping of the rotor and generator. Bdt and 
Kdt are the damping and stiffness coefficients of the 
drivetrain flexibility, Ng is the gearbox ratio and ηdt 
is the efficiency of the drive train. If the turbine 
is operating in Region 3, a discrete PI controller 
generates the pitch commands references to 
maintain the rated rotor speed. The generator 
torque is set as .

APPLICATION OF DATA MINING 
TECHNIQUES

The fault diagnosis and isolation problem involves 
determining the failed component (isolation) 
once a fault has been detected (detection). The 
ability to isolate faults can be made “simple” at 
the expense of additional, physically redundant, 
sensors and increased costs, thus it is of interest to 
develop techniques that use analytical (redundant) 
information. Although the most common approach 
to analytical FDI is to use model-based techniques, 
the construction of a high fidelity model is a 
cumbersome task; data mining techniques allow 
the detection and isolation of system faults by only 
using input/output data.

From a data mining perspective, classification is 
the task of finding (training) an objective function 
f (x) which assigns one of the predefined class labels 
y, to each set of the attributes x; the training data is 
the collection of records (examples), characterized 
by a tuple (x,y). For the case of an FDI system, y may 
take values associated with each of the fault modes 
and x would be the vector of measured signals 
of the system. Although there is a broad range of 
classification strategies, this paper will focus on four 
of them: Support Vector Machines (SVM), Artificial 
Neural Networks (ANN), Bayesian Classifiers (i.e 
Naive Bayes with Gaussian Mixture Models) and 
K Nearest Neighbors (KNN). A brief description of 
each of these techniques will be provided next.

Support vector machines: Vladimir Vapnik 
first introduced SVM within the context of binary 

classification problems. The basic idea behind SVM 
is to find an optimal hyperplane that maximizes 
the separation margin between the classes. 
Finding this hyperplane is equivalent to solving a 
constrained optimization problem whose solution 
is a linear combination of training examples that 
lie on the edge of the margin; these are known as 
“support vectors”. The mathematical description 
of the algorithm is extensive and can be found in 
(Scholkopf & Smola, 2001).

Artificial neural networks: These are inspired 
by a simplification of the biological neural system, 
which consists of simple computing elements 
(called neurons) connected through synaptic 
weights. The multilayer perceptron (MLP) is the 
most applied architecture and consists of an input 
layer, at least one hidden layer, and an output layer. 
The input to a given neuron is a linear combination 
of the output of neurons from the previous layer, 
where each input is weighted by their respective 
synaptic weight. Associated to each neuron, there 
exists a nonlinear activation function, which 
transforms the linear combination of inputs into 
the neurons output, which in turn is an input to 
the neurons in the next layer. For the application 
proposed, the number of hidden layers and neurons 
was determined experimentally, where sigmoidal 
activation functions achieved the best results. The 
ANN is trained using a back propagation with 
gradient descent algorithm as detailed in (Bishop 
C. M., 2006).

K nearest neighbors: The K Nearest Neighbors 
(KNN) approach consists of a supervised classifier 
based on neighborhoods. The underlying idea is 
that a new sample belongs to the class to which the 
largest numbers of (k nearest) neighbors belong. 
One of the challenges is to choose appropriately 
the number (i.e. k) of neighbors to be analyzed; if k  
is too large it may be difficult to discriminate from 
global tendencies, but if k is small classification 
may be imprecise because of the lack of data. Note 
that KNN depends greatly on the way distance 
is calculated, thus it is possible to have different 
classifiers by using different distance metrics. The 



Data driven fault detection and isolation: a wind turbine scenario

Manrique Piramanrique, R. F., & Sofrony Esmeral, J.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 71-82
[ 76 ]

classifier proposed in this paper uses the Euclidean 
norm, where the Euclidian norm of a vector x is given 
by . The distance between tow vectors, 
xi and xj , is defined as  as 
the metric for distance.

Bayesian classifiers: Bayesian classifiers are 
based on probability theory, where classification 
is made depending on which class has the greatest 
probability of occurrence or the lowest risk (Duda, 
Hart, & Stork, 2001). Assume that the problem 
considered is the classification of a set of attributes 
as one of K different classes. The vector of attributes 
(features) is denoted as  where 
d is the dimension of the vector and the probability 
that the vector x belongs to the class yk is  
(known as posterior probability). The attribute set 
x belongs to the class with the highest posterior 
probability, where can be calculated according to 
Bayes’ formula, equation (5).

	  	 (5)

Where  is the probability density 
function of class yk  and p(yk) is the prior probability 
of the class. If the prior probabilities are not currently 
known, they can be estimated from the proportions 
of the class in the training set (Tan, Steinbach, & 
Kumar, 2005). A feature vector x, belongs to the class 
yk  if  is has highest posterior probability of 
all the K classes: . The 
biggest challenge when implementing Bayesian 
classifiers is to estimate the probability density 
function (PDF) . In practice, this PDF is 
always unknown and must be calculated from the 
available information, i.e. the ‘training data’. Two 
approaches, namely Naive Bayes and the Mixture 
of Gaussians, will be presented next.

The Naive Bayes (NB) approach estimates  
assuming that the attributes are conditionally 
independent for a given class k. To estimate the 
conditional probabilities , we can assume 
a certain form of probability distribution and 
calculate the parameters of the distribution using 
the training data (Tan, Steinbach, & Kumar, 2005).

In many cases an exact density function can 
be difficult to obtain or not follow any particular 
distribution function. If this is the case, it is possible 
to use a linear combination of Gaussian distributions 
to represent (i.e. model) the “real” PDF of each 
class (Gaussian Mixture Models). Each distribution 
function is the modeled via equation (6).

	���� �� �� � 1
��������

������������������� 	 (6)

Where x is the vector of features, μ is the mean 
vector, ∑ is the covariance matrix and |∑| is its 
determinant. In our particular case, the classifier 
was constructed under the following premises: 
i) the probabilities of occurrence of each class, 
i.e. p(yk) for k = [1,…, K], are known and equal 
to 1/K; ii) the probability density functions 

 for k = [1,…, K], are constructed using 
a linear combination of n multivariate Gaussian 
distributions; iii) since there is no optimal way 
to choose n (Sylvain & Kobi, 2010), its value was 
chosen experimentally; iv) the GMM parameters 
are calculated using an Expectation Maximization 
Algorithm (Alpaydin, 2004).

METHODOLOGY

The data set corresponds to a simulation of 3700 
seconds with the model specified above and 
sampling time Ts = 0,01 seg. A total of seven fault modes 
were studied, originally proposed by (Odgaard, 
2009), each of which was triggered at different time 
intervals. Fault 1: Fixed value in pitch 1 position 
sensor measurement, Fault 2: Scaling error in pitch 
2 position sensor measurement, Fault 3: Fixed value 
in Pitch 3 position sensor measurement, Fault 4: 
Fixed value in rotor speed sensor measurement, 
Fault 5: Scaling error in rotor and generator speed 
sensor measurements, Fault 6: Degraded hydraulic 
pitch system response pitch actuator 2 and Fault 7: 
Air in Oil Failure pitch actuator 3.

The signals of the monitoring system are 
wind speed, pitch position, generator speed, 
rotor speed and generated power (as shown in 
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table 1) and constitute our initial set of attributes. 
The classifiers were trained according to the 
algorithms discussed earlier in the paper, and 
results are analyzed in terms of detection times 

and false alarm clear out time. To evaluate the 
models constructed from the perspective of data 
mining (i.e. prediction levels), the following 
metrics are defined (equations (7) and (8)).

	  	 (7)

	  	 (8)

Table 1. Attribute Set.

Complete Attribute Set

Variable Rate  Measurement  Description 
νs Δ(νs)  WindSp [m/s]  Wind speed sensor 

ωr Δ(ωr)  RotorSp [rad/s]  Rotor speed measurement 1 

ωg Δ(ωg)  GenSp [rad/s]  Generator speed measurement 1 

τr Δ(τr) GenTorq [kN m]  Measured Generator torque 

τg Δ(τg) GenPower [kNm/s]  Measured Generator Power 

B1m Δ(B1m) Bl1Pitch [deg]  Pitch angle 1 measurement 1 

B2m Δ(B2m) Bl2Pitch [deg]  Pitch angle 2 measurement 1 

B3m Δ(B3m) Bl3Pitch [deg]  Pitch angle 3 measurement 1 

Source: own work.

Data-Driven fault detection and isolation 
system training
DD FDI systems use measured signals as attributes 
to build the training set, thus the quality of the 
classifiers depends greatly on the quality of 
the training set used. In order to increase the 
classification model’s accuracy, three actions were 
performed on the data: data sampling, outlier 
elimination and attribute (feature) creation.

Data sampling: Sampling is the process of 
selecting a representative (reduced) set that still 
allows a thorough examination of the entire 
data. Sampling is needed in order to allow the 
abstraction of a complex problem, as well as to 
acquire a sub set that infers information from a 
larger data set. It is widely accepted that a fairly 

modest sized sample can sufficiently characterize 
a much larger population. The usefulness of the 
sample is determined by two characteristics: 
the size and the “quality” of the sample. The 
sample size should not be too small since it may 
misrepresent the entire data set, or too large that it 
overloads the computational algorithms.

In order to generate a suitable training set, 
it was necessary to reduce the total number of 
data registers and balance the proportion of 
“normal” and “faulty” operation events. There 
exist several procedures that aid in the process 
of data set sampling. In this paper we followed 
a simple procedure (random sampling) that 
allowed a balanced reduction of the class labeled 
as “normal”. A (simple) random sample of size 
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n consists of n  individuals from the population 
chosen in such a way that every individual has an 
equal chance of being selected. The total number 
of data registers used for training was 390,000, 
where 75% correspond to data representing 
the normal operation of the system, while the 
remaining registers correspond to faulty behavior. 
Through random sampling, this number was 
reduced to 197,000 registers and a balanced data 
set was obtained.

Outlier elimination: An outlier is generally 
considered to be a data point that is far outside 
the normal behavior of a variable or population. 
Outliers can have deleterious effects on statistical 
analyses since they generally serve to increase 
error variance and reduce the relevance of 
statistical tests. Additionally they can seriously bias 
or influence estimates that may be of substantive 
interest. It is therefore desirable to eliminate data 
that may deteriorate detection performance, i.e. 
outlier elimination.

Several formal statistical tests have been 
devised to determine if a certain value can be 
considered as an outlier. In its simplest form, box 
plots present five measurements (the minimum, 
the lower quartile, the median, the upper quartile 
and the maximum), all in a visual display. The 
lower quartile has 25% of the sample values below 
and 75% above it. The upper quartile has 25% of 
the sample values above it and 75% below. The 
middle quartile is the median and the middle half 
of the sample lies between the upper and lower 
quartile. The distance between the upper and 
lower quartile is called the interquartile range. 
Any observation outside the interquartile range is 
considered a potential outlier. After analyzing data 
box plots, it was possible to identify and eliminate 
a set of outliers associated with the turbine’s start 
up process and can therefore be ignored. The 
outlaying data provides no useful information and 
may correspond to an event that we do not wish 
to classify.

Creating new attributes: From a viewpoint of 
data mining, it is possible to increase sensitivity 

to a particular class and accuracy of a classifier by 
creating new attributes (Tan, Steinbach, & Kumar, 
2005). For example, fixed value sensor faults may 
be difficult to detect if the faulty measurement is 
close to steady state, normal operation value. This 
problem can be solved by creating a new set of 
attributes that takes into account the “velocity” of 
the measurements, and not only its value. Although 
it may be possible to find more robust attributes, 
we want to avoid the pre-processing of input data 
as much as possible; hence the rate of change is a 
suitable choice. By defining  as 
the rate of change of the measurement x a new set 
of attributes is constructed.

As an exploratory exercise, and with the 
objective of determining the quality of the FDI 
models that could be obtained using the previously 
mentioned techniques, four classifiers were 
constructed. The training set consists of a family of 
attributes (see table 1) and a flag that determines 
the occurrence of a given fault; the flag will take 
a zero value when no fault occurs (i.e. normal 
behavior), and will take a value within the set 
{1,2,3,4,5,6,7} in the event of fault occurrence (i.e. 
the flag values is 1 where Fault 1 is present, and so 
on). At his stage a full FDI systems is constructed 
for each one of the methods proposed.

To evaluate the performance of each FDI 
system, a total 50 simulations were performed 
per technique proposed. Each simulation had 
duration of 3700 seconds, exhibiting all of the 
faults at different times. It is important to mention 
that simulations sequences were different from 
the training set, and that no preprocessing was 
performed on the data. The results obtained are 
presented in table 2.

Observing the general results presented in table 
2, it is possible to draw the following conclusions. 
First, it is important to highlight the need to generate 
suitable training sets by using outlier elimination 
techniques and appropriate data sampling (an 
average 10% degradation was observed when no 
preprocessing was performed). This will reduce the 
risk of having the model memorize the training set 



Data driven fault detection and isolation: a wind turbine scenario

Manrique Piramanrique, R. F., & Sofrony Esmeral, J.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 71-82
[ 79 ]

and avoid any unwanted bias caused by abnormal 
operation states (i.e. turbine startup). Second, 
Faults 1 through 5 are abrupt in nature and their 
detection presents acceptable levels of accuracy 
and sensitivity, and a low number of false alarms. 
Unfortunately, for Faults 6 and 7, low sensibility 
is exhibited and a high number of false alarms are 
present. Because of this the presented strategy is 
not suitable for the FDI application at hand and 
it is necessary to investigate new architectures. 
Third, it was observed that incipient faults were 
more difficult to detect due to their slow growing 
nature. In fact, it was observes that ANN and SVM 
techniques provided better detection properties 
for incipient faults, thus a reliable DD FDI system 
may require the application of more than one data 
mining technique.

In general, probabilistic methods tend to 
present better classification performance, and 
this is supported by the fact that the Naive 
Bayes method presented the best accuracy and 
sensitivity indicators of the four algorithms tested. 
Nonetheless, in order to obtain good results it is 
necessary to have an accurate (or good enough) 
PDF. Initially, the task of finding a PDF for detection 
(determining state of Fault/No Fault) may seem to 
be relatively easy because the problem at hand is 
that of binary classification. As the requirements 
scale up to identification, finding an accurate PDF 
may become rather complex, thus the need for 
more advance techniques such as Mixed Gaussian 
Models to determine an approximate, but accurate 
enough PDF.

Data driven techniques have proved to be 
a promising approach to fault detection and 
isolation, but the previous result also stressed the 
fact that more heuristic architectures are needed in 
order to reach the performance levels required for 
industrial applications. Having this in mind, the 
next section proposes a Multi Level architecture 
that deals with the problem of detection and the 
problem of isolation in a sequential manner.

MULTI LEVEL DD FDI

The FDI system proposed uses a two level 
detection architecture: the first classification 
level is responsible for detecting the fault and 
distinguishing faulty from normal behavior; the 
second level is responsible of isolating the source 
of the failure. The FDI architecture is summarized 
in figure 3. Details on the construction of each 
classification level are discussed next.

Level 1: This level is posed as a binary problem 
where the main classes are “Fault” and “Normal”. 
It is important to note that at this stage it is 
imperative to recognize states of failure, hence 
the classifier is trained to have high sensitivity at 
the expense of partial degradation of the general 
accuracy. As a consequence, this level has a high 
number of false alarms, so in order to enhance 
accuracy a Fault Counter on Time Windows 
(FCTW), as proposed in (Lipnickas A. , 2006), 
was implemented. The main objective is to verify 
the “persistence” of the faulty behavior, so the 
classifier must identify the “Fault” persistently 

Table 2. Average Accuracy and Sensitivity.

 Algorithm  Sensitivity (%)  Accuracy (%) 

  F1  F2  F3  F4  F5  F6  F7  
KNN  93.20  70.12  85.23  68.21  95.12  41.12  57.12  65.42 
NB  91.70  85.80  84.20  82.60  93.20  60.90  59.80  80.72 

ANN  82.60  84.00  82.70  76.10  87.80  67.20  62.50  78.63 
SVM  86.70  88.80  80.20  85.60  98.20  68.90  67.80  74.89 

Source: own work.
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over a given period of time. The size of the 
time window was determined experimentally 
by considering that there is a trade off between 
accuracy and detection time. It should be noted 
that this approach is not suitable for intermittent 
faults with long periods of occurrence.

The average performance over 50 test runs is 
summarized in table 3. The accuracy is, in general, 
higher than 80%, with sensitivity above 90% for 
SVM, ANN and GMM. At this level we are interested 
in a classification model with high sensitivity, 
which usually presents a higher number of false 
alarms. It can be note no model has an accuracy 
greater than 90%, indicating that there is a low 
number of undetected faults, but a considerable 
number of false alarms. The table also shows the 
percentage of false alarms (FA %) and the recovery 
time after its occurrence (FA Clear Time).

Level 2: This stage consists of a multi class 
classification problem, where all the possible 
occurrences of fault are a given class. At this level 
the training set is constructed with data in a state 
of “Fault”, and the main goal is to isolate the 

Table 3. Accuracy and Sensitivity Level 1 using FCTW.

 Algorithm  Accuracy (%)  Sensitivity (%)  FA (%)  FA Clear Time 
SVM+FCTW  97.290  89.32 1.010  3,5Ts 
ANN+FCTW  97.10  88.14  1.012  3,5Ts 
KNN+FCTW  91.18  79.97  5.63  4,3Ts 
GMM+FCTW  92.27  84.74  5.30  4,1Ts 

Source: own work.

Table 4. Accuracy and Sensitivity Level 2.

 Algorithm  Accuracy (%)  Sensitivity (%) 

F1 F2 F3 F4 F5 F6 F7 
SVM 84.2 96 80.5  96.1  87.1 82.8 60.2 72.2 
ANN 89.5 94.1 85.2 99 86 79.1 65.9 78.7 
KNN 59.2 84.2 65.2 91.2 79.2  45.7 38,.3 39.4 
GMM 90.2  95.3 75.9  93.2  86.3 88.6 71.2 88.5 

Source: own work.

Figure 3. Multilayer Classification Architecture 
for FDI.

Source: own work.
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source of the fault. All the implemented strategies 
are multi class classifiers, i.e. there are a total of 
7 classes that need to be identified. The results of 
the validation tests are shown in table 4, where 
the highest accuracy was achieved with the use of 
ANN and GMM. Additionally, table 4 shows the 
sensitivity of each algorithm to each of the faults. 
Notice that SVM and ANN are more sensitive to 
Faults 1 5, corresponding to faulty sensors, while 
the GMM algorithm has excellent sensitivity for 
faults 6, 7 corresponding to faults in the actuators. 
Moreover, the KNN algorithm exhibited the worst 
performance.

SIMULATION TESTS AND RESULTS

Given the performance results obtained by each 
model, the FDI system was built for Level 1 using 
the support vector machines, and for Level 2 GMM. 
Table 5 lists the average detection time and missed 
faults over 50 test runs. Fault 6, which represents 
a pitch actuator, has the longest detection times 
because this fault is simulated in regions 2 and 3. 
The problem is that the control scheme uses pitch 
angle as a control variable only in region 3, hence 
only in in this region will it be possible to detect 
this fault. In general, it is very difficult to detect 
faults associate with pitch movement in region 
2 because blade pitch angles are assumed to be 
constant. Faults 1 to 4 have acceptable detection 

times. Fault 7 presents long detections times since 
it is an incipient fault, which can only be detected 
(in this case) until the movement of pitch 3 is 
considerably degraded.

CONCLUSIONS

This paper presents a multi-level DD FDI system 
architecture that provides enhanced performance 
compared to single level DD FDI. In each level, 
four different classification strategies (SVM, ANN, 
KNN and GMM) were implemented and tested, 
where SVM and ANN showed higher accuracy 
for binary classification (Level 1); for multi class 
classification (Level 2) GMM based FDI exhibited 
the best performance, in particular for actuator 
fault detection. The FDI system built is capable of 
recognizing all failures selected with acceptable 
detection times. One of the biggest challenges 
in FDI is reducing the number of false alarms. 
Although dividing the problem into two levels 
and adding a FCTW to the first level of detection 
achieved an important reduction in false alarms, 
this is still an open research problem.

Data Driven classification techniques have the 
advantage of not needing a mathematical model of 
the system, and rather tries to model data behavior. 
Although this means that less information about 
the system is needed, in many cases appropriate 
attribute sets may only be obtained through an ad hoc 

Table 5. Results Multi Level FDI Scheme.

  Detection Time  False Alarm / Missed Detection 

 Fault No.  Average  Max  Min  FA  FA Clear Time  Missed 
1 4.2Ts  7Ts  3Ts  2 3,5 Ts 0 
2  4.3Ts  8Ts  3Ts  4 3,4 Ts 0 
3 4.2 Ts 7Ts 3Ts 1 3 Ts 0 
4 17.2 Ts 24Ts 8Ts 3 4.5 Ts 0 
5 5.2 Ts  9Ts 3Ts  3 4.5 Ts 0 
6 5125 Ts  5231Ts 5055Ts 3 3.4 Ts 0 
7 2325.4 Ts  2725Ts  1627Ts  5  4.2 Ts 0 

Source: own work.



Data driven fault detection and isolation: a wind turbine scenario

Manrique Piramanrique, R. F., & Sofrony Esmeral, J.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 44 • Abril - Junio 2015 • pp. 71-82
[ 82 ]

process that requires some expert knowledge about 
the process. This may be particular useful if there is 
some historical knowledge regarding probability of 
occurrence of each fault and their cause.

One of the drawbacks in this experimentation 
is that we had a large data set that allowed us 
construct the training set in a rather simple manner. 
In practical applications this may generally not be 
the case, and the quality of the classifier may be 
affected. Although there are different techniques 
that can be used to deal with small or unbalanced 
data sets (Chawla, 2005), it is still important to 
have suitable historical data in order to be able to 
achieve the desired results.
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