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REVISTA UD Y LA GEOMÁTICA

INVESTIGACIÓN

ABSTRACT

Geographical object-based image analysis (GEOBIA) usually 
starts defining coarse geometric space elements, i.e. image-ob-
jects, by grouping near pixels based on (a, b)-connected graphs 
as neighbourhood definitions. In such an approach, however, 
topological axioms needed to ensure a correct representation of 
connectedness relationships can not be satisfied. Thus, conven-
tional image-object boundaries definition presents ambiguities 
because one-dimensional contours are represented by two-dimen-
sional pixels. In this paper, segmentation is conducted using a 
novel approach based on axiomatic locally finite spaces (provided 
by Cartesian complexes) and their linked oriented matroids. For 
the test, the ALFS-based image segments were classified using 
the support vector machine (SVM) algorithm using directional 
filter response as an additional channel. The proposed approach 
uses a multi-scale approach for the segmentation, which includes 
multi-scale texture and spectral affinity analysis in boundary 
definition. The proposed approach was evaluated comparative-
ly with conventional pixel representation on a small subset of 
GEOBIA2016 benchmark dataset. Results show that classifica-
tion accuracy is increased in comparison to a conventional pixel 
segmentation.

Keywords: GEOBIA, inter-pixel element, finite spaces, oriented 
matroid, SVM classification

RESUMEN

El análisis de imagenes basado en objetos geográficos (GEOBIA 
por su sigla en inglés) comienza generalmente definiendo elementos 
más gruesos del espacio geométrico u objetos de imagen, agrupan-
do píxeles cercanos con base en grafos (a, b)-conectados como 
definiciones de vecindario. En este enfoque, sin embargo, pueden 
no cumplirse algunos axiomas topológicos requeridos para garan-
tizar una correcta representación de las relaciones de conexión. Por 
lo tanto, la definición convencional de límites de objetos de imagen, 
presenta ambigüedades debido a que los contornos unidimensionales 
están representados por píxeles bidimensionales. En este trabajo, la 
segmentación se lleva a cabo mediante un nuevo enfoque basado 
en espacios axiomáticos localmente finitos (proporcionados por 
complejos cartesianos) y sus matroides orientados asociados. Para 
probar el enfoque propuesto, los segmentos de la imagen basada 
en ALFS fueron clasificados usando el algoritmo de máquina de 
soporte vectorial (SVM por su sigla en inglés) usando la respuesta 
a filtros direccionales como un canal adicional. El enfoque propues-
to utiliza un enfoque multiescala para la segmentación, que incluye 
análisis de textura y de afinidad espectral en la definición de límite. 
La propuesta se evaluó comparativamente con la representación de 
píxeles convencionales en un pequeño subconjunto del conjunto de 
datos de referencia GEOBIA2016. Los resultados muestran que la 
exactitud de la clasificación se incrementa en comparación con la 
segmentación convencional de pixeles.

Palabras clave: GEOBIA, elemento inter-pixel, espacios finitos, 
matroide orientado, clasificación SVM.

mailto:jvalero%40udistrital.edu.co?subject=
mailto:ializarazos%40unal.edu.co?subject=
https://revistas.udistrital.edu.co/index.php/UDGeo/index


UD y la Geomática • No 13. • 2018 • pp. 86-95 • p-ISSN: 2011-4990 • e-ISSN: 2344-8407
[ 87 ]

José Valero & Iván Lizarazo

Introduction

GEOBIA based image classification usually uses a given 
nearby pixel grouping scheme (Grady, 2012; Brun et al.,2003) 
to form elements of coarser grain (image-objects) which 
are then used as spatial units to apply a classification mo-
del. In this first segmentation stage, a common strategy 
is to group near pixels based on (a, b)-connected graphs 
to represent neighbourhood relationships. However, some 
ambiguities appear using such representation as topological 
requirements are not respected (Kovalevsky, 2008). Speci-
fically, digital image segmentation is heavily dependent on 
appropriate boundary definitions, also known as T0, which 
are very hard to obtain in a 2D space from 2D-elements 
as (a, b)-connected graphs (Kovalevsky, 1989). For such a 
purpose, Kovalevsky (1984); (2001); (2005); (2006), pro-
poses the use of Axiomatic Locally Finite Space (ALFS) 
provided by Cartesian complexes which rely on Abstract 
Cell Complexes (ACC). The ALFS digital space meets the 
T0 separation property by defining properly the boundary 
of higher dimension space elements by connecting lower 
dimension elements.

Valero et al., (2017) proposed a computational fra-
mework based on Cartesian complexes as well as a co-
dification of topological and geometrical features using 
oriented matroids (Whitney, 1935; Oxley, 2006) linked 
with the hyperplane central arrangement (Fukuda, 2004) 
defined by Standard Separating Forms (SSFs) (Kovalevsky, 
2008) available in the Cartesian complex (CC) geometric 
space. However, such framework does not include neither 
the spectral affinity analysis (Arbeláez et al., 2011) nor 
the multi-scale criteria when using oriented gradient for 
producing image-objects.

This paper assesses a novel segmentation approach 
based on the image segmentation procedure stablished by 
Arbeláez et al., (2011), but using a multispectral image re-
presented as a CC. Proposed segmentation approach starts 
with a grey scale image conversion based on the covariance 
matrix. Then, filter and gradient kernels are built from 

SSFs defined on each outermost 1-cell. It is followed by the 
affinity analysis using the decimating procedure introduced 
in Pont-Pont-Tuset et al., (2015), but using inter-pixel 
1-cells. For the affinity analysis, multi-scale gradients on 
each multispectral band and texture layer are used. Later, 
support vector machines algorithm (SVM) (Tso and Ma-
ther, 2009) classify the produced image-objects.

This paper is organized as follows. Section 2 describes 
the dataset used. Section 3 explains the proposed method. 
Results and discussion are presented in Section 4 and con-
clusions are drawn in Section 5.

Data

A subset of the airborne image dataset provided by Inter-
national Society for Photogrammetry and Remote Sensing 
(ISPRS) for the 2D Semantic Labelling contest was used 
in this study. The dataset consists of high resolution true 
orthophoto (TOP) tiles over Potsdam, a historic city in 
Germany. The TOP tiles are 8-bit TIFF files with four 
bands: RGBIR (R-G-B-IR). Images cover urban scenes that 
have been classified manually into six land cover classes: 
Building, Low vegetation, Tree, Car, Impervious surfaces, 
and Clutter/background. In this study, tile 4010 was se-
lected for classification. Two non-overlapping 1000×1000 
pixel windows were subset, one from (5001, 1) to (6000, 
1000) for training (Figure 1(a)) and the other one from 
(2501, 5001) to (3500, 6000) for validation (Figure 1(b)).

Methods

The main purpose of the present work is to evaluate if the 
representation of an image in terms of Cartesian complexes 
(Kovalevsky, 2008) allows a good segmentation and if the 
1-dimensional interpixel element based directional filter 
response inclusion allows to improve SVM classification 
having an additional variable.

 
	  (a) 	 (b)

FIGURE 1: Orthophoto´s true colour composition: (a) training, (b) test windows
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Therefore, the proposed approach comprised two sta-
ges: (i) image-object production (i.e. image segmentation) 
and (ii) segment-based SVM classification. The workflow 
for multispectral image segmentation and subsequent clas-
sification is shown in figure 2. To compare the additional 
variable inclusion (directional filter response) two classifi-
cation scenarios were tested: (i) using only the four bands 
as input; and (ii) using directional filtering response as 
additional input band.

The assessment comprises carrying out the entire 
process of segmentation and classification of the image 
in both representations, i.e. the Cartesian complex-based 
image segmentation and its subsequent SVM-based classi-
fication and a conventional image segmentation (Arbeláez 
et al., 2011) and its subsequent SVM-based classification.

Although the digital elevation model was available, it 
was not used because this study only compares conven-
tional pixel and Cartesian complex image representations.

Image-object production stage

The image-object production stage comprised 10 tasks, which 
are described below, proposed by Arbeláez et al., (2011). 
However, these tasks were conducted on 1-cell inter-pixel 
space elements, based on Cartesian complexes (CC), rather 
than on the conventional space of pixels. The segment Carte-
sian complex so obtained was used as super pixels (image-ob-
jects) input for subsequent classification stage.

CC (1) and grey scale (2) conversions

First, it is necessary the image conversion from the conven-
tional pixel space to the CC-based space (step 1) for having 
available inter pixel space elements. It followed the proce-
dure described in Kovalevsky (2008) applying the EquNaLi 
set membership rule (Kovalevsky, 1989) on-the-fly when 
an inter-pixel element (1-cells) was needed. Figure 3(a) 
shows a 5×5 color 2D toy image which, as a 2D Cartesian 
complex, is graphically represented including inter–pixel 
space elements.

A 2–cell in a Cartesian complex corresponds to a pixel 
of the 2D image, while the lower dimensional cells corres-
pond to the inter–pixel elements that do not exist in the 
2D image. In figure 3(b), a 2–cell is represented as a square 
area, each 1–cell is represented as a vertical or horizontal 
dark segment line corresponding to the inter–pixel element 
between the two respective pixels, and each 0–cell is re-
presented as a black dot corresponding to the inter–pixel 
element in the centre of the four respective pixels.

The finite space is completed with lower dimensional 
cells on the boundary of it. While the representation of fi-
gure 3(b) is intuitive, this suggests a non-existent “density” 
in a locally finite space; for this reason, it is preferred the 
one given in figure 3(c). There each cell of any dimension is 
represented as a dot and differentiated by its combinatorial 
coordinates but in the figure has been used colours, the 
same as in Figure 3(b), because the combinatorial coordi-
nates are not shown.

FIGURE 2. Cartesian complex-based multispectral image segmentation and SVM-based classification workflow
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In computer vision, the luminance provides more infor-
mation in distinguishing visual features, so it is preferred 
as filtering input. To obtain a single grey scale image from 
the multispectral CC image, a linear combination of all 
bands was proposed and computed based on the level of 
information provided by each band using the covariance 
matrix (Tso and Mather, 2009). The contribution of each 
band was calculated by means of equation 1.

	 	 (1)

where covi,j and covi,l are the covariance between bands 
i and j or l, n is the number of bands and l = 1,2,…,n. The 
computed weights for the training image were w1= 0.48, 
w2 = 0.25 and w3 = 0.26, while for the test image were w1 
= 0.51, w2 = 0.23 and w3 = 0.26.

Multiscale texture analysis (3) and Texture grouping (4)

A texture analysis was performed to reduce the risk that 
differences in contrast due to the texture of the area to be 
delimited are considered borders. Filter banks for texture 
recognition (Leung and Jitendra, 1996) were used in the 

filtering task, but using a central 1-cell. Each filter bank 
was composed by Gaussian derivative filter kernels each 
with an orientation, a radius around the central 1-cell and 
a granularity scale. Orientations were defined from SSFs 
available in a SSF central arrangement (Fukuda, 2004) 
(see Section 3.1.3). Filter kernels with (2n+1) × 2n 2-cells 
(pixels) were used, where n is the number of 1-cells from 
the central one. Figure 4(a) shows a rotated Gaussian filter 
kernel (biggest dots are 2-cells, smallest dots are inter-pixel 
elements and the black one is the central 1-cell) and its 
application on a small portion of the training image (fi-
gure 4(b)). The figure shows that, when the initial kernel 
(horizontal along central 1-cell) is rotated, the new kernel 
is extended and completed with zeroes in such a way that 
it contains the rotated evaluation kernel (filled dots). In 
this study, as in Arbeláez et al., (2011), a filter bank with 
2 scales (n=3, 3 √2) and 8 orientations was used for the 
texture analysis, but on each inter-pixel 1-cell.

After multiscale texture analysis, each 1-cell received a 
response vector with 8 values (the number of filter kernels 
in the filter bank). Those response vectors were grouped 
using the k-means clustering technique to produce an image 
texture with 32 texture classes. The texture class centres 
were first calculated for the training window texture analy-
sis and after applied to the test window texture analysis.

  
	 (a) 	  (b)	  (c)

FIGURE 3. A 2D image represented in a 2D Cartesian complex. (a) A colour image. (b) Image with inter-pixel elements included. (c) Digital 
representation as an abstract cell finite set

 
	 (a) 	  (b)

FIGURE 4. π\10 rotated second derivative Gaussian filter kernel (a) and its outcome when applied to a little portion of training window (b)
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Multiscale oriented gradient (5)

Boundaries correspond to image discontinuities, so it would 
be expected that a large distance between the local histo-
gram on each side, along a given orientation, should be an 
indicator of being in one of them (Arbeláez et al., 2011). 
For each scale, the oriented gradient calculation began 
defining a Manhattan distance based ball (Worboys and 
Duckham, 2004), which was centred at a 1-cell. Each ball 
was overlaid with a SSF central arrangement to produce a 
sector set (figure 5(a)). Then, for each sector, its histogram 
was calculated and then, it was combined with the others 
sector histograms on the same side in agreement with a gi-
ven orientation (figure 5(b)). The oriented gradient image 
was computed for each 1-cell placing at it a ball split in two 
half balls along each SSF orientation.

In Valero et al., (2017), the SSF set is produced passing 
each SSF over each 0-cell and the central 1-cell but this 
causes that the inner defined SSFs are contained by one or 
several outermost. In this study, the SSFs were obtained in 
such a way that each one crossed both an external 1-cell 
and a central one. Therefore, the maximum number of 
SSFs was obtained combinatorically from SSF, where n 
is a radius in number of cracks from the central one. Ori-
ented matroids (Whitney, 1935; Oxley, 2006) were used 
to produce indices for sectors considering that each SSF 
subdivides the space in three subsets (the inter-pixel ele-
ments located on that SSF and the space elements located 
on each side). Equation 2 was used to transfer the SSF 
geometry to its associated sign.

	 	 (2)

where c is a 1-cell, Hi(c) is ith SSF value at x,y combi-
natorial coordinate of c, H(x,y) = ax + by + l (Kovalevsky, 
2008) and m = a if c is a vertical 1-cell or b if c is a 
horizontal one.

The position vector (De  Loera et al., 2010) δ(c) of 
each 1-cell and its sector index were calculated as in Valero 
et al., (2017), but applying equation  2 for each SSF in 
the central arrangement (see figure 5(a). For a given ori-
entation, only the 1-cell elements on each SSF side were 
considered (shown as black dots in figure 5(b).

Oriented boundary gradient (6) and Maximum boundary 
strength (7)

In order to obtain a geometrical measurement of oriented 
boundary strength, the oriented gradient images calculated 
for each scale based on balls of several radii from the finest 
to the coarser were linearly combined for producing the 
oriented boundary gradient using equation 3.

	 	 (3)

Where c is a CC 1-cell element, s is the number of 
scales, θ is an orientation and i is the oriented gradient at 
i scale. Then, the oriented boundary gradient image was 
used for finding the maximum gradient value G(C) = maxθ 
(G(c, θ)) 

Oriented affinity analysis (8)

An affinity analysis based spectral boundary strength was 
done as by Arbeláez et al. (2011), but between pairs of 
1-cell elements inside an affinity area. The affinity area 
was defined using a Manhattan distance based ball. The 
search started with the smallest ball (only a 1-cell from 
the central one) computing each time the affinity between 
each external 1-cell and the central one. Next, the search 
proceeded in an iterative process expanding the ball by a 
1-cell in all directions each time. Then, it was computed 
the affinity between each updated external 1-cell and its 
previous 1-cell that was in the same SSF from the cen-
tral 1-cell (this is shown in figure 6(a)). While the ball 
expanded, W and D sparse matrices were progressively 
calculated.

Next, W and D matrices were used to calculate ei-
genvector images using the decimated procedure and 
software developed by Pont-Tuset et al., (2015). Then, a 
filter bank of oriented first derivative Gaussian kernels was 
applied. Finally, filtered eigenvector channels were linearly 
combined by orientation to produce the oriented affinity 
image. Figure 6(b) shows the oriented affinity outcome 
for a small portion of the training window by the most 
horizontal orientation.

	 (a) Sectors 	 (b) Ball halves

FIGURE 5: Common sectors in a 7-SSF central arrangement (a), and their combination for four SSF orientations (b)
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Oriented boundary strength (9) and Image-object (10) 
production

The oriented gradient images calculated for each scale 
along with the oriented affinity image were linearly combi-
ned by orientation for producing the oriented global boun-
dary strength using Equation 4.

	 	 (4)

Where c is a CC 1-cell element, ns is the number of 
scales, is an orientation, Gi is the oriented gradient at i sca-
le and Ga is the oriented affinity. The maximum boundary 
strength image maxθ (Gs (c, θ)) was used as input for a seg-
mentation based on a 2-levels watershed transform (Valero 
et al., 2017) and its outcome was taken as image-object 
input for the classification stage.

Classification stage

Directional filtering (11) and grouping (12)

Besides spectral channels, a directional filter response 
analysis was applied to produce an additional channel. 
First, a bank of filter for 8 orientations was produced from 
an SSF central arrangement. As in Section 3.1.3, at each 
1-cell a ball split in two halves was placed along each SSF 
orientation to produce a directional filter kernel (figure 7) 
assigning to each 2-cell in the half ball the respective sign 
based on equation 2. Then, this bank filter was applied to 
the grey scale image (obtained in Section 3.1.1) to pro-
duce at each 1-cell a response vector with as many values 
as the number of filter kernels in the filter bank. Next, as 
in section 3.1.2 these response vectors were grouped using 
the k-means clustering technique to produce a response 
class image that was used as an additional SVM classifi-
cation variable.

 
	 (a) 	  (b)

FIGURE 6: Affinity search area defined using a Manhattan distance based ball (a) and the most horizontal affinity CC calculated from all filtered 
eigenvectors (b)

FIGURE 7: Kernels used in directional filtering
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SVM-based classification scenarios (13) and accuracy assess-
ment (14)

The procedure described in Section 3.1 was applied to both 
training and test windows to produce the respective ima-
ge-object Cartesian complexes. Mean values of input bands 
and directional filter response additional channel were used 
as image-object features. Two classification scenarios were 
tested: (i) using only the four bands as input; and (ii) using 
directionally filtered images as additional input bands. Both 
conventional and CC space representation were tested at 
each scenario. Training and test reference classification 
images are shown in figure8, blue areas correspond to 
Building category, cyan to Low vegetation, green to Tree, 
yellow to Car and white to Impervious surfaces. Image 
classification and accuracy assessment processes comprised 
four steps: (i) Stratified sampling based training (table 1), 
(ii) Radiometric statistics calculation and SVM (one versus 
others)-based classification model training, (iii) SVM-ba-
sed classifications, and (iv) thematic accuracy evaluation.

TABLE 1. Number of training and testing points at 
each thematic category

Class Training Testing
Building 11651 479851
Impervious surfaces 6788 133712
Tree 5247 202528
Low vegetation 3320 133938
Clutter/background 2311 36497
Car 683 13474
Total 30000 1000000

Results and discussion

Figure  9 shows classified images obtained based on four 
spectral bands plus directional filtering responses (scenario 
2), for both conventional (left) and CC representations 
(right).

	 (a) Training	 (b) Test

FIGURE 8: ISPRS Reference classification images

 
FIGURE 9. SVM-based classification obtained from spectral channels plus directional filters for conventional (left) and CC (right) representations.
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In tables 2 and 3, rows correspond to reference classifi-
cation and columns to obtained classification. These tables 
show SVM-based classification error matrices (reference 
weighted in percentage) for conventional and CC rep-
resentations based only on the multispectral feature space 
(table 3 and conventional and CC representations based on 
the feature space extended with directional filter (Table 1). 
The overall accuracy for each classification and their re-
spective 95% confidence intervals (Tang et al., 2004) were 
calculated from the error matrices (see table 4).

As can be seen in table  4 for scenario 2 the overall 
accuracy of the classification is slightly improved when the 
representation space based on the Cartesian complexes is 

used. Although the general improvement is not significant, 
the inclusion of the multi-scale factor both in the texture 
analysis and in the calculation of the oriented gradients was 
definitive to produced CC-based image-objects comparable 
with those obtained from the conventional representation. 
The use of Cartesian complex-based watershed transform 
using multiscale texture and multispectral gradients and 
affinity analysis favoured the proper definition of super 
pixels resulting in just a small decrease in the classification 
overall accuracy (scenario 1).

On the other hand, when the directional filtering grou-
ping feature was used, the general accuracy value of the 
classification was slightly higher. This increase is small 

TABLE 2. Error matrix for classification based on four spectral channels  
for conventional (1) and CC (2) representations

Category Building Impervious 
surface Tree Low 

vegetation
Clutter/ 

background Car

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
Building 82.0 82.3 5.8 6.3 1.4 1.4 4.0 4.5 6.3 3.3 0.6 2.2
Impervious surfaces 30.7 36.8 43.1 35.3 11.0 13.0 13.6 12.4 1.3 1.8 0.3 0.6
Tree 2.5 3.2 1.9 2.1 55.6 56.3 39.6 38.1 0.2 0.1 0.2 0.2
Low vegetation 1.6 3.3 1.8 1.8 43.6 43.2 52.9 51.5 0.2 0.1 0.0 0.0
Clutter/background 22.9 27.0 12.2 14.7 12.4 12.4 44.9 38.1 1.1 1.3 6.5 6.6
Car 50.0 54.2 14.9 11.1 0.0 0.0 4.1 3.6 3.1 2.4 27.9 28.7

TABLE 3. Error matrix for classification based on four spectral channels plus directional filters  
for conventional (1) and CC (2) representations.

Category Building Impervious Tree Low Clutter/ Car
surface vegetation background

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)
Building 84.0 81.7 5.0 8.4 1.4 2.5 3.9 2.6 4.4 4.2 1.3 0.6
Impervious surfaces 33.2 17.7 41.7 58.5 12.0 10.5 12.3 10.7 0.5 2.0 0.3 0.7
Tree 2.8 2.7 2.3 2.9 57.9 61.5 36.9 32.6 0.1 0.2 0.1 0.1
Low vegetation 1.7 3.2 2.0 2.2 47.6 42.2 48.6 52.2 0.0 0.2 0.0 0.0
Clutter/background 24.5 30.8 10.8 12.4 12.8 17.7 44.7 35.9 0.6 1.8 6.6 1.5
Car 50.6 59.4 13.5 9.3 0.2 0.0 4.4 3.1 3.1 1.3 28.2 26.7

TABLE 4. Overall thematic accuracy and confidence intervals for the SVM-based classification.

Space Overall 95% confidence interval
Features representation accuracy Minimum Maximum
Spectral only Conventional 63.86 22.81 73.77

CC 62.95 21.15 71.93
Spectral + Conventional 64.51 23.29 74.28
directional filtering CC 66.87 27.38 78.24
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with respect to the result obtained from the classification 
based only on the spectral features since the response is 
scale dependent (Leung and Jitendra, 1996) and therefore, 
resulting classes are mixed depending on the combination 
of objects with different scales and texture patterns. It is 
not the case of Building class, which was the class that 
always became confused less than 20% in conventional or 
CC representations.

In spite that the assessment stage was conducted 
against the whole reference classification (i.e. an image 
composed by 1000000 pixels), the overall accuracy always 
was higher than 60%. As shown in table 4, the use of a CC 
space representation and a feature space extended with di-
rectional filtering response grouping produced a slight but 
progressive increase in overall accuracy, which is improved 
from 62.95%, in the CC representation with only spectral 
features, up to 66.87%, in the representation based on CC 
including all features. This means an improvement in the 
overall accuracy of 3.92% (scenario 2).

Conclusions

Results from this study show that the Cartesian com-
plex-based image classification, based on the Cartesian 
complex space, allows to improve the accuracy by class 
for the classification based on feature space extended with 
directional filters responses. Results also suggest that the 
inclusion of additional, directionally filtered bands, not 
always improve thematic accuracy due to the scale depen-
dence of directional filtering.

The availability of an underlying Cartesian complex 
space provides a topologically correct oriented gradient 
calculation. In a conventional space when a disk is defined 
it is recommended not using the pixel linear arrangement 
which meets the diameter along the orientation as it does 
not lay in any of two sides but in the orientation. However, 
in a complex Cartesian space, there are interpixel elements 
that allow representing this situation properly by modelling 
that dividing line based on 1-cells and not on pixels, so it 
is possible use all 2-cell. The availability of an underlying 
CC space provides a topologically correct affinity analysis. 
In contrast to the conventional representation based only 
on pixels, the existence of inter-pixel elements allows an 
adequate affinity assessment along a connecting line whose 
representation is made from a SSF (1-cell elements).

While results of the experiments show that, the benefits 
of the inclusion of an underlying space based on CC are not 
significant, the possibility to fulfil topological requirements 
suggest that the Cartesian complex-based image analysis 
framework is worth of further development. Authors will ex-
plore options to reformulate several processing tasks based 
on Cartesian complexes to produce better outcomes. This 
includes fitting cylindrical parabolas to elliptical patches at 
each 1-cell after computing oriented gradient to counteract 

the phantom border effect (i.e. to avoid producing borders 
which do not exist) (Malik et al., 2001).
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