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INVESTIGACIÓN

ABSTRACT: 

The least squares technique is a classic procedure to compute 
the coordinates of a geodetic network. Different approaches of 
this method have been developed to perform the least squares 
adjustment and thus solve the linearized system that relates 
the observations (internal geometry) and the reference system 
(external geometry). The free adjustment is a model that does 
not use fix coordinates in the design matrix, thus the solution 
does not have connection with referential system or datum. 
Therefore, the rank deficiency problem or datum defect, which 
in terms of linear algebra defines a singular matrix in the system 
of normal equations, must be solved. Two mainly approaches 
of free adjustment are used to solve a geodetic network, the 
minimum inner constraints and pseudo-inverse technique. Both 
models provide results in an arbitrary reference system, there-
fore, the S-transformation is a typical procedure to transform 
the result to a known datum. This paper presents a review 
of both methods and the necessary methodology to perform 
a free network adjustment. Finally, an example was presented 
to analyze the equivalence between both methods. The results 
obtained were compared with an estimation realized through the 
constrained adjustment.

Keywords: Least squares, Free adjustment networks, Minimum 
inner constrains, Pseudo-inverse, S- transformation.

RESUMEN

El método de los mínimos cuadrados es un procedimiento clásico 
para calcular las coordenadas de una red geodésica. Se pueden 
utilizar diferentes modelos para realizar el ajuste por mínimos cua-
drados y así resolver el sistema linealizado que relaciona las obser-
vaciones (geometría interna) y el sistema de referencia (geometría 
externa). Uno de los métodos es el ajuste libre, el cual es un modelo 
que no utiliza coordenadas fijas en la matriz de diseño, por lo que 
la solución no tiene conexión con el sistema de referencia o datum. 
Por lo tanto, el problema de la deficiencia de rango o datum en 
términos de alegra lineal define una matriz singular para el sistema 
de ecuaciones normales que tiene que ser resuelto para ajustar una 
red geodésica. Mediante este método se utilizan principalmente dos 
enfoques de ajuste libre, la técnica de restricción mínima interna y 
la técnica pseudo inversa. Ambos modelos proporcionan resultados 
en un sistema de referencia arbitrario, por lo que la S-transforma-
ción es un procedimiento típico para transformar los resultados a un 
datum o sistema de referencia conocido. En este trabajo se presen-
ta una revisión de ambos métodos y la metodología necesaria para 
realizar un ajuste de red libre. Finalmente se presentó un ejemplo 
para analizar la equivalencia entre ambos métodos. Los resultados 
obtenidos se compararon con una estimación realizada a través del 
modelo de ajuste con constreñimientos. 

Palabras clave: Mínimos cuadrados, ajuste libre de redes, res-
tricción mínima interna, Pseudo-inversa, Transformación S.
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Introduction 

The main technique for coordinates computation of a geo-
detic network is the least squares method. This method 
relates the internal geometry (observations) and the ex-
ternal geometry (parameters). An important step on the 
least square adjustment of networks is the definition of 
a referential system or datum that allows connecting the 
internal geometry with a reference system. An approach 
for the definition of the datum is the selection of control 
points belonging to the external geometry network, so the-
se points are considered fix in the design matrix during 
the adjustment procedure (absolute constrains) (Mikhail & 
Ackermann 1976, Mikhail & Gracie 1981, Teunissen 2011, 
Gemael et al. 2015, Ghilani 2018, Ogundare 2019). For the 
network adjustment process, the stability of the control 
points that define the datum is relevant, because displace-
ments in them or changing in their positions can generate 
influences on the coordinate comparison or in deformation 
network analyses. Thus, the selected control points must 
have a good stability. 

There are alternative procedures to reduce the influen-
ce of the stability of the control points among them we 
find the free adjustment. A main characteristic of the free 
network adjustment is not to consider the influence of ex-
ternal factors, therefore the errors associate to the control 
points are not considered (Mälzer et al. 1979, Blaha 1982, 
1982a, Papo 1985, Even-Tzur 2011, Even-Tzur 2015). 
Thus, the stability and consistency problems of the coordi-
nates that define the datum do not affect the adjustment 
results (Even-Tzur 2006). This characteristic is useful for 
geodetic monitoring activity, where the deformation ele-
ments can be estimated only if the control points that 
define the datum do not change between the measure-
ment epochs (Even-Tzur 2011). In general, the network is 
treated as free network when all stations are assumed as 
unstable, and hence a minimum trace datum is used trough 
of free adjustment (Setan 2001).

The absences of datum parameters in the adjustment 
procedure generates the datum defect problem. For ne-
twork adjustment by least square procedure this situation 
means that inversion of the normal equation matrix (N) 
cannot be computed by traditional techniques. Thus, the 
adjustment solution can be obtained by specific methods. 
Perelmuter (1979), Papo & Perlmutter (1981), Teunissen 
(1981), Leick (1982) and Ogundare (2019), present the 
free adjustment for networks using “minimum inner cons-
traints”, where are fixed a minimum quantity of approxi-
mate coordinates that permit the datum definition for 
1D, 2D, and 3D networks. This coordinates are added to 
design matrix A, thus de rank deficient is solved and the 
inversion of the normal equation matrix is possible. Rao 
(1972), Mittermayer (1972), Grafarend & Schaffrin (1974), 
Perelmuter (1979), Teunissen (1981), Meissl (1982) and 

Ogundare (2019), present another approach with gene-
ralized inverses, in particular the Moore-Penrose inverse, 
this method provides a mathematical solution to inversion 
of normal equation matrix. For Ogundare (2019), in the 
context of network adjustment by least squares the mini-
mal inner constraints method provides similar results that 
Pseudo-inverse. The goal of this work is to present a review 
of both methods with the main characteristics and their 
application in a geodetic network.

Least square estimation 

The least square estimation provides a solution for an 
equation system with redundancy measurements throu-
gh of a mathematical model. Particularly, for geodetic 
applications, the solution of these systems provides the 
parameters, mainly coordinates and heights (Vanicek & 
Wells 1972, Mikhail & Ackermann 1976, Mikhail & Gracie 
1981, Cross 1990, Krakiwsky 1994, Vanicek 1995, Strang 
& Borre 1997, Wells & Krakiwsky 1997, Camargo 2000, 
Nievergelt 2000, Aduol 2003, Teunissen 2011, Brinker & 
Minnick 2013, Gemael et al. 2015, Ghilani 2018, Ogundare 
2019, Schaffrin & Snow 2019). The basic functional model 
is presented in Equation 1:

1 = ∙ 1      (1)

Where y corresponds to the observation vector of dx 
dimension (m x 1), A is the design matrix (m x n) and  is 
the unknown parameters vector (n x 1).  The y vector is 
composed of surveying or geodetic measurements; there-
fore, this vector is contaminated by errors arising from 
the measurement’s procedure. Thus, in order to reduce 
these errors on the results, the observation data is greater 
than the number of unknown parameters (m > n). This 
condition, called redundancy, makes that system to be in-
consistent and the unknown parameters can be estimated 
by different techniques. The network adjustment is the 
common geodetic procedure where the data of observa-
tions is redundant, therefore, the parameter estimation or 
adjustment process is necessary, the least squares solution 
is the main technique used for the network adjustment 
(Mikhail & Ackermann 1976, Mikhail & Gracie 1981, 
Teunissen 2011, Gemael et al. 2015, Ghilani 2018, O gun-
dare 2019).

The least square solution is given by dx = N –1 · U, where 
N = (At · W · A) (normal equations) and U = At · W · y 
(vector terms), W is the weight matrix (m x m). Therefore, 
the inversion of the N matrix is possible only if its deter-
minant is different to zero (|N|≠0). Thus, the non-singular 
condition of N matrix means than the columns on the A 
matrix are not linearly dependent (Welsch 1979, Caspary 
et al 1987, Deakin 2005, Teunissen 2006, Ogundare 2019).
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Geodetic network datum

For a geodetic network, the datum is defined as the pa-
rameters (coordinates) that permit the positioning of the 
network in an arbitrary referential system (Kuang 1996, 
Strang & Borre 1997, Ogundare 2019). In other words, the 
coordinates define the rotation, translation and scale of the 
system. The number of coordinates necessary to the defi-
nition and their dimensionality depended on the network 
type (1D, 2D, 3D) and the geodetic observables. For the 
observables, each of them can define rotation, translation 
or scale. The Table 1 presents the mainly geodetic observa-
bles and the datum element that define.

For the network type, Ghilani (2018), explains that to a 
1D-network one vertical control point provides the datum 
definition (vertical translation). In addition for 2D and 3D 
classical networks, one control point (translation matrix) 
with same dimensionality of the network and one direction 
or azimuth (rotation matrix) are necessary, in both cases 
the scale is provided by the EDM sensor (observable). A 
particular case is the GNSS network, where the definition 
is done by one point, because the coordinates x,y,z provide 
the translation, the baseline components dx, dy, dz the 
orientations and scale (Ogundare 2019). Different sets of 
network configuration and parameters to define the survey 
geodetic network datum are presented in the Table 2.

According to the number of parameters that define the 
geodetic network we found two kinds of datums, over-con-
strained and minimum constrained. The over-constrained 
definition (more points than necessary to datum defini-
tion), provides a connection with referential system, that is 
an advantage. Conversely, the main problem for over-con-
straints definition is a stability and accuracy of controls 
points because the network accuracy can be affected by 
strains in the network geometry.

On the other hand, the minimum constrained datum is 
a solution without external influences. Therefore, the mea-
surements or observations define the network geometry. A 
disadvantage is the absence of control points, this means in 
relative position for the coordinates. (Caspary et al., 1987, 
Kuang 1996, Ogundare 2019).

Free adjustment

For the geodetic network, the internal geometry that is 
defined by observations of distances, directions or heights 
differences needs to be connected to a geodetic reference 
frame. For this, the external geometry composed of con-
trol coordinates are part of the least square adjustment 
process, commonly these coordinates are called constraints 
or fix parameters. This process permits to connect the ob-
servations with a geodetic reference frame (Deakin 2005, 
Teunissen 2006, Shahar & Even-Tzur 2014). For Deakin 
(2005) and Teunissen (2006), the observations provide par-
tial definitions of a geodetic datum; therefore, the datum 
definition is done when the constraints parameters are used 
in the adjustment process. 

The concept of free adjustment of geodetic networks is 
defined as the absence of fixed parameters in the adjust-
ment process, in other words, there is no set of coordinates 
of the external geometry of the network during adjustment. 
Therefore, the elements of the internal geometry (obser-
vations) do not integrate the frame of reference during 
adjustment (Mittermayer 1972, Mälzer et al. 1979, Papo 
1985, Deakin 2005, Teunissen 2006, Shahar & Even-Tzur 
2014). The absences of datum parameters in the adjust-
ment procedure generates the datum defect problem or 
rank deficient. In network adjustment by least square pro-
cedure this situation means that inversion of the normal 
equation matrix (N) cannot be obtained by traditional 
inverse procedure, because the matrix is singular, that is, 
the matrix has columns that are linear combination of the 
others. Two methods to compute the free adjustment net-
work prevail: the minimal constrained and free adjustment 
through of generalized inverses. Both methods provide a 
solution to inversion of the normal equation matrix.

Minimum inner constraints model

The minimum inner constraints model incorporates a mini-
mal amount of parameters necessary to define a referential 
system. Thus, the external geometry is not considered in 

Table 1: Observations that define datum parameters, Adapted from Kuang (1996)
Observable Translation (t) Rotation (ω) Scale (s)

Distances - - s
Horizontal directions - - -

Azimuth - ω-Z -
Zenith directions - ω-X, ω-Y -
GNSS/ Position t-X, t-Y, t-Z ω-X, ω-Y, ω-Z s

2D position differences - ω-Z s
Height differences - ω-Y, ω-Z s
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the adjustment procedure, this model is called minimum 
constraints model. Therefore, the shape and the geometric 
size of the network is defined only by the internal geometry 
(Mikhail & Ackermann 1976, Mikhail & Gracie 1981, Snow 
2002, Teunissen 2011, Ogundare 2019, Ghilani 2018). The 
normal equations (N) and the independent vector terms 
(U) to minimum inner constraints adjustment are presen-
ted following:

= ∙ ∙ + ∙       (2)

= ∙ ∙       (3)

In the normal equation N, the term G · G t is added. 
The G matrix called constrained matrix span the null space 
of A and contains the inner datum parameters that define 
the dimensionality of the network. The configuration of 
the G matrix considers the rotation, translation and scale. 
Koch (1985), Setan (1995), Kuang (1996), Acar (2006), 
Rossikopoulos et al. (2016), Kotsakis (2018) and Ogundare 
(2019) presented the set of the G matrix for 3D network 
(Equation 4)
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The first three rows of the G matrix correspond to the 
3D translations, the next three row correspond to the 3D 
rotations and the last row to the scale parameters. For 
both cases X1, Y1, Z1 are approximate coordinates of the 
network. The number of columns of the G matrix is equal 
to the number of parameters to be estimated. Thus, for a 
level network with five parameters to estimate, the transla-
tion of vertical component is expressed in the G matrix as 

G = [1 1 1 1 1]t (Setan, 1995). The adjustment parameters 
are presented in the Equation 5:

= −1 ∙ ∙ ∙ ∙ −1 ∙       (5)

The variance covariance matrix is:

= −1 ∙ ∙ ∙ ∙ −1      (6)

Generalized inverses

In free network adjustment, the inversion of the normal 
equation (N) matrix can  be computed by the generalized 
inverses (Rao 1972, Grafarend et al. 1974, Mälzer 1979, 
Leick 1982, Meissl 1982). In particular, The Moore-Penrose 
inverse is the main inverse used in geodetic networks 
problems called “Minimum norm least squares g-inverse” 
(Welsch 1979). Thus, for A  Rmxn and the linear system 
A · →x = →y with →x  Rn; →y  Rm. The Moore-Penrose 
pseudo-inverse provides a solution →x = A†→y, where A† is 
a pseudo inverse of A. This matrix is unique and has the 
following properties (Equation 7):

. ∙  † ∙ =  
. † ⋅ ∙ † = †

. ( ⋅ †) = ⋅ †

. ( † ∙ ) = † ∙       

 (7)

For full rank matrices (rows or columns linearly in-
dependent) the pseudo inverse can be obtained for non-
square matrix. Therefore, if m < n (rows linearly indepen-
dent), A† = At · (A · At)–1  and for m > n (columns linearly 
independent), A† = (At · A)–1 · At. When = n, A† = A–1.  
For matrices with deficient rank, the solution is com-
monly obtained by the Singular Value decomposition 
(SVD). Where A can be decomposed as A = UV t and 
(Burdick, 2010).

Table 2: Datum parameters, Adapted from Kuang (1996)
Network 

dimension
Observation 

type(s)
Network 

name
Datum parameters

Translation Rotation Scale

1 Height 
differences Level network 1 -- --

2 Distances Trilateration 1   0
0   1

y i0
–x i0

--

2 Angles Triangulation 1   0
0   1 

y i0
–x i0 

y i0
x i0

3 Distance / 
Angles 3D network

1   0   0
0   1   0
0   0   1

0   –z i0   y i0
z i0   0   –x i0
–y i0   x i0   0

--

* The rotation matrix correspond to the vector representation of rotations ( Zeng et al., 2015)



UD y la Geomática • No 15. • 2020 • pp. 59-68 • p-ISSN: 2011-4990 • e-ISSN: 2344-8407
[ 63 ]

The solution for least squares is

= † ∙ ∙ ∙      (8)

While the variance-covariance matrix is given by:

= †      (9)

S-transformation

The datum independence on the free network adjustment 
turns necessary the transformation of results of each epoch 
to a common datum for the particular analysis as deforma-
tion or densification,  also by defects in the network config-
uration or practical limitations (such as obstruction of the 
line of sight or destruction of points) (Setan 1995, Setan 
& Singh 2001). Thus, the S-transformation technique per-
mits the datum re-definition between referential systems or 
epochs (Baarda 1981, Gründig et al. 1985, Caspary et al. 
1987, Setan 1995, Setan & Singh 2001, Teunissen 2006, 
Acar et al. 2008, Doganalp et al. 2010, Even-Tzur 2012). 
For the S-transformation, the estimation of parameters 
(dx) and the cofactor matrix Qx are necessary (Baarda 
1981, Gründig et al. 1985, Caspary et al. 1987, Erol et 
al. 2006, Teunissen 2006, Acar et al. 2008, Doganalp et 
al. 2010, Guo 2012, Even-Tzur 2012, Schmitt 2013). The 
equations for the transformation are presented:

= ∙

= ∙ ∙

= ( − ′ ∙ ( ′ ∙ ∙ ′)−1 ∙ ′ ∙      

(10)

Where:
xj: Transformed parameters between referential system
Qxj: Transformed cofactor matrix between referential 

system
Sj: Corresponds to the transformation matrix
Ij: Corresponds the diagonal matrix for defining the 

base after S-transformation, the diagonal elements can be 
one for elements that participate into datum definition or 
zero for other points

I: Identity matrix 
G': Corresponds to the inner constraint matrix; this 

matrix is composed by rotation, translation and scale. 
For a level network composed of four points, the 

S-transformation can be explained through an example. 
For this, we considered the transformation between two 
referential systems (Caspary et al. 1987, Setan 1995):

Ordinary minimum constraints with station 1 chosen as 
the datum point

Minimum trace where all stations are used for datum 
definition

The G matrix can be defined by scale constraint, there-
fore G = [1 1 1 1]t and for case (a) Ija = [1 0 0 0]t and 
for case (b) Ijb = [1 1 1 1]t. The identity matrix has a 
dimension of 4x4. Thus, the transformation from (a) to (b) 
is defined by:

= ∙

= ( − ∙ ( ∙ ∙ )−1 ∙ ∙      
(11)

Application 

As an example, the free adjustment was applied in the 
downstream geodetic network of Salto Caxias hydroelec-
tric power station located in the Parana state, Brazil 
(Figure 1). The external geometry of this network have 
four (4) stations while the internal geometry is composed 
of six (6) distances, twelve (12) angles and one (1) azimuth 
observation (Table 3) (Granemann, 2005).

The minimum inner constraints method and pseu-
do-inverse approach were applied in network adjustment 
according to section 5 and 6 respectively. Additionally the 
constrained adjustment was calculated with the P1 point 
as fixed and oriented to point P3 (90º). The stochastic 
model of the observations corresponds to measures of va-
riability (standard deviation), therefore the weight matrix 
was defined by the inverse of variance of the observations.

��

��

��

�

��

Figure 1: 2D network of Salto Caxias

The results for the constrained adjustment are present-
ed in the Table 4, in this case, the point P1 is the control 
point or absolute constraint.

For the minimum inner constraints method the G 
matrix has a dimension of 2x8 and is composed only of 
translation parameters:

= 1 0
0 1    1 0

0 1    1 0
0 1    1 0

0 1      
(12)

For free adjustment procedure applied to nonlinear 
models, the determination of the initial coordinates and 
iterative process are a critical step. Tsutomu (1986) & Kat-
sumi (1990) related the influence of the determination of 
initial coordinates and the free adjustment results. Kotsakis 
(2012) explains the relation between the stability of the 
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network and the iterative convergent solution. Thus, the 
free adjustment applied to networks with nonlinear models 
should have a special treatment to represent the network 
geometry. In this work, we used the procedure presented 
by Tsutomu (1986), therefore the initial coordinates co-
rrespond to the adjustment coordinates obtained by the 
constrained adjustment of the same network with the point 
P3 fixed. 

In Figure 2 from Kotsakis (2012), AB line is a distance, 
the grey line represents the probable positions of point B 
with respect to point A and the red line represents the 
possible positions of B with respect to the reference sys-
tem. The B point is the real location of this coordinate. 
B1 and B2 points are two different initial coordinates for 
iterative process. In this case, the network stability is better 
if the B1 is the initial coordinate due to the proximity 
between the coordinates B1 and B.  For Ipsen (2011), this 
situation can be explained due to B1 or B2 is far from B. 
the method may not converge. This means the solution 
does not represent the network geometry. In other words, 
for rank- deficient models the convergent solution is not 
necessarily unique.

Figure 2: Adapted from Kotsakis (2012), position of initial coordinates 
to free adjustment 

The adjustment parameters and their precisions for both 
approaches are presented in Table 5:

The global test (chi-square) was applied to each ad-
justment, the results are presented in Table 6 to confidence 
level of 95% with (n-u)=(19-8)=11 degrees of freedom for 
free adjustments and (n-u)=(19-6)=13 degrees of freedom 
for the constrained adjustment.

Table 3: Network observation of downstream geodetic network of Salto Caxias hydroelectric power station
Network observations

Line
Dis-
tance 
(m)

σ (mm) Angle Value σ ('') Angle Value σ ('')

P1 
- P3 232.809 1.0 P3 P1 P4 75° 49' 39.36'' 1.4 P4 P6 P3 18° 17' 10.68'' 1.5

P6 
- P4 653.555 4.0 P4 P1 P3 17° 6' 24.84'' 1.7 P4 P6 P1 83° 58' 5.88'' 2.0

P4 
- P3 205.711 3.0 P3 P1 P6 267° 03' 

55.44'' 1.2 P1 P4 P6 20° 12' 16.2'' 2.8

P3 
- P1 581.863 3.0 P1 P6 P4 276° 01' 

53.76'' 2.0 P3 P4 P1 56° 17' 1.32'' 1.8

P1 
- P4 670.340 4.0 P6 P4 P3 283° 30' 42.1'' 2.2 P1 P3 P6 21° 23' 0.6'' 0.9

P6 
- P3 637.678 3.0 P4 P3 P1 253° 23' 29.7'' 1.1 P6 P3 P4 85° 13' 28.92'' 0.8

      Az P1 P3 90° 0'0'' 1.0      

Table 4: Constrained adjustment results

Point
Constrained least squares

X (m) σ (m) Y (m) σ  (m)
P1 1000.000 Control point 1000.000 Control point
P3 1581.8635 0.0018 1000.0000 0.0001
P4 1640.6799 0.0017 1197.1894 0.0019
P6 988.0811 0.0009 1232.5038 0.0009



UD y la Geomática • No 15. • 2020 • pp. 59-68 • p-ISSN: 2011-4990 • e-ISSN: 2344-8407
[ 65 ]

The S-transformation was applied to both adjustment 
processes, so one control point was selected (P1) and 
considered as constrained parameter, its coordinates are 
(1000.00m, 1000.00m). The measured bearings and the 
scale by the measured distances define the orientation of 
the network. The dimension of the G’ and I matrix is 2x8. 
Both matrix are presented following:

= 1 0
0 1    1 0

0 1    1 0
0 1    1 0

0 1      
(13)

= 1 0
0 1    0 0

0 0    0 0
0 0    0 0

0 0      
(14)

The adjustment vector parameters transformed throu-
gh S-Transformation is obtained through:

= +      (15)

Where x0 corresponds to initial vector of the param-
eters, the variance covariance matrix was obtained with 
equation 5. The results and their precision are presented 
in the Table 7:

Finally, differences between the free adjustments and 
constrained adjustment are summarized in the Table 8. 

Table 5: Least square solution by Pseudo-inverse approach and Minimum inner constraints method

Point
Pseudo inverse approach Minimum inner constraints

X (m) σ (m) Y (m) σ (m) X (m) σ (m) Y (m) σ (m)

P1 999.9963 0.0011 999.9966 0.0016 999.9963 0.0009 999.9966 0.0005
P3 1581.8598 0.0010 999.9966 0.0015 1581.8598 0.0009 999.9966 0.0005
P4 1640.6762 0.0011 1197.1861 0.0022 1640.6762 0.0009 1197.1861 0.0014
P6 988.0775 0.0011 1232.5005 0.0017 988.0775 0.0009 1232.5005 0.0008

Table 6: Global test to each adjustment approach

Method Estimate Critical value (95%) Status

Pseudo inverse 6.1648 19.67510 Pass
Minimum inner 

constraints 6.1648 19.67510 Pass

Parametric adjustment 6.9851 24.73560 Pass

Table 7: S-transformation results to Pseudo-inverse approach and Minimum inner constraints

Point Pseudo inverse approach Minimum  inner constraints
X (m) σ (m) Y (m) σ (m) X (m) σ (m) Y (m) σ (m)

P1 1000.000 0.0000 1000.000 0.0000 1000.000 0.0000 1000.000 0.0000
P3 1581.8635 0.0018 1000.000 0.0028 1581.8635 0.0018 1000.000 0.0000
P4 1640.6799 0.0020 1197.1894 0.0036 1640.6799 0.0017 1197.1894 0.0019
P6 988.0811 0.0015 1232.5038 0.0009 988.0811 0.0009 1232.5038 0.0009

Table 8: Summary of differences between free adjustments and constrained adjustment
Method / adjustment 

elements Pseudo-inverse Minimum inner 
constraints

Constrained 
adjustment

Coordinate unknowns 8 8 6

Datum defect X,Y Coordinates and 
orientation

X,Y Coordinates and 
orientation

X,Y Coordinates and 
orientation

Datum definition Free Free Fix
Degrees of freedom 11 11 13
Posterior variance 

 χ2 estimate
Critical value of χ2

0.5604
6.1648
19.6751

0.5604
6.1648
19.6751

0.5373
6.9851
24.7356

Global test (one – tailed) Pass Pass Pass
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Conclusions 

Two approaches for free adjustment computations were 
presented, the pseudo-inverse method that provides a 
mathematical solution to compute the inverse of normal 
equation matrix (N) and therefore maintains the classical 
formulation to the least squares. On the other hand, the 
minimum inners constraints method needs the addition of 
the G matrix, which contains the minimum parameters to 
datum definition. Thus, the G matrix spans null space to 
the design matrix A, consequently the lack of information 
of the network datum or the rank deficiency is solved and 
the inversion of the normal equation matrix is done.

For the example presented, both methods provide equi-
valent results for the parameters, and global test, therefore 
according to Ogundare (2019) it was verified the simila-
rity of both methods. The S-transformation is necessary 
to transform datum from the arbitrary referential system 
(provided by the free adjustment) to the reference datum. 
The results of the S-transformation have equivalent results 
for both methods.

One of the main differences between both methods 
(free and parametric) is related to the definition of the 
network geometry, which in the case of free adjustment is 
obtained without the need to set coordinates in the design 
matrix. Therefore, the network geometry is defined in an 
arbitrary system from the observations themselves. This 
feature is useful for evaluating the quality of a network 
adjustment.
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