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REVISTA UD Y LA GEOMÁTICA

INVESTIGACIÓN

ABSTRACT

The 2010 Deepwater Horizon (DWH) oil slick caused by the 
explosion of the Macondo well was the worst man-made disaster 
in the history of the Gulf of Mexico, and the largest marine spill 
in the history of the petroleum industry. We provide an over-
view of our efforts to monitor the extent of these slicks using 
automated algorithms for the Moderate Resolution Imaging 
Spectroradiometer (MODIS), and the Synthetic Aperture Radar 
(SAR). We discuss the advantages and limitations of each of 
the methods in detection of oil from space, and suggest that 
the NIR bands may be the best option to monitor emulsified oil 
when using passive sensors. Additionally, we discuss current la-
boratory-based efforts to measure oil thickness via holographic 
interferometry, and propose this as an ideal technique for future 
remote sensing of oil.

Key words: detection of petroleum, interferometry, lasers, MO-
DIS, SAR

RESUMEN

El derrame de petróleo causado por la explosión del pozo petro-
lero Macondo y conocido con el nombre de Deepwater Horizon 
(DWH) o el Horizonte de Aguas Profundas, fue el peor desastre 
causado por el hombre en la historia del golfo de México, así 
como el derrame marino más grande en la historia de la industria 
petrolera. Presentamos un resumen de nuestros esfuerzos para 
detectar y monitorear la extensión del derrame automáticamente, 
usando datos del radiómetro espectral de resolución moderada 
(MODIS) y del radar de apertura sintética (SAR). Así mismo, 
discutimos las ventajas y las limitaciones de cada uno de los 
métodos en la detección de petróleo. Sugerimos que las bandas 
del infrarojo cercano (NIR) son la mejor opción para monitorear 
emulsiones de petróleo con sensores pasivos. Además, relatamos 
nuestros esfuerzos de laboratorio para medir el espesor de la capa 
de petróleo, y proponemos que esta es una técnica ideal para 
implementarse en futuros sensores remotos.

Palabras clave: detección de petróleo, interferometría, láseres, 
MODIS, SAR

mailto:sonia.gallegos@nrlssc.navy.mil
mailto:ogarciapineda@fsu.edu
mailto:william.g.pichel@noaa.gov
mailto:nickoly.kukhtarev@aamu.edu
mailto:Tanja.kukhtareva@aamuu.edu
mailto:Curtis.d.armstrong@nasa.gov


UD y la Geomática • p-ISSN: 2011-4990 • e-ISSN: 2344-8407 • No 9. • 2014 • pp. 15 – 31
[ 58 ]

Remote detection of oil slicks at the ocean surface

1. Introduction

Oil, oil wastes, and general petroleum contamination pose 
environmental risks to the Gulf of Mexico waters. Primary 
inputs come from oceanic transportation and tanking, recrea-
tional activities, ship/platform and coastal facilities spills, oil 
exploration, atmospheric deposition, and non-point sources 
derived from human activities on land (National Research 
Council [NRC]., 2003, p.16). The Gulf of Mexico (GOM) is 
particularly vulnerable to oil contamination because it is a 
semi-enclosed basin, which receives the industrial waste of 
87.3 million people who live in its drainage basin (Broadus & 
Vartanov, 1994, p. 24). It is also the sixth largest hydrocar-
bon basin of the world, which produces 23% (roughly 10 mi-
llion cubic feet per day) of the USA gas production and 30% 
(1.5 million barrels per day) of its oil production. The GOM 
and Outer Continental Shelf (OCS) contains approximately 
3,800 fixed platforms that extract hydrocarbons constantly. 
2,000 of those are large platforms and 1,000 are constantly 
manned. These are connected to the mainland by 37,000 
miles of pipelines. With 42 million acres under lease, and 
many more deep water platforms expected to be constructed 
in the near future, the GOM oil leaks are bound to increase. 
Gas and oil leakage are inherent casualties of the business of 
extracting oil. Even if these were to be totally controlled, oil 
and gas seeps naturally at the bottom of the Gulf reach the 
surface intermittently. They have been estimated to cover 
approximately ~850 sq. km and ~150 sq. km of the northern 
and southern Gulf, respectively (MacDonald et al., 1996). 
Those from the northern Gulf yield about 140,000 tons per 
year (Kvenvolden & Cooper, 2003, p. 143).

In spite of the constant danger of petroleum leakage, 
there are currently no means to monitor the leakages on 
an operational basis. Agencies usually take action after oil 
slicks are reported by individuals, ships or airplanes. Our 
goal was to initiate the building of a system that could 
automatically detect the presence of oil in imagery of the 
Moderate Resolution Spectral Radiometer (MODIS) and 
the Synthetic Aperture Radar (SAR). Our effort started 
one year prior to the DWH oil spill occurrence. The data 
which became available to the project from this occurrence 
enhanced our work and enabled us to expand into labora-
tory work, which would not have been feasible otherwise. In 
this paper, we present the results of our initial and current 
efforts on oil slick detection.

2. Methods

The first approach relies on the remote identification of 
oil slicks using mathematical tools such as edge detectors, 
polygon algorithms and neural networks in both the MO-
DIS and SAR data. The second approach includes labora-
tory analyses to characterize oil and non-oiled water via 
interferometric holography.

2.1 The MODIS Algorithm

Passive sensors such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS), are not an ideal for oil de-
tection, but their data are highly desirable because of their 
coverage frequency. The visible channels, in particular can-
not differentiate oil under nadir or near-nadir conditions 
because of the absence of a spectral signature specific for 
oil. Oil is easily detected in the sunglint portion of the swa-
th where the specular reflectance of the sun over the ocean 
surface is a function of the oceanic surface slope (Hu, Li, 
Pichel, & Muller-Karger, 2009, p.1). The reflectance at the 
sea surface was first described and quantified by (Cox & 
Munk, 1954, p. 838). In this classic work, they showed that 
the sea surface could be represented by a collection of mi-
rror-like planar surfaces, each having a characteristic slope. 
The probability that a facet reflects specularly the incident 
radiation from the sun to the sensor depends on the wind 
speed and direction, and sea state. Oil on the surface of the 
ocean reduces the surface slope and modifies the sensors 
acquisition geometry. Thus, the oil patch appears bright 
amidst a less illuminated surface. The amount of energy 
received at the sensor is also a function of the thickness 
of the oil patch. Heavy crude oil will absorb much of the 
radiation and return a reduced signal, while thinner layers 
may not be able to drastically change the ocean slope, and 
not be detected at all. Figure 1 presents A MODIS image 
under sun glint conditions, the bright reflectance in the 
middle of the Gulf belong to the DWH oil spill.

Figure 1. MODIS imagery of the NE Gulf of Mexico for May 17, 2010. 
Bright pixels in the center belong to the DWH oil slick.

The MODIS algorithm consists of edge detection, edge 
sealing and polygon algorithms. It is a modified version of 
an algorithm previously developed by (Gallegos, Hawkins & 
Cheng, 1993) to identify and remove clouds in data from 
the Advanced Very High Resolution Radiometer (AVHRR). 
Because the oil pool is only apparent in the glinted ima-
gery, the algorithm is applied to the specular reflectance 
of the MODIS visible bands. The first step in the edge 
detection procedure requires the computation of the Gray 
Level Co-Occurrence (GLC) matrix. The (i,j)th element of 
the matrix is the relative frequency of occurrence of gray 
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level i and gray level j when separated by a distance or 
displacement vector (Δx, Δy) within a window or local 
neighborhood of size M x N.

Given a range of intensity levels from 0 to L-1, the GLC 
matrix is calculated from
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These computations produce a new image in which the 
center of each neighborhood is replaced with a cluster sha-
de value. Edges are produced at the site of the neighboring 
pixels whose cluster shade values are opposite in sign (zero 
crossing) and where both have cluster shade intensities 
greater or equal to a chosen threshold. The default thres-
hold is 3. This value is altered to adjust the computation 
and the generation of edges to larger and more distingui-
shable targets.

After the zero crossing test most of the edges are in 
place. However, some of these occur as isolated strings 

which are not attached to other edges. To enable these 
strings to join other strings, new thresholds and conditions 
for edge forming are set. For an array to enter the new 
computations, its center pixel must be greater or equal 
than a new threshold. The default threshold is 1. The pro-
cedure can be repeated as many as 17 times. Both the 
threshold and the repetition times can be altered to suit 
the needs of the target detection. Edge pixels are = 0, and 
non-edge pixels = 1.

The algorithm exploits differences in radiances to crea-
te edges. Heterogeneous waters produce large number of 
edges and homogenous few edges. After the zero crossing 
test most of the edges are in place. However, this simple 
edge detection is insufficient to identify targets because 
some edges occur as isolated strings. To remove the strings 
or to join them with other larger and most significant 
strings, which may or may not be part of a target of inte-
rest, a new zero-crossing test is implemented. The default 
threshold is 1. 3x3 arrays or windows of non-edge pixels are 
examined. For an array to qualify for this test its center 
must be greater or equal than the new threshold and one of 
its pixels must be an edge pixel. New edges are generated 
at the site of those pixels whose value is greater than and 
opposite in sign to the new threshold. The procedure can 
be repeated as many times as desired. To avoid excessive 
computation a number passes between 10 and 25 is desira-
ble. The default value is 17.

The result of this last computation is a binary image 
which contains areas of non-edge pixels surrounded by 
edge pixels. Initially, each line of data is screened for con-
tiguous non edge pixels. Upon encountering the beginning 
of a string in a cluster of non-edge pixels, the algorithm 
assigns it a unique 16-bit identification number. It conti-
nues to search for other contiguous non-edge pixels until 
the entire scene is segmented into clusters separated from 
each other by edges. Because this procedure generates 
large number of clusters, some of which may be noise, the 
very small clusters are eliminated from consideration if the 
number of non-edge pixels in the cluster is smaller than 
the number of pixels in its edge boundary. Then statistics 
are run on the pixels on either side of the edge surrounding 
the cluster. For a cluster to be considered “useful” the 
inside pixels must have a value equal or higher than the 
outside pixels. Glinted water has higher reflectance than 
non-glinted water.

A modified version of the algorithm was applied to nadir 
and near nadir MODIS near-infrared bands (NIR) centered 
at 1.24 µm (band 5). At NIR wavelengths greater than 0.8 
µm, seawater is highly absorbent, and the water leaving 
radiance is assumed to be negligible (black pixel). Althou-
gh this is quite true of open waters, it is not so for coastal 
waters where sediment and other particulates have signals 
at these wavelengths. Additionally, floating vegetation 
(i.e., Sargassum spp.) and thick and emulsified oil can be 
observed at NIR wavelengths, due to their backscattering 
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properties. During the DWH oil spill, (Clark et al., 2010) 
measured the reflectance of fresh oil at NIR wavelengths 
under laboratory conditions, and indicated that detection 
of oil over water was a function of the oil: water ratio, and 
oil thickness could be estimated from diagnostic organic 
C-H absorptions centered at 1.20 um, 1.73 um, and 2.37 
um (Fig 2).

Figure 2: Oil reflectance after Clark et al. (2010). The vertical broken 
lines depict the approximate location of MODIS band 5 (1.24 mm) and 
band 7 (2.13 mm).

In this figure, oil thickness is calculated from the di-
fference between the shoulders and the bottom of the in-
dentations in the spectra. (Clark et al, 2010, p.13) applied 
their laboratory findings to the data of the Airborne Vi-
sible/Infrared Spectrometer (AVIRIS) for estimating oil 
thickness and volume of oil spilled, with a high level of 
success. The estimations were mostly for surface oil since 
light penetrates only micrometers in the NIR.

The MODIS bands that approximate the oil diagnostic 
bands are centered at 1.24µm and 2.13µm, neither of which 
could be used to estimate oil thickness. In spite of this, the 
thick and emulsified oil, which tends to form clumps and 
float at the surface of the water, has a reflectance different 
from that of the surrounding clear waters. It provides a 
unique opportunity to test edge detection algorithms. For 
this effort, we used a modified version of the algorithm pre-
viously described for sun glinted MODIS data. The polygon 
algorithm was modified to accept a minimum reflectance 
of 2, and a minimum number of pixels within a polygon 
(cluster) of 400.

2.2 The SAR Oil Mapping Algorithm 

The ability of SAR to detect features at the ocean’s sur-
face depends on the interaction between the SAR pulse of 
microwave energy and the sea-surface. The radar return 
from contrasting roughness components of the sea sur-
face, which ranges from capillary waves to short gravity 
waves produce characteristic patterns in the radar imagery 
(Holt & Hillarnd, 2000). Ocean slicks are a subset of ocean 

features detected in SAR data. They are areas of distinctly 
contrasting brightness against the radar backscatter pro-
duced by wind-generated Bragg waves at length scale of 
~1 to 10cm. SAR shows the reflectivity of the sea surface 
in radar frequencies, which is significantly decreased in the 
presence of slicks which damp capillary surface waves. SAR 
data suffers from many false alarms associated with fresh 
water slicks, calm winds which tend to generate flat sur-
faces, wave shadows behind land or structures, submerged 
weed beds, and organic exudates from marine organisms, 
which produce signatures similar to those of oil slicks under 
calm wind conditions (Fingas & Brown, 2014).

The methodology used with the SAR data included 
a modified version of a Feed-Forward Neural Network 
(FFNN) classification method, known as the Textural 
Classifier Neural Network Algorithm (TCNNA), developed 
by (Garcia-Pineda, MacDonald & Zimmer, 2008, p.1265) 
which has 46 inputs, 5 hidden layers and a log-sigmoid 
transfer function at the output layer (Figure 3). Outputs 
are either 0= no slick, and 1= slick.

This method has been successful at extracting targets 
(oil seeps) and rapidly interpreting images collected un-
der a wide range of environmental conditions. Interpreted 
images produce binary arrays with imbedded geo-reference 
data that are easily stored and manipulated in GIS softwa-
re. The TCNNA was tuned for larger spills during the DWH 
spill. It uses SAR data and wind parameterizations from 
the CMOD model, which provides the backscattering coe-
fficient according to wind speed, wind direction, and inci-
dence angle. The algorithm relies on two neural nets (NN). 
The first is a mask which identifies and isolates ‘oil-like’ 
pixels in the imagery based on their backscattered energy, 
incidence angle, and wind speed. The results of the first 
NN feed into the second. The second NN performs a sta-
tistical textural classification on the ‘oil-like’ pixels. For the 
classification, it relies in bounding arrays centered on the 
pixel to be classified. The arrays are 21x21 or 51x51 pixels, 
which are used to remove non-oil pixels at different spatial 
resolutions. Texture measures such as average, smooth-
ness, third moment, entropy and uniformity are computed 
for each of the arrays. Of these, the measurements with 
the highest weights on the classification are third moment 
and entropy. The results are binary files with values 0 for 
non-oil and 1 for oil. The output of the TCNNA algorithm 
is a binary image that can be converted into a polygon 
layer in a GIS program.

2.3 Laboratory Experiments 

Neither field collections nor laboratory experiments were 
planned for the original effort on oil detection. Neverthe-
less, it would have been a missed opportunity not to obser-
ve the oil slicks, and to collect and analyze samples. The 
in situ collections which entailed measuring oil reflectance 
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with a field radiometer did not yield new insights into the 
behavior of the oil at visible wavelengths. The laboratory 
experiments, which relied on holographic interferometry 
produced interesting results. Samples were collected from 
areas of fresh petroleum located approximately five miles 
away from the Macondo well in the Gulf of Mexico. The 
samples were stored in dark bottles, sealed and maintained 
on ice in dark coolers until shipped. Water samples from 
areas not impacted by the oil were also collected, filtered 
with a GFF filter, and stored in the same manner as the 
oil. Upon reaching the laser laboratories at Alabama A & 
M University, a sample of both oil and filtered seawater or 
CDOM was placed in small shallow containers for interfero-
metric measurements. The scheme used for measurement 
appears in Figure 4.

Figure 4. Scheme used for holographic interferometric measurements

In this figure, a beam from an HE-Ne laser (0.632 µm) 
passing through a lens (F= 5cm) was shined onto a sample 
of oil-on-water or filtered sea water. The instantaneous field 
of view for the oil was ~12 cm and that for the seawater 
was ~4 cm in diameter. The beams reflected from the top 
and bottom of the sample formed interference patterns. 
These were projected onto the screen, which was placed 3 
m away from the samples. The patterns were photographed 
from the screen.

3. Results

Testing of the algorithm on oil seeps from the Gulf of 
Mexico and on the DWH oil slicks revealed that it performs 
well at the edges of the sun glint pool, which is the most 
difficult task in this type of identification. An example of 
its performance on the oil seeps can be viewed in Figure 5. 
In this Figure, thin slicks one or two pixels (~2km) in width 
cannot readily be detected because of the threshold values. 
There is a trade-off between identifying the large pools and 
leaving outside the thin lines, or identifying the thin lines 
and misidentifying large portions of the oil pool. How much 
of the oil pool is identified depends on the oil:water ratio, 
and whether or not there is enough contrast between pixels 
to obtain a stable edge, that does not get removed by the 
polygon algorithm.

Clouds and cloud shadows pose a major problem to the 
identification of oil in sun glinted imagery. The high and 
cold clouds have similar reflectance as those of the bright 
pixels in the oil-contaminated sun glint pool. Cloud sha-
dows introduce dark spots, which end up producing texture 
in the water, where it does not exist. Until a more accurate 
cloud masking technique can be found for MODIS data, 

Figure 3. Architecture of the Textural Classifier Neural Network Algorithm
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the algorithm designed to identify oil plumes in its glinted 
imagery works only on cloud free scenes,

The initial results of the MODIS algorithm testing on 
the 1.24 µm NIR imagery is presented below. Figure 6a 
depicts the southern portion of the Mississippi River Delta. 
The large dark feature to the right of it belongs to the 
DWH oil spill as it appeared on May 23, 2010. Figure 6b 
shows the entire Mississippi sound, where land is identified 
by the red pixels, and clouds as the gray pixels. The oil 
pool, identified by the MODIS oil algorithm, appears as 
the large black and white textured feature between the 

Mississippi Delta and the parenthesis drawn in the scene 
for reference purposes. Other black and white areas around 
the coast are misinterpretations of the algorithm, which 
will have to be corrected in future versions. This portion of 
the MODIS algorithm is still a work in progress.

The most successful identification of oil pools from 
space was obtained with the TCNNA algorithm on SAR 
data. Although the algorithm does not perform as well on 
large oil pools as it does on the smaller seeps, it is without 
a doubt an excellent oil detection tool. The performance of 
this algorithm on SAR data is presented in Figure 7. A more 

          (a)	 (b)
Figure 5. (a) Oil slicks apparent in the sunglint of MODIS imagery (b) The same oil slicks overlaid by the result of the MODIS algorithm (yellow pixels).

(a)	 (b)
Figure 6. (a) The Mississippi River Delta. Gray colors are oil and sediment mixture, black mass to the right is oil. (b) Oil identified by MODIS algorithm 
is white textured feature next to the parenthesis.



UD y la Geomática • p-ISSN: 2011-4990 • e-ISSN: 2344-8407 • No 9. • 2014 • pp. 15-31
[ 63 ]

Gallegos, S.C., Garcia-Pineda, O., Pichel, W., Kukhtarev, N., Kukhtareva, T., & Armstrong, D

in-depth description of the TCNNA algorithm performance 
during the DWH oil spill can be found in Garcia-Pineda et 
al., (2013).

Figure 7a presents one of the Experimental Marine Po-
llution Surveillance Reports, created by NOAA to monitor 
the displacement of the DWH oil slicks. The Report has a 
description panel on the left and a SAR image for May 2, 
2010 on the right. The dark shades on the water indicate 
low backscattering due to oil. The location of the Macondo 
well is denoted by the red dot. Figure 7b shows a shape file 
which was produced when the binary image resulting from 

the TCNNA algorithm was converted into a polygon layer 
by a GIS program. Notice the close resemblance of the oil 
features in both the SAR and the shape file.

The holographic interference patterns using a HeNe red 
laser enabled the characterization of both samples, oil-on-
water and filtered sea water or CDOM. The holographic 
interference pattern was produced by the interference of 
the wave reflected from the oil surface and wave reflected 
from the water on which the oil was floating. The results 
from the interferometric work appear in Figure 8. In this 
figure, clear water appears as black and the CDOM and oil 

(a)	             (b)
Figure 7. (a) An oil slick observed by SAR on May 2, 2010, (b) Results of the TCNNA.

          (a)	 (b)
Figure 8. (a) Interference pattern of (CDOM) (IFOV= 4 cm); (b) Interference pattern of crude oil in water (IFOV= 12 cm). Screen distance is 3 m 
for both.
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appear as red. Figure 8a shows the interferometric pattern 
of CDOM, which appears flat with some structure but no 
fringes. Conversely, Figure 8b, which belongs to the oil 
has many fringes and a distinct shape. Estimates of oil 
thickness can be accomplished by counting the number of 
fringes on the interferograms and multiplying these by the 
laser wavelength (0.633 µm).

The fringes are created when the droplet of water 
spreads over the water surface. They are the result of in-
terference between the reflected beam of light from the 
front surface of the oil and a plane wave reflected from the 
surface water.

4. Conclusions

It became apparent during the DWH oil spill that in spite 
of the many space sensors currently flying, none of them 
could provide accurate quantitative assessments needed for 
petroleum slick containment and for assessment of the eco-
logical impacts of the spill. MODIS in spite of its daily data 
acquisition could only provide useful data during sun glint. 
SAR data was constrained by its 30 m resolution, wind, 
and other artifacts that confound the interpretation of the 
data. Oil thickness, the most important parameter in an oil 
spill could only be estimated from the surface film at NIR 
wavelengths from the Airborne Visible / Infrared Imaging 
Spectrometer (AVIRIS), flown in a different and separate 
effort by NASA/Jet Propulsion Laboratory.

The analyses performed by our group for the MODIS 
and SAR data did not expand the capabilities for detection 
of these sensors. They only automated the identification 
of oil-like features, which currently are manually obtained. 
The MODIS algorithm can outline the edge of an oil slick in 
the glinted image of visible channels as long as the oil slicks 
are thicker than 2 pixels. The adapted MODIS algorithm 
for the NIR band at 1.24 µm identifies with high accuracy 
the thick and emulsified oil, exclusively. Sediment-laden 
coastal waters, such as those of the Mississippi Sound cha-
llenge the performance of the algorithm because of their 
high reflectance. We are currently, devising methodology 
to separate the sediment laden texture from that of the 
oil in the MODIS algorithm. Clouds and cloud shadows 
pose major problems for the sunglint and the NIR analyses, 
which may or may not be solved during the course of this 
investigation.

The TCNNA algorithm for SAR performs extremely 
well on oil seeps, but it needs manual removal of some 
of the polygons (false positives) that are created during 
the identification of large oil pools. In spite of this, the 
TCNNA, which has been developing since 2007, is ready 
for operational work. It was transferred to NOAA/Satellite 
Analyses Branch (SAB) in 2011.

The interferometric work had interesting results and 
relevance to oil spill detection from space. It demonstrated 

that this method can identify oil thickness, and separate 
this signal from that of CDOM in the ocean. An ideal 
space sensor for oil detection would be one that combines 
fluorescence spectroscopy and interferometry for oil cha-
racterization. Such sensor does not currently exist, but we 
suggest that it is needed and should be planned for future 
space missions.
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