
Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[15]

Tecnura
http://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/725
DOI: http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.4.a01

Investigación

Abstract
A widely adopted solution in order to obtain a low
Time to Market by a segment of Telecommunication
operators is the use of the concept of service compo-
sition because their philosophy is to reuse software
components previously implemented. The composi-
tion has two phases, the synthesis and orchestration,
understanding the second one as a challenge to con-
verged services because it requires extensive techni-
cal knowledge and experience. This article proposes
a mechanism based on graphs and Petri Nets to au-
tomate the orchestration of services in converged JS-
LEE environments, which operates at design time in
order to not affect performance in the execution of
composite services. The results demonstrate that the
mechanism can transform an abstract process with
20 component services in an executable JSLEE servi-
ce, without exceeding 500 ms.
Keywords: Automatic Orchestration, JAIN SLEE, Ser-
vice Composition.

Resumen
Una solución ampliamente adoptada para obtener
un bajo Time to Market por parte de los operadores
de Telecomunicaciones, es la utilización del con-
cepto de composición de servicios ya que su filoso-
fía es reutilizar componentes software previamente
implementados. La composición tiene dos fases, la
síntesis y la orquestación, siendo la segunda un reto
en los servicios convergentes debido a que requiere
amplio conocimiento técnico y experiencia. En este
artículo se propone un mecanismo basado en Gra-
fos y redes de Petri para automatizar la orquestación
de servicios sobre entornos convergentes JSLEE, el
cual funciona en tiempo de diseño con el propósito
de no afectar el rendimiento en la ejecución del ser-
vicio compuesto. Los resultados demuestran que el
mecanismo puede transformar un proceso abstracto
con 20 servicios componentes, en un servicio ejecu-
table JSLEE, sin superar los 500 ms.
Palabras clave: Composición de servicios, JAIN
SLEE, Orquestación Automática.

Automatic orchestration of converged services on JSLEE environment

Orquestación automática de servicios convergentes en entornos JSLEE

Jesus David Ramirez1, Juan Carlos Corrales2

Fecha de recepción: 8 de septiembre de 2014	 Fecha de aceptación: 24 de agosto de 2015

Como citar: Ramirez, J. D., & Corrales, J. C. (2015). Automatic orchestration of converged services on JSLEE envi-
ronment. Revista Tecnura, 19(46), 15-26. doi:10.14483/udistrital.jour.tecnura.2015.4.a01

1 Electronic and Telecommunications Engineer, master’s student in Telematics Engineering, University of Cauca. Popayán, Colombia. Contact:
jdramirez@unicauca.edu.co

2 Electronic and Telecommunication Engineer, master's student of Telematics Engineering, PhD in Computer Science. Professor at the Univer-
sity of Cauca. Leader of the Telematics Engineering Group. Popayán, Colombia. Contact: jcorral@unicauca.edu.co

http://dx.doi.org/10.14483/udistrital.jour.tecnura.2015.3.a02
mailto:jdramirez@unicauca.edu.co
mailto:jcorral@unicauca.edu.co

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[16]

INTRODUCTION

Currently, the advances in Information and Commu-
nication Technology (ICT) have generated among
users a growing demand for new and more persona-
lized services with greater functionality (Martinez,
et al., 2009). To meet this demand, telecommuni-
cation operators (hereafter called “operators”) have
followed new trends that incorporate Web techno-
logies to their business models. One such trend is
known as Telco 2.0 (Yoon, 2007), which aims to
integrate the concepts, technologies and services
from the Web domain with traditional services of
telecommunications domain (Telco services). Thus,
operators may expand their portfolio of services
offering converged services, which are defined as
the coordination of a set of Web and Telco services
that are implemented using different types of ne-
tworks and protocols (ITU-T, 2006) (Chudnovskyy,
Weinhold, Gebhardt, & Gaedke, 2011).

However, there are two factors that operators
should consider to develop converged services.
First, the high-performance that converged ser-
vices (for example Telco services) require to be
provided in real time and with a high degree of
availability (Johnson, Kogan, Levy, Saheban, & Ta-
rapore, 2004); and second, low Time to Market, in
other words, the time it takes for a service to be de-
veloped, since it is planned until it is launched and
offered for sale (Haran, 2011).

Accordingly, one of the possible solutions to
maintain high performance is the acquisition of
Service Delivery Platforms (SDP) that allows the
creation of new converged services with quali-
ty that an operator requires. These platforms are
based on technologies such as SIP Servlets, JAIN
SLEE (Java APIs for Integrated Networks Service
Logic Execution Environment), SCIM (Manager of
interaction between service capabilities), among
others (Bond, Cheung, & Levenshteyn, 2009).
Although, currently the specification JAIN SLEE
(hereafter called “JSLEE”) (JCP, 2008) is the most
commonly used for this purpose. JSLEE proposes
a high performance environment characterized by

high availability, low latency, which is event-dri-
ven, component-based, asynchronous iterations,
and also allows abstraction over multiple network
protocols like HTTP, SIP, SS7, among others.

Moreover, a widely adopted solution for obtai-
ning a low Time to Market, is service composition
(Dinsing, Eriksson, Fikouras, Gronowski, & Le-
venshteyn, 2007), which is defined as: the coordi-
nation of multiple services in order to ensure their
interaction for meeting a common goal (Goncalves
da Silva, 2011). The composition can reduce the
time to market of an operator or a service provider
on the Internet because its philosophy is based on
the reuse of software components previously im-
plemented, and the definition of the interactions
among them (Dan, Johnson, & Carrato, 2008).

To properly implement service composition,
it is necessary to consider its structure and pha-
ses. The structure contains the following main ele-
ments: component services, control flow and data
flow. The control flow defines the order in which
the component services are performed, conside-
ring invocations, divisions, convergence and con-
ditional in the flow. The data flow defines the way
the data is transferred among the component servi-
ces, including transformations, persistent variables
and external data (Trcka, Aalst, & Sidorova, 2008).
Moreover, the phases of the composition are two,
Synthesis and Orchestration (Küster, Stern, & Kö-
nig-Ries, 2005) (Berardi, Giacomo, Sapienza, &
Bozen, 2005).

In the synthesis, it is generated a plan that com-
bines the functionality of multiple component ser-
vices in order to define the behavior of composite
service (Küster, Stern, & König-Ries, 2005). The re-
sult of the synthesis can be described as an abs-
tract process, because it only defines the partial
flow control and does not define the data flow;
therefore, it is not an executable service. To im-
plement the synthesis, it is possible to use auto-
mated techniques usually employed in the Web
domain such as artificial intelligence planners or
semantic-based tools, such as the authors propo-
sed in (Küster, Stern, & König-Ries, 2005) (Berardi,

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[17]

Giacomo, Sapienza, & Bozen, 2005) (Rao & Su,
2005). This is possible because the abstract pro-
cesses are not executable and therefore they are
independent of the environment where the service
is performed.

Furthermore, the orchestration refers to the pro-
cess of defining in detail the data flow and con-
trol flow among the composite services using a
standard language that allows the generation of an
executable service (Goncalves da Silva, 2011) (Be-
rardi, Giacomo, Sapienza, & Bozen, 2005). To per-
form the orchestration of converged services, it is
important to consider the direct dependence be-
tween the service and the environment in which
it is executed, which is why this phase has a high
level of complexity, since for environments such
as JSLEE, it is required technical level knowledge
on different protocols, languages ​​and format of the
service logic.

In this paper, we propose a mechanism that au-
tomates the orchestration of services in converged
JSLEE environments, which operates at design time
to reduce the time consumption and increase the
performance in the service execution. This mecha-
nism facilitates the orchestration because it auto-
matically generates an executable service in JSLEE
environments from an abstract process described
in graphs.

RELATED WORKS

Given the complexity of the orchestration of con-
verged services, some works like (Zhu, Zhang,
Cheng, Wu, & Chen, 2011) (Femminella, Macche-
rani, & Reali, 2011) seek to facilitate the orches-
tration adapting techniques from the Web domain,
in which recognized languages such as BPEL (Bu-
siness Process Execution Language) or JPDL (Java
Process Description Language) are used to define
the orchestration, integrating BPEL or JBPM (Java
Business Process Manager) engines to converged
environment in order to execute the logic of com-
posite service. However, this involves developing
an intermediate module that adapts the BPEL o

JPDL orchestration to the language and format of
the converged environment; in addition, this adap-
tation is performed when the service is executed,
so the performance is not considered in the execu-
tion (Drewniok, Maresca, Rego, Sienel, & Stecca,
2009).

In (Lehmann, et al., 2009) the authors also pro-
pose convergent services orchestration using BPEL,
but unlike previous work, the adaptation module
is used at design time, so that it does not affect
performance; however, the orchestration must be
performed by means of manual techniques, which
requires advanced knowledge on different proto-
cols and asynchronous events of the telecommu-
nications domain, for which the BPEL language is
not very suitable (Bond, Cheung, & Levenshteyn,
2009). Based on the previous state of the art, it is
possible to state that the way to orchestrate servi-
ces in converged environments is not yet clear.

METHODOLOGY

To define the mechanism of automatic orchestra-
tion we first select a language for describing the
abstract processes and the executable service, for
this task, three formal models are compared ta-
king as selection criteria the model that best fits to
abstract processes and executable service charac-
teristics. Subsequently, we designed the architectu-
re mechanism, where the implementation of each
module let us pass through the abstract process, the
orchestration, the source code, the service deploy-
ment and finally to the service execution. For tes-
ting the mechanism, we develop a prototype that
allowed taking time measurements at each module
and analyze the performance of the mechanism. In
the following sections the design and testing of the
mechanism are described in detail. In the third sec-
tion, we select two formal models that may facilita-
te the description of the abstract processes and the
executable service. In section four, we present the
overall architecture of the automatic orchestration
proposal, describing each of its modules. The fifth
section is focused on the evaluation and analysis of

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[18]

performance results of the automatic orchestration
mechanism using a test tool to measure the execu-
tion time. Finally, in the fifth section, we present
the conclusions and future work.

FORMAL MODELS

As mentioned in the previous section, the automa-
tic orchestration mechanism operates from an abs-
tract process that describes the converged service.
Some of the related work, describe convergent ser-
vice with languages ​​such as abstract BPEL or JPDL
(jBPM Process Definition Language), though these
languages ​​are complex to process since they are
based on XML (eXtensible Markup Language) and,
additionally require an IDE like Netbeans or Eclip-
se to describe them. Therefore, this paper is focu-
sed on using a formal model whose main objective
is to represent the knowledge of the converged ser-
vice in order to facilitate inference of information
from the language it is described.

Below we present a comparative analysis
among the most common formal models in order
to select the one that best fits the characteristics
of both the abstract processes (synthesis) and the
resulting executable service of the orchestration
mechanism.

Types of Models

Graphs: formally a graph is a pair G = (N, E) where
N is a nonempty finite set of elements called nodes
such that N = {n1,…, nm}, and E is a set of pairs (ni,
nk) unordered of distinct elements of N called ed-
ges, such that E ⊂ N × N, where N and E are diffe-
rent and N ∩ E = ∅.

From the viewpoint of composite services,
graphs allow the modeling of the structure of a
composite service at a high level of abstraction,
representing relationships among its components
such as the data flow and control flow. Although,
the expressiveness of graphs is limited, it is possi-
ble to add some expressive power by annotating its
nodes and edges, assigning attributes on the nodes

of the graph that can register the status of execu-
tion of composite service.
Finite State Machines (FSM): are conceived as an
abstract machine that can be located in any of a fi-
nite number of states at a given time, called current
state, and can change from one state to another by
the occurrence of an event or compliance with a
specific condition, called transition. Formally, an
FSM is a 5-tuple of the form (∑, S, S0, δ, F) where: Σ
is a set of inputs, S is a set of states, S0 is the initial
state, δ is the transition function, and F is the set of
final states.

From the point of view of the composite servi-
ces, finite state machines allow the specification
of the execution flow of a service; however, it is
difficult to describe its control flow because, at a
given point, a machine can only present a single
statement limiting the performance of a compo-
site service, which may be concurrent execution
flows.
Petri Nets (PN): are a formal and graphical langua-
ge for modeling systems and processes. Formally, a
Petri Net is defined as a 5-tuple of the form: PN =
(P, T, A, W, M0), where: P = {p1, p2, ..., pm} is a finite
set of places or states, T = {t1, t2, ..., tn} is a finite set
of transitions, A ⊆ (P × T) ∪ (T × P) is the set of arcs
connecting places with transitions, W: A → {1,2,3,
...} is a weight function, M0: P → {0,1,2, ...} is the
initial marking having the places, which represents
the state at any given time. Moreover, it holds that
P ∩ T = ∅ and T ∩ P = ∅. The marking of the
PN changes when a transition is executed and this
means the markers are removed from input places
and inserted into the output places of a transition
(Grigori, Corrales, & Bouzeghoub, 2008).

From the point of view of the composition of
services, PN allows the specification and descrip-
tion of both structure and behavior of this type of
services. The expressiveness associated with this
formal model is higher than that offered by the gra-
ph and the FSM, however, it implies high compu-
tational complexity in the methods of analysis for
a system modeled with this model, which is a criti-
cal problem for processes involving the discovery,

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[19]

composition and reconfiguration of composite ser-
vices at execution time.

Selection of Models

In order to select the most appropriate model for
both the abstract process (synthesis) and the exe-
cutable service (orchestration), we have chosen
the characteristics of each phase of the composi-
tion (synthesis and orchestration) as the selection
criteria.

Below we present the characteristics of abstract
processes (Martens, 2005).

a) Abstract services: each service component is a
word that describes its functionality, but not a link to
the service that implements it.
b) Partial control flow: defines the execution order,
but abstract details such invocations.
c) Abstract Control patterns: each pattern has an ele-
ment that describes it, but no structure.
d) Data dependencies: set data dependencies be-
tween inputs and outputs of services.
e) No data flow: there is not definition of variables,
transformations or external data in the service.
f) Centralized: the control flow and data flow is im-
plemented on a single central server.
g) No executable: it does not execute directly on the
server.

In table 1, the comparison between formal mo-
dels according to the characteristics of the abstract
processes is shown. Then only the characteristics
with a marked difference between models are dis-
cussed: b) it is conditioned on FSM and PN as the-
se should describe the complete control flow, and
only in some cases they can abstract elements; c) it
is not supported on FSM and PN, because in these,
patterns require some structure to achieve a given
behavior, and only some patterns could be mode-
led with a single abstract element; d) it is condi-
tioned on the models, in graphs it would require
additional edges and labeling, in FSM and PN, the
dependencies could be marked but only among

adjacent services; e) it is not supported on FSM
and PN as these should describe the complete data
flow through the service; finally, g) it is not suppor-
ted on FSM and PN as there are tools to simulate
and implement languages ​​for this type of models.

Table 1. Comparison of models for the synthesis

Abstract Process Features Graphs FSM PN
Abstract services 2 2 2
Partial control flow 2 1 1
Abstract control patterns 2 0 0
Data dependencies 1 1 1
No data flow 2 0 0
Centralized 2 2 2
No executable 2 0 0
TOTAL 13 6 6
Supported (2), Not Supported (0) and Conditional (1)

Source: own work.

In conclusion, the formal model that best fits
the characteristics of an abstract process are gra-
phs, since this model obtained a score of 13.

Moreover, below we present the characteristics
of the executable service (orchestration), (Martens,
2005).

a) Concrete services: each service component has a
link to the service that implements it.
b) Total control flow: it defines the execution order of
all the elements required for execution.
c) Concrete control patterns: each pattern has a struc-
ture describing its implementation.
d) Data flow: it establishes the data passing among
each service including variables and transformations.
e) Additional logic: it implements additional logic of
service, such as persistence, timers or communica-
tion with the client application.
f) Standard language: it is described in some standard
language that is executable by an engine.
g) Centralized: the control and data flow are imple-
mented on a single central server.
h) No executable: it is executed directly on the server.

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[20]

In table 2, a comparison is made among the
models according to the characteristics of the exe-
cutable service (orchestration) (Martens, 2005). Be-
low we discuss only the characteristics that show
a difference among models: b) it is conditioned on
graphs because patterns as external triggers or con-
ditions of service execution would be difficult to
model, and we would have to use many labels for
this information; c) it is not supported on FSM sin-
ce having a single state, it would not support pa-
rallel flow patterns, either in graphs since it could
only label nodes but the structure would not repre-
sent the behavior patterns; d) it is not supported on
graphs because it cannot model the global varia-
bles and data transformations through the service;
e) it is not supported on graphs as these only des-
cribe the relationship among services; in FSM, it
is conditional because it could support only some
of these functions; f) it is not supported on graphs
because they do not have a standard language, in
contrast to FSM there is eCharts and for PN there is
PNML (Petri Net Modeling Language); finally, h) it
is not supported on graphs since there are no stan-
dard tools that simulate and run directly.

Table 2. Comparison of models for the orchestration

Executable Services Features Graphs FSM PN
Concrete Services 2 2 2
Total flow control 1 2 2
Concrete control patterns 0 0 2
Data flow 0 2 2
Additional logic 0 1 2
Standard Language 0 2 2
Centralized 2 2 2
Executable 0 2 2
TOTAL 5 13 16
Supported (2), Not supported (0) and Conditional (1)

Source: own work.

In conclusion, the formal model that best fits
the characteristics of executable services in con-
verged environments is Petri Nets. However, there

is a large amount of subtypes of Petri Nets, whe-
reby we chose the Colored Petri Nets (CPN), be-
cause it defines a set of special tokens which may
contain different information, implying that they
may be processed according to the data content.

ARCHITECTURE FOR AUTOMATIC
ORCHESTRATION OF CONVERGED
SERVICES

In figure 1, we present the architecture of the
implemented mechanism for automatic orchestra-
tion of converged services with all its modules. Be-
low we describe each module in detail.

TelComp2.0 Composition Environment

In order to generate the abstract processes that feed
the orchestration mechanism we use the converged
service composition environment developed in the
project TelComp 2.0 (Corrales, 2010) as it conforms
exactly to the requirements. Specifically, the abo-
ve environment is a Web application that generates
abstract processes represented by graphs, and also
uses a repository of Web and Telco services.

Figure 1. Architecture of Mechanism

Source: own work.

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[21]

In figure 2, we present an example of a ser-
vice created with the environment; the edges are
indicating the control and data flow defined for
the service; the nodes represent the component
services. The abstract process resulting from the
composition is delivered in JSON (JavaScript Ob-
ject Notation) format, which structure consists of
three parts: nodes described with a name and ID,
the control flow edges that define the source and
destination nodes through the IDs, and data de-
pendencies among nodes using the names of the
variables. For example, for figure 2, in the first
part, the components User_data, GetDataTelco-
Service and MediaCallTelcoService have these na-
mes and IDs 1, 2 and 3, respectively, while in the
second part, there is a control edge between com-
ponents 2 and 3, in the third part, there are three
data edges, from 1 to 2, from 1 to 3, and from 2 to
3, which are control edges and data edges at the
same time; for example, the data edge from 1 to
3 relates the variables Message (output 1) and Text
(input 3).

Figure 2. Example of TelComp2.0 composition
environment

Source: own work.

JSON to Graph Translator

The abstract process generated with the composi-
tion environment corresponds to a graph described
in JSON, however, this graph does not contain all
the information necessary to start the orchestration.

Therefore, this module accesses the repository of
services to supplement the information of each
service with the operations, input and output pa-
rameters, data types, and physical location. In or-
der to represent all the information of the abstract
process, we propose the graph model of figure 3,
which defines the classes on the left side: Connec-
tor representing all patterns, Service that could be
Telco or Web with its physical location, Operation
indicating the tasks or actions of service; and on
the right side, the classes: Control Edge linking two
connectors, Data Element defining the data and
its type, Association Data linking data element of
two services, Data Edge gathering several data as-
sociations. It is important to highlight that the gra-
ph and its information are implemented in the Java
language.

Figure 3. Graph model proposed for abstract processes

Source: own work.

CPN Generator

The translation from graph to CPN is based on
(Staines, 2011) where it is established that for each
service graph node, a model in CPN is defined by

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[22]

an input place (waiting invocation), an intermedia-
te transition (executing service logic) and an output
place (sending reply). This model has a high level
of abstraction for the operation of the service be-
cause its internal behavior can be described by a
number of states and transitions, which complicate
the analysis of the structure of the service. Similar-
ly, the patterns used in the graph, such as AND-
SPLIT or OR-JOIN, are modeled in CPN following
the structure defined in (Van der Aalst & Hofstede,
2012). It is clarified that the control flow patterns
of converged services that are used in the orches-
tration mechanism were specifically mentioned in
(Benavides, Enriquez, Ramirez, Figueroa, & Corra-
les, 2012); therefore, it is strongly advised that the
reader reviews this work thoroughly.

Figure 4 shows an example of the conversion
performed (graph on the top and CPN on the bo-
ttom), where the graph nodes are first analyzed
in order to define them as service or pattern and
create their respective model. Secondly, the con-
trol flow is analyzed (edges among START, Servi-
ce1, Service2 and END nodes) to create the arcs of
the CPN. Thirdly, the data flow is analyzed (edges
among User, Service1 and Service2 nodes) to defi-
ne the input data of each service through the Token
of the CPN. Finally, the information acquired is or-
ganized and the CPN is created.

Figure 4. Equivalence among services in Petri Net
graphs

Source: own work.

CPN to JSLEE Translator

This module generates a Java file (SBB) from the crea-
ted CPN corresponding to the logic of orchestrated
service. The main sub-module that allows this task is
the code generator, which uses templates as a basic
instrument; these are generic code fragments where
you can set different variables such as the input pa-
rameters of a service, the names of the events, the
global variables of the service, among others.

The sequences of steps that are performed wi-
thin this module are the following:

•	 Firstly, the event information is extracted from the
transitions; secondly, the control flow is extrac-
ted with the analysis of arcs; thirdly, the places
are analyzed to determine the states of the pro-
gram; and finally, we extract the input and output
data of service from the tokens.

•	 The identified elements are associated with Java
Templates through the Templates manager, which
extracts them from the templates repository.

•	 The code generator sets variables and assembles
the Java Templates in a specific order on a file
SBB.java and its descriptor SBB.xml.

Generator of JSLEE Service

Once generated the SBB.java, the Compile module
of SBB is responsible for generating the SBB.class.
Subsequently, with the Service Configuration mo-
dule, the necessary files of configuration are ge-
nerated for the deployable unit of JSLEE services.
These are described in figure 5.

Figure 5. Deployable unit of JSLEE services

Source: own work.

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[23]

•	 The file “jars” contains the .jar interacting in the
operation of the service, such as: sbb, event, RA and
Library. The main element is the sbb, in this .jar we
can find the .class of service and the descriptor xml.

•	 The file “META-INF” containing the descriptor of
DU (deployable unit.xml) and the meta-data file
(MANIFEST.MF)

•	 The file “services” contains the descriptor of con-
verged service.

After generating the deployable unit of conver-
gent JSLEE service, it is automatically deployed to
the server via the display module. Finally, the ser-
vice is being activated awaiting execution in the
JSLEE environment.

EVALUATION AND RESULTS

In this section, we present a preliminary test con-
sisting in a time performance evaluation of a defi-
ned mechanism, which aims to measure the time
used for execution. Thus, we have performed the
scalability test where we increased the complexity
of the submitted request (Kankanamge, 2012), in-
creasing the number of service components in the
abstract process.

Considering the advantages of Service Oriented
Architecture (SOA), the mechanism of orchestra-
tion was packed as a Web service; therefore, we
used the open source tool SOAPUI (SmartBEAR,
2012) for the rapid creation of advanced test on
web services performance (Hussain, Wang, Toure,
& Diop, 2013). The test was performed with two
computer systems connected, one with SOAPUI
and another with the mechanism, which operated
on a Linux Ubuntu 12.04 system with core i5 pro-
cessor and 4GB of RAM.

The test was executed under the following pa-
rameters: a sequence that represents a single abs-
tract process; seven executions of the same process
to calculate the geometric mean and get a more
precise value; three seconds among executions to
avoid overlaps among queries; and n (number of
component services) varying in pairs to twenty.

As expressed in figure 6, the total time of auto-
matic orchestration mechanism has a linear grow-
th, but does not exceed 500 ms for process less
than 20 services, demonstrating an efficient use of
computational resources of the mechanism. This
time is mainly performed by the translation modu-
le from JSON to graphs, because in this module,
we access to the service repository via Web servi-
ces, which requires a larger amount of computatio-
nal and network resources.

Figure 6. Time performance of mechanism.

Source: own work.

However, this could be improved by creating
a direct connection to the repository database wi-
thout using web services. Moreover, other modules
show excellent performance as they keep almost
constant in the face of the increased complexity.

CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a mechanism to auto-
mate the service orchestration in converged JSLEE
environments. This mechanism is based on graphs
and CPN to formally represent the synthesis and or-
chestration respectively, this greatly facilitated the
modeling of each phase and the implementation

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[24]

of algorithms for analysis and translation from one
phase to another.

In comparison with the first related works that
adapt the orchestration to JSLEE at execution time,
this mechanism operates at design time, therefore
it does not affect performance in the execution of
the service. The evaluation of performance showed
that although the processing time increases linear-
ly with the number of component services, for a
value of 20 services, it does not surpass the 500
ms, in this respect, the mechanism even at design
time is quite efficient.

Moreover, compared to the last related work
that also operates at design time, this mechanism
provides benefits to operators, because it allows
creating the abstract process with a Web compo-
sition environment, avoiding the handling of BPEL
designers. Furthermore, this mechanism is based
on execution flow patterns that are specific for Tel-
co services, instead of only Web domain. Therefore
this mechanism allows generating convergent ser-
vices in a very short time and in an easy way from
an abstract process, sparing them the difficult task
of orchestrating services on JSLEE environments,
which involves extensive technical knowledge and
experience.

Future work could integrate this mechanism
with proposals aimed to automate the synthesis
phase, so that all would be automatic composi-
tion, allowing, for example, by means of a request
in natural language, a converged service environ-
ment is generated in JSLEE environments.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to
the Young Researchers and Innovators Program of
Colciencias 2011 and to the University of Cauca
for funding this research (project code 3458). We
also thank the project TelComp2.0 (Project Code
1103-521-28338 CT458-2011) to facilitate the use
of the graphical composition environment and the
services repository used on this project.

REFERENCES

Benavides, A., Enriquez, G., Ramirez, J. D., Figueroa,
C., & Corrales, J. C. (2012). Control-Flow Patter-
ns in Converged Services. The Fourth International
Conferences on Advanced Service Computing, (pp.
37-42). Nice.

Berardi, D., Giacomo, G., Sapienza, L., & Bozen, B.
(2005). Automatic Composition of Process-based
Web Services : a Challenge. Analysis, 531, 1-3.

Bond, G., Cheung, E., & Levenshteyn, R. (2009). Unified
Telecom and Web Services Composition : Problem
Definition and Future Directions. IPTCOMM’09
(pág. 13). ACM.

Chudnovskyy, O., Weinhold, F., Gebhardt, H., & Gae-
dke, M. (2011). Integration of Telco Services into
Enterprise Mashup Applications. Current Trends
in Web Engineering (págs. 37-48). Springer Berlin
Heidelberg.

Corrales, J. C. (2010). Proyecto Telcomp2.0 (Financiado
mediante contrato RC 458-2011 celebrado entre la
Fiduciaria Bogotá, la Universidad del Cauca y COL-
CIENCIAS). Popayan.

Dan, A., Johnson, R., & Carrato, T. (2008). SOA service
reuse by design. Proceedings of the 2nd internatio-
nal workshop on Systems development in SOA en-
vironments SDSOA 08, (pp. 25-28).

Dinsing, T., Eriksson, G., Fikouras, I., Gronowski, K.,
& Levenshteyn, R. (2007). Service composition in
IMS using Java EE SIP servlet containers. Ericsson
Review, 3, 92-96.

Drewniok, M., Maresca, M., Rego, S., Sienel, J., & Stec-
ca, M. (2009). Experiments and performance eva-
luation of Event Driven Mashups. IEEE Symposium
on Computers and Communications (pp. 19-22).
Sousse: IEEE.

Femminella, M., Maccherani, E., & Reali, G. (2011).
Workflow Engine Integration in JSLEE AS. IEEE
Communications Letters, 15(12), 1405-1407.

Goncalves da Silva, M. E. (2011). User-centric Service
Composition–Towards Personalised Service Com-
position and Delivery. PhD Thesis, 233. Unversity
of Twente.

Automatic orchestration of converged services on JSLEE environment

Ramirez, J. D., & Corrales, J. C.

Tecnura • p-ISSN: 0123-921X • e-ISSN: 2248-7638 • Vol. 19 No. 46 • Octubre - Diciembre 2015 • pp. 15-26
[25]

Grigori, D., Corrales, J. C., & Bouzeghoub, M. (2008).
Behavioral matchmaking for service retrieval:
Application to conversation protocols. Information
Systems Journal, 33(7-8), 681-698.

Haran, H. (2011). Time to Market Research: Highlights
and Key Findings. AMDOCS-Customer Experience
Systems Innovation.

Hussain, S., Wang, Z., Toure, I., & Diop, A. (2013). Web
Service Testing Tools: A Comparative Study. arXiv
preprint arXiv:1306.4063.

ITU-T. (2006). ITU-T Recommendation Y.2013–Conver-
ged services framework funtional requirements and
architecture. TELECOMMUNICATION STANDAR-
DIZATION SECTOR OF ITU.

JCP. (2008). JAIN SLEE v 1.1. Retrieved Decem-
bre 5, 2012, from JSR 240: http://jcp.org/en/jsr/
detail?id=240

Johnson, C., Kogan, Y., Levy, Y., Saheban, F., & Tarapore,
P. (2004). VoIP reliability: a service provider’s pers-
pective. IEEE Communications Magazine, 48-54.

Kankanamge, C. (2012). Web Services Testing with
SoapUI. Packt Publishing Ltd.

Küster, U., Stern, M., & König-Ries, B. (2005). A classi-
fication of issues and approaches in automatic ser-
vice composition. Intl Workshop WESC, 5, 25-35.

Lehmann, A., Eichelmann, T., Trick, U., Lasch, R., Ric-
ks, B., & Toenjes, R. (2009). TeamCom: A Service
Creation Platform for Next Generation Networks.
Fourth International Conference on Internet and
Web Applications and Services (pp. 12-17). Venice/
Mestre: IEEE.

Martens, A. (2005). Consistency between executable
and abstract processes. IEEE International Conferen-
ce on eTechnology eCommerce and eService (pp.
60-67). IEEE.

Martinez, A., Zorita, C. B., Martin, A. M., Morchon, C.
G., Calavia, L., Perez, J. A., & Caetano, J. (2009). Te-
lecomI+D03: New Business Models: User Genera-
ted Services. IEEE Latin America Transactions, 7(3),
395-399.

Rao, J., & Su, X. (2005). A Survey of Automated Web
Service Composition Methods. Semantic Web Ser-
vices and Web Process Composition, 33(2), 43-54.

SmartBEAR. (2012). SOAPUI. Recuperado el 5 de De-
cember de 2012, de http://www.soapui.org

Staines, A. S. (2011). Rewriting Petri Nets as Directed
Graphs. International Journal of Computers, 5(2),
289-297.

Trcka, N., Aalst, W., & Sidorova, N. (2008). Analyzing
Control-Flow and Data-Flow in Workflow Processes
in a Unified Way. Computer Science Report No. 08-
31, Technische Universiteit Eindhoven, Eindhoven.

Van der Aalst, W., & Hofstede, A. (2012). Workflow Pa-
tterns. Recuperado el 5 de December de 2012, de
http://www.workflowpatterns.com/documentation/

Yoon, J.-L. (2007). Telco 2.0: a new role and business mo-
del. IEEE Communications Magazine, 45(1), 10-12.

Zhu, D., Zhang, Y., Cheng, B., Wu, B., & Chen, J. (2011).
HSCEE : A Highly Flexible Environment for Hybrid
Service Creation and Execution in Converged Ne-
tworks. Journal of Convergence Information Tech-
nology, 6(3), 264-276.

