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Abstract

Context: We propose a methodology to identify and label the components of a typical indoor envi-
ronment in order to generate a semantic model of the scene. We are interested in identifying walls,
ceilings, floors, doorways with open doors, doorways with closed doors that are recessed into walls,
and partially occluded windows.
Method: The elements to be identified should be flat in case of walls, floors, and ceilings and should
have a rectangular shape in case of windows and doorways, which means that the indoor structure
is Manhattan. The identification of these structures is determined through the analysis of the con-
textual relationships among them as parallelism, orthogonality, and position of the structure in the
scene. Point clouds were acquired using a RGB-D device (Microsoft Kinect Sensor).
Results: The obtained results show a precision of 99.03% and a recall of 95.68%, in a proprietary
dataset.
Conclusions: A method for 3D semantic labeling of indoor scenes based on contextual relationships
among the objects is presented. Contextual rules used for classification and labeling allow a perfect
understanding of the process and also an identification of the reasons why there are some errors in
labeling. The time response of the algorithm is short and the accuracy attained is satisfactory. Fur-
thermore, the computational requirements are not high.
Keywords: Indoor environment, Kinect, point cloud, semantic modeling.
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Resumen

Contexto: Se propone una metodologı́a para identificar y etiquetar los componentes de la estructura
de un ambiente interior tı́pico y ası́ generar un modelo semántico de la escena. Nos interesamos en la
identificación de: paredes, techos, suelos, puertas abiertas, puertas cerradas que forman un pequeño
hueco con la pared y ventanas parcialmente ocultas.
Método: Los elementos a ser identificados deben ser planos en el caso de paredes, pisos y techos y
deben tener una forma rectangular en el caso de puertas y ventanas, lo que significa que la estructura
del ambiente interior es Manhattan. La identificación de estas estructuras se determina mediante el
análisis de las relaciones contextuales entre ellos, paralelismo, ortogonalidad y posición de la estruc-
tura en la escena. Las nubes de puntos de las escenas fueron adquiridas con un dispositivo RGB-D
(Sensor Kinect de Microsoft).
Resultados: Los resultados obtenidos muestran una precisión de 99.03% y una sensibilidad de
95.68%, usando una base de datos propia.
Conclusiones: Se presenta un método para el etiquetado semántico 3D de escenas en interiores
basado en relaciones contextuales entre los objetos. Las reglas contextuales usadas para clasificación
y etiquetado permiten un buen entendimiento del proceso y, también, una identificación de las razones
por las que se presentan algunos errores en el etiquetado. El tiempo de respuesta del algoritmo es corto
y la exactitud alcanzada es satisfactoria. Además, los requerimientos computacionales no son altos.
Palabras clave: Ambientes interiores, Kinect, modelado semántico, nube de puntos.
Agradecimientos: Este trabajo fue financiado por el Departamento Administrativo de Ciencia y Tec-
nologı́a de Colombia (COLCIENCIAS) y por la Universidad Nacional de Colombia bajo el Acuerdo
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1. Introduction
The automatic 3D modeling of urban scenes is an important topic in the image processing and
machine vision field. Semantic 3D modeling of indoor environments encodes the geometry and
identity of the main components of these places such as walls, floors and ceilings. Because the
manual reconstruction of these models is a slow process prone to error, it would be ideal for this
procedure to be automatic and accurate to provide significant improvements that can aid in impor-
tant tasks in areas such as architecture and robotics [1].

In the field of architecture and construction, semantic 3D models are increasingly being used in
the process of building construction and in the phase of facility management. Furthermore, these
models are used to plan reforms and maintenance for buildings [2]. Additionally, in applications
such as robotics, semantic models endow robots with the ability to describe an environment at a
higher conceptual level. This ability is reflected in a representation that can be shared between
humans and robots [3]. Therefore, robots will be able to carry out complex tasks in cooperation
with humans [4]. Robots perceive the world through information collected by a variety of sensors,
and the most popular sensors for this type of application are cameras and range scanners, which are
used for semantic labeling of indoor [5], outdoor scenes and even underwater scenes [6].

Indoor modeling is an issue that begins with data collection, where the selection of the sensor
is important in order to acquire accurate data and design the appropriate method to handle them.
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Furthermore, this process presents many difficulties due to the diversity of indoor environments [7]–
[9]. Additionally, the quantity of objects present in these indoor environments which represent oc-
clusions and visibility problems, increase the complexity of this challenge. The method proposed
here to face the indoor modeling challenge includes: data collection, pre-processing, segmentation,
characterization and classification.

The aim of this work is focused on obtaining a semantic labeling of indoor environments with
Manhattan structure, quickly and accurately, using simple classifiers. Thus, we propose a technique
to classify and label walls, ceilings, floors, doorways with open doors, doorways with closed doors
recessed into walls, and partially occluded windows. This technique uses contextual and geometric
relationships as centroids and normal vectors (that is the indoor structure must be Manhattan [10]),
to infer the structures and classify them. Furthermore, in spite of the simplicity of the used classi-
fier, the time response of the algorithm is short and the accuracy attained is satisfactory.

Different types of sensors have been used for indoor modeling. Several researchers have faced
the problem of reconstruction and classification of scenes from a single camera [11]–[15] because
this type of sensor is not expensive, is easy to install and does not demand high computational
requirements. However, these sensors do not offer the expected precision and accuracy. Laser
Scanners are being used for detailed modeling of indoor and outdoor environments [1], [2], [16]–
[19]. The Laser Scanners provide an accurate three-dimensional measure of visible surfaces of the
environment, but this information has a low semantic level. Furthermore, the Laser Scanners have
a high cost with a complex coupling to the system. For these reasons, for indoor environments, it is
more convenient to work with a device that offers a high description level of the environment that
includes the shape, size, and geometric orientation of the objects, and it is even better if this device
provides portability and simplicity to the system. In this way, the Microsoft Kinect Sensor [20] is
proposed to face the 3D semantic modeling of indoor scenes. This device is an economic three-
dimensional sensor that not only provides color information but also depth information; thus, the
Microsoft Kinect Sensor is considered a RGB-D sensor. Although it is important to recognize that
Laser Scanners can accurately and rapidly produce data, their price is between 10 and 150 times
the price of the Kinect Sensor. Several authors have used this sensor with this purpose [3], [21],
[22].

Semantic modeling of indoor scenes requires a coherent methodology, which starts with a data
collection that allows digitalization of the environment, avoiding as much noise as possible and
obtaining a globally consistent scene. One of the better options to achieve these goals is to regis-
ter different 3D views of the scene, represented in multiple point clouds. However, because these
techniques are based on Iterative Closest Point algorithms, they require an initial guess and are not
very fast because they must find the closest point pairs [23]. For this reason, we propose to carry
out a controlled data collection strategy in which each capture is taken at a previously defined an-
gle with the purpose of creating a point cloud that represents the whole scene executing geometric
transformations, thus avoiding any error and streamlining the process.

In machine learning tasks, feature extraction plays an important role as it affects the generaliza-
tion ability and the system over-fitting. Several features can be used in the semantic labeling of
indoor scenes. Mozos et al. [24] extracted two sets of simple features from the range data. One of
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these sets comes from the image of the sensor, and the other set comes from a polygonal approx-
imation of the observed area. They use approximately 150 features. Some of these features are
area, perimeter, mean distance between centroid and the shape boundary, etc. Shi et al. [3] propose
27 features that include descriptors derived from invariant 3D moments, the number of observed
points, the volume of the convex hull, the mean and the standard deviation of the distance from
sensor to points, among others. Nüchter and Hertzber [25] and Flint et al. [26] identify existing
plans in a set of point clouds through the Random Sample Consensus (RANSAC) algorithm [27]
and assume that the biggest structures, such as ceilings, walls, and floors are characterized by their
flat and perpendicular orientation. The drawback of using a large quantity of features (curse of
dimensionality) is that the execution time of the algorithm is long, and the computational require-
ments increase without ensuring a better performance. For this reason, the number of features used
in this work is smaller, and these features are selected based on contextual relationships. These
types of features facilitate the detection and correction of errors, as they are readily observable.

The paper is organized as follows: First, an introduction of each part of the proposed methodology
is presented in Section 2. In Section 3 the pre-processing of these point clouds, their segmentation
in planes, and their characterization and classification are explained. Then, in Section 4, the seg-
mentation carried out for doorways and windows is presented. Finally, the paper concludes with
Results and Conclusion sections.

2. Data collection
Before approaching the methodology used to label indoor scenes, it is essential to clarify the im-
portance of the coordinate frame positioning relative to the scene to obtain good results. Because
the classification depends on features such as normals, centroids, and maxima and minima of the
structures to obtain more accurate results, it is important that the coordinate frame be located in a
way that the y axis is at 90◦ relative to the floor.

Point cloud registration, as implemented in this paper, is based on a geometric transformation
in which the coordinate frame is located in the camera center when the camera is vertical. Also,
it is important to clarify that the data to be registered is horizontally and vertically aligned. The
vertical sweep that is obtained is controlled by the internal motor of the sensor using the library
“Libfreenect” [28]. The program developed with this purpose grabs a point cloud every 10◦, in the
range [−30, 30◦]. While the clouds are taken, the program transforms each one of these clouds to
the coordinate frame considering that a displacement vector is generated because the origin of the
rotation axis of the Kinect is not at the camera center. To calculate this vector, a geometric analysis
is performed as shown in Figure 1.

In Figure 1, the solid black line represents the profile silhouette of the sensor, and the dotted black
line represents the sensor after vertical rotation at angle θ. Additionally, the dimension labeled as
“z” is the z axis displacement, and the dimension labeled as “y” is the y axis displacement occurring
when the sensor executes the rotation. Therefore:

y′ = Axis Length ∗ sin(90◦ − θ) (1)
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Figure 1. Geometry used to deduce the translation vector of the transformation matrix.

y = Axis Length− y′ (2)

z = Axis Length ∗ cos(90◦ − θ) (3)

Then, the transformation is executed according to the following matrix transformation:

(4)

Tx =


1 0 0 0
0 cos(θ) −sin(θ) y
0 sin(θ) cos(θ) z
0 0 0 1


For instance, the resulting point cloud obtained through the transformation of the point clouds

captured at 30◦ (Figure 2(a) and −30◦ (Figure 2(c)) to the coordinate frame at (0◦) (Figure 2(b)).
The registered cloud is shown in Figure 2(d).

Figure 2. Vertical sweep.
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Because the internal motor of the sensor does not allow the performance of horizontal sweeps, a
simple structure that has markings at each 10◦ and that is rotated manually was designed for this
purpose. When these rotations are made (being γ the rotation angle), there is no displacement vec-
tor; consequently, the matrix transformation used to perform this sweep is represented as follows:

(5)

Tx =


cos(γ) 0 sin(γ) 0

0 1 0 0
−sin(γ) 0 cos(γ) 0

0 0 0 1


After this last transformation, the point clouds compose a single scene that is ready to be pro-

cessed. Then, to summarize the process to obtain this single scene, the first step is to accomplish
multiple vertical sweeps at different horizontal angles to obtain all desired views of the scene. At
the same time, the vertical sweep is being performed, and the point clouds grabbed are being trans-
formed using Equation 4. Then, with these clouds obtained from the vertical sweeps (Figure 3a-3c),
a horizontal transformation is carried out by using Equation 5, to obtain a point cloud as show in
Figure 3d.

Figure 3. Horizontal sweep.

3. Classification of basic structures
The classification is performed considering the position of each of the segments related to the co-
ordinate frame of the point cloud and also considering the relationships among them. For instance,
both ceiling and floor have their normal on the vertical axis, are parallel, and have the biggest and
the smallest centroid position on that axis among all the other planes. The proposed methodology
is presented in Algorithm I.

3.1. Preprocessing
The point cloud pre-processing is carried out in three steps. First, we remove outliers. Second, we
perform a VoxelGrid filtering in order to reduce the number of points to be analyzed [29]. Finally,
to smooth and resample noisy data, a smoothing process based on Moving Least Squares (MLS)
is used. This smoothing process uses a KDTree method to search and set a neighborhood within a
determined radius; then, through MLS, normal vectors are calculated, and a polynomial high order
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Algorithm I. The proposed methodology for semantic segmentation of indoor environments.
Input Point Cloud of an Indoor Scene (PoC).
Step 1 Preprocess of PoC and returned as PCs.
Step 2 Segmentation of PCs in a set of nr regions R, by using Region Growing Segmentation.
Step 3 Segmentation of R on a set of P planes by using Random Sample Consensus (RANSAC).
Step 4 Characterization of each one of the n planes in P, by determining its normal vector , its centroid, and its minimum

and maximum point in each of the axes: x, y, and z.
Step 5 Classification of the ceiling and the floor planes from P, according to their normal and centroid information.
Step 6 Classification of the planes in P in a set of walls (Walls), according to some contextual relationships of their features.
Step 7 Segmentation of each one of the walls in Walls on subsets of lines Lines, by using RANSAC.
Step 8 Characterization of each one of the lines in Lines, according to some relations between them.
Step 9 Classification of doorways by using results of Step 7 and some contextual relationships.
Step 10 Classification of windows by using results of Step 7 and some contextual relationships.
Output Labeling point cloud (PoCL).

interpolation is carried out [29]. Figure 4b shows a smoothed point cloud of the tested data depicted
in Figure 4a.

Figure 4. Test point cloud.

3.2. Data segmentation and feature extraction

After a point cloud is filtered, voxelized and smoothed, the following step is to segment the point
cloud to find the boundaries of the objects or structures that integrate the 3D cloud. Cloud features
are extracted and used to find the mentioned structures faster and separately.

3.2.1. Region Growing Segmentation

The Region Growing Segmentation (RGS) method is an algorithm that merges the points that are
close enough in terms of the smoothness constraint [29]. This method begins by designating a seed
value to the point with minimum curvature (PCs0), in the evaluated neighborhood. The curvature
κ is calculated as the rotation speed of the plane tangent (T ) to the point (κ = ||dT/ds||). Then, the
region A grows with the Pt point (A ← A\Pt) until there is an abrupt change (the symbol A\Pt

means to add the point Pt to the region A) This abrupt change occurs when the curvature value of
the analyzed point is less than the threshold value (κ(Pt) < Cth); this point is then added as a new
seed (Sc ← Sc ∪ Pt), and the current seed is no longer one of these seeds. The process then starts
again.

The threshold values of curvature and angle are defined empirically through experimentation.
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3D Semantic Modeling of Indoor Environments based on Point Clouds and Contextual Relationships

The definition of these values is very important to obtain a good performance from the method.
The threshold values were varied to determine which values show the best results in the segmenta-
tion. The curvature threshold value was arbitrarily stated (the fixed value was 1.0), and the angle
threshold was fitted over this curvature. For instance, the number of clusters that must be found by
RGS for the point cloud in Figure 4a. is 33. Thus, according to the results depicted in Figure 5, the
optimal value chosen for the angle threshold is 3.5◦. These values are applicable to all the datasets
because they were grabbed and processed in the same way.

Figure 5 shows that when the angle thresh-
old is reduced an over-segmentation occurs be-
cause the algorithm is more sensible (Figure
6a). When the angle threshold is increased, the
majority of the points are not assigned to a seg-
ment (Figure 6b). All red points observed in
Figure 6 are those points that are not clustered
in a segment. With the appropriate threshold
values, the resulting segmentation for the point
cloud shown in Figure 4a. is the point cloud of
Figure 7a. A total of 33 clusters were found. Figure 5. Angle threshold vs. number of clusters.

Figure 6. Obtained segmentation.

Figure 7. Data segmentation

3.2.2. Random Sample Consensus (RANSAC) plane segmentation

This method was selected because of the flatness of ceilings, floors and walls. The first proposal
was created to segment the point clouds directly using RANSAC plane segmentation over the pre-
processed cloud. However, as RANSAC method finds geometrical planes (planes extending to
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infinity), it can take points belonging to other planes due to the intersection that occurs among
them. Furthermore, these planes are not very accurate and may be identified as a single plane,
when there are actually two or three planes. For this reason, a solution was developed to combine
this method with RGS.

We combined RANSAC with RGS instead of simply using RGS because RANSAC not only helps
us to segment the regions that RGS kept mistakenly joined, but also helps us to obtain features of
these segments by obtaining the plane coefficients that represent each one of them. RANSAC finds
all the points that fit a plane based on distance criteria. When RANSAC attains to fit a set of points
to the plane model, these coefficients correspond to the coefficients a, b, c, and d of the general
equation of the plane (Equation 6). The process is iterative and has a minimum amount of data to
fit the model. Finally, when all points have been fitted to a model, a set of planes P is created,
where P = pi and i = 1, . . . , n.

ax+ by + cz + d = 0 (6)

Every time a plane is found, the points that fit in the model are projected to this plane to im-
prove the visualization of the model. The resulting point cloud is presented in Figure 7b. Each of
the walls, floors, ceilings, and even planes of present objects inside the scene are segmented and
identified with different colors. The resulting point cloud is cleaner due to the projection obtained.

3.2.3. Characterization of the planes

The classification of all the structures is accomplished based on contextual relationships and their
position related to the coordinate frame. For instance, both floor and ceiling have their normals in
the y axis and walls are orthogonal to them (Manhattan structure). Therefore, finding the normal
vector of each one of the segments is important for the classification step. Additionally, location
and size planes help to determine if they are just part of the objects inside the scene or if they are
the structures that we are looking for.

Hence, the features used are as follows: i) Coefficients a, b, and c for each one of the n planes
found through the RANSAC plane segmentation (according to eq. 6). Where a, b, and c are the
normals of the plane pi = ~Ni = [a, b, c] or ~Ni = [nxi, nyi, nzi]. ii) Centroid of each one of the
n planes, where cx is the centroid of a plane in the x axis, cy in the y axis, and cz in the z axis:
~Ci = [cxi, cyi, czi]. iii) Maximum and minimum points of the planes in each axis of the coordinate
system. ~Min is the vector of the minimum points, and ~Max is the vector of the maximum points:
~Mini = [mxi,myi,mzi] and ~Maxi = [Mxi,Myi,Mzi].

3.3. Floor and ceiling classification
Due to the position in which the reference system of the scenes is located, the classification of
floor and ceiling is carried out using the normal and centroid information. Both ceilings and floors,
as stated above, have their normal on the y axis, and their centroids on this axis are the lowest
and the highest among all the others, correspondingly. Therefore, those planes obtained by using
RANSAC, that meet these conditions are labeled as ceiling and floor, respectively.
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3.4. Wall classification

To classify and label certain planes, such as walls, the features used were contextual features, where
it was assumed that they are always orthogonal to the floor and to the ceiling and that they have
contact with both the floor and ceiling (Manhattan indoor structure [10]). A contact threshold of
10cm is established. This threshold is created because when the RGS is applied, it is not possible
to cluster the borders of each one of the planes accurately. Therefore, the borders are not assigned
to any cluster, and a small distance between the floor and walls, and between the ceiling and walls
is generated.

After identifying some walls and occlusions, the walls are grouped based on their location and
position with respect to the coordinate frame. All walls with their normal on the x axis and their
centroid located at the positive side of this axis are grouped and counted. In the same way, all walls
that have their normal in x as well and have their centroid located on the negative side of the x axis
are grouped. The same procedure is carried out with walls that have their normal on the z axis;
they are grouped depending on the side where their centroid is located, and the number of walls
classified in these groups is counted. This clustering allows us to identify whether there is a wall
that was not labeled as a wall because it is not possible to identify an occlusion on a side where
there is not a wall. Therefore, if an occlusion is found on a side where there is no wall, it is probable
that this occlusion is really a wall, its label is changed, and it is classified as a wall. In this way, the
number of walls increases.

When all the walls have been identified, the
next step is to project into the walls all the re-
maining occlusions to avoid future non-existent
holes in walls that can later generate wrong clas-
sifications. In addition, due to fact that the RGS
method classifies as different planes those that
are totally divided by a hole generated, for ex-
ample, by an opened door, an algorithm that
clusters these types of walls into a single wall
is created. Thus, the number of walls can be re-
duced.

The semantics used to represent the structures
classified are as follows: walls are represented
in green, floors in blue and ceilings in orange.
The classification result is shown in Figure 8.

Figure 8. Basic structures of a classified indoor scene.

4. Doorway and window classification

To reduce the classification time for doors and windows, this process is carried out after labeling
the basic structures. If walls are labeled, the searching for doors and windows can be performed in
fewer planes because the doors and windows will only be located in the walls. It is important to
highlight that only open doors or doors at a different level of the wall will be classified.
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4.1. Wall segmentation
In finding and labeling doorways and windows, only the planes labeled as walls are segmented. By
means of contextual relationships, doorways and windows are not commonly known to be located
in ceilings and floors. Because the Kinect has an infrared sensor to measure depth and glass is not
able to reflect the infrared spectrum, the windows in indoor scenes are not acquired. In this way,
both windows and doorways are observed as holes in the walls. Therefore, the challenge results in
finding holes that can be doorways or windows.

Before starting with the segmentation process, the borders of the walls were found by calculating
each one of their concave hulls and then applying the RANSAC line segmentation method. A large
quantity of lines is obtained, and the lines that do not describe the borders accurately are to be
eliminated. For instance, if the concave hull of a wall contains the points shown in Figure 9a, the
segmentation obtained is the one shown in Figure 9b. It is, therefore, necessary to eliminate all
those lines that are not parallel or orthogonal to the floor.

The elimination process is accomplished by finding the angle between each one of the lines and
the normal of the floor. If the angle is different from 0◦, 90◦, 180◦, or 270◦, with a permissible
deviation, the line is eliminated (Figure 9c).

Furthermore, all the lines that represent the intersection between two planes (two walls), are
added to this set of lines, to ensure the possibility of finding doors that are not contained in a plane
but are on the border of a plane. The only condition is that in order to add these lines to the found
set, they must have contact with points of the cloud in a maximum radius of 10 cm, because we
might have a scene that was not grabbed at 360◦ or a scene in which the indoor geometry does not
have a quadrangular shape (Manhattan assumption). The radius of 10 cm is fixed because, even if
the shape of the room is quadrangular, there is a distance between planes generated by the RGS
process, as was already explained.

RANSAC lines often find two or more lines that describe the same segment, something that is
not practical because it can generate over-segmentation of the regions. For this reason, lines that
are very close to each other are also eliminated, obtaining a total of nl number of lines.

Figure 9. Wall segmentation.
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4.2. Characterization of segmented walls
All remaining lines are intersected with each other. These intersections are used to define the
distance be- tween two parallel lines; for instance, to measure the gap between two parallel lines,
the intersection points that they have with a common line are taken and compared by measuring the
distance between them. This measure is also the distance between both lines. The features taken
into account for both doorways and windows were as follows: i) The distance between parallel
lines that describe the width of the doorway or the window. If a wall has its normal on the x axis:
DW = |pntAx − pntBx|, where pntAx is the point on the x axis in which the line A intersects a
line C, and pntBx is the point on the x axis in which the line B intersects a line C. If a wall has its
normal on the z axis: DW = |pntAz − pntBz|, where pntAz is the point on the z axis in which the
line A intersects a line C, and pntBz is the point on the z axis in which the line B intersects a line
C. ii) The distance between parallel lines that describe the height of the doorway or the window:
Dh = |pntAy − pntBy|, where pntAy is the point on the y axis in which the line A intersects a line
C, and pntBy is the point on the y axis in which the line B intersects a line C. iii) The number of
points inside each one of the rectangles. An additional feature used for window classification was:
Position of the upper rectangle edge on the y axis: Pos = pnty , where pnty is a point on the y axis
belonging to a line of the upper edge of a rectangle.

4.3. Doorway classification

To create some rectangles and classify them
as doorways, the features found were used con-
sidering contextual relationships and common
features among common doorways. Regularly,
in common indoor scenes, doorways have a
minimum height of 1.8m and a maximum
height of 2.3m (1.8 ≤ Dh ≤ 2.3). In the same
way, doorways have a minimum width of 0.6m
and a maximum width of 1m (0.6 ≤ Dw ≤ 1).
For these reasons, all pairs of lines that have
these distances between them are mixed to
create rectangles that are saved as those that
describe possible doorways.

The last step to classify these rectangles is to
count each one of their inside points. Ideally, a
rectangle that represents a doorway should not
have points inside, but because the lines found
do not accurately describe the edge of the point

cloud, a threshold of 15% is defined. Therefore,
a rectangle that has less than 15% of its area full
of points is classified as a doorway. These rect-
angles are saved in a matrix called Door with
size nd.

Figure 10. Rectangle classified as a doorway.

Sometimes, the process results in various representations for a single doorway. To solve this
problem, a grouping is carried out by considering the following parameters: area, number of ver-
tical lines in common, and percentage of area full of points. In this way, all the nd rectangles are
analyzed by pairs. If the rectangles have a line in common or one of them is inside the other, the
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Figure 11. Classified windows.

rectangle with the greatest percentage of points inside is eliminated as a doorway, and the number
nd is decreased. In the case of the point cloud shown in Figure 4a, the doorway classification gives
as a result the point cloud shown in Figure 10. The brown lines are the semantics used to show a
doorway, and a red circle is added to highlight the doorway.

4.4. Window classification
Similar to the doorway classification process, to create some rectangles and classify them as win-
dows, window size restrictions and position restrictions are defined. In the case of windows, there
is not a maximum size restriction but there is a minimum size restriction. A common window has
a minimum height and width of 0.3m, where Dh ≥ 0.3, and Dw ≥ 0.3, and their upper edge is
always above the centroid in the y axis of the wall: Pos < cywall. All pairs of lines that meet these
features are combined to create rectangles that are saved as if describing possible windows. The
condition Pos < cywall is established because in a common indoor scene, a window always has
its upper edge nearer to the ceiling than to the floor. Otherwise, the rectangle could be a result of
an occlusion. As in doorway classification, a counting of points inside each one of the rectangles
is also performed, and the percentage allowed is the same. The only step previous to classifying a
rectangle as a window is to check that none of the lateral lines of this rectangle belongs to another
rectangle classified as a doorway. With the selected rectangles, the clustering is executed following
the same principles as door clustering. Figure 11 shows the windows obtained for data in Figure
4a.

5. Results
Tests were performed using a 2.6 GHz Intel Core 2 Duo processor computer with 4GB RAM, run-
ning an Ubuntu 12.10 operating system. The sensor used to grab the point clouds was a Microsoft
Kinect Sensor for XBOX 360. The libraries used were Libfreenect for Kinect’s hardware handling,
Point Cloud Library PCL 1.7 for point cloud processing [30], Eigen 3.2.0 and OpenCV libraries
for matrix and vector operations, and the Visualization Toolkit VTK 5.8 for image visualization.

The initial sensor position relative to the environment is at 0◦, both horizontally and vertically,
so that the sensor is facing a wall at a 90◦ angle. Furthermore, the Kinect is located approximately
at mid-height of the scene to ensure that both floor and ceiling are captured. The system could be
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mounted in a mobile robot, a Robotino for example, to improve the data acquisition and enlarge its
application.

The algorithm was tested in 24 scenes which contained 24 floors, 24 ceilings, 90 walls, 28 door-
ways and 20 windows. The global process applied after the data collection is: i) Pre-process the
Point Cloud; ii) Segment the pre-processed Point Cloud; iii) Characterize each one of the segments
obtained in Step ii); iv) Classify the ceiling and floor; v) Classify the walls; vi) Segment the walls;
vii) Characterize the wall segments; and viii) Classify doors and windows.

Some classifications that were carried out are shown in figure 12-15. Figure 12 is the point cloud
of a bedroom that has one window on a wall that is occluded by a bed. Figure 13 is a kitchen with
one doorway and one window; the wall of the window is also occluded. Figure 14 is the image of
a hall with two doorways. Figure 15 is another hall that has one doorway and one window divided
by a window frame; this is why the algorithm identifies two windows.

Figure 12. Classification example 1.

Figure 13. Classification example 2.
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Figure 14. Classification example 3.

Figure 15. Classification example 4.

After developing the tests by using each one of
the 24 scenes, the results obtained are shown as
a confusion matrix (Table I), where a complete
success in elements such as ceilings and floors
was achieved. Notation in Table I is: Door-
ways (Dw), Windows (Wd), Walls (Ws), Ceil-
ings (C), Floors (F), and Not classified (NC).

Tabla I. Confusion matrix of results
Dw Wd Ws C F NC

Dw 26 0 0 0 0 2
Wd 0 18 0 0 0 2
Wa 0 0 86 0 0 4
C 0 0 0 24 0 0
F 0 0 0 0 24 0

NC 1 0 0 0 0 0

The information registered in Table I is represented as True Positive (TP), False Positive (FP),
True Negative (TN), and False Negative (FN) results, obtaining a total element number (N). These
results are provided in Table II. Then, this information is used to evaluate the classifier (see
Table III). The evaluated aspects are as follows: i) Average error, the proportion of misclassifica-
tion; ii) Precision, the proportion of cases that were correctly accepted; iii) Recall or Sensitivity,
the proportion of true acceptance or the proportion of true positive elements; iv) Specificity, the
proportion of true rejection or the proportion of true negative elements; v) False positive rate, the
proportion of false acceptance; and vi) Accuracy, the accuracy of the classifier.

As mentioned above, the best results were obtained with ceilings and floors, reaching a precision
of 100%, although the results obtained for the other structures were also satisfactory. In this way,
when averaging of the algorithm performance, a precision of 99.03% and a recall of 95.68% were
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Tabla II. Criteria for the classifier evaluation of each one
of the structures

Dw Wd Ws C F
TP 26 18 86 24 24
FP 1 0 1 0 0
FN 2 2 4 0 0
TN 159 168 97 164 164
N 188 188 188 188 188

Tabla III. Classifier evaluation for each one of the struc-
tures

Dw Wd Ws C F
Average error 1.60% 1.06% 2.66% 0% 0%

Precision 96.30% 100% 98.85% 100% 100%
Recall 92.86% 90% 95.56% 100% 100%

Specificity 99.38% 100% 98.98% 100% 100%
FP rate 0.62% 0% 1.02% 0% 0%

Accuracy 98.40% 98.94% 97.34% 100% 100%

obtained. To give a qualitative idea of where the proposed method is located in relation to simi-
lar works, tables IV and V are presented, which illustrate different characteristics of the proposed
methodology.

Because the classification was based on the contextual relationships among the structures with
Manhattan assumption [10], errors found were due to: noise, scenes that have walls that are not
orthogonal; and an incorrect data collection. Taking into account all these errors, their source, and
the features that the scenes need to fulfill to be correctly identified, it is projected to extend the types
of indoor scenes to be labeled in future work. It is possible to fit the algorithm to identify all the
environments in which the ceiling is not parallel to the floor. This identification would be possible
by eliminating the condition that the ceiling has its normal vector on the y axis and by adding both
its centroid on the y axis and its minimum on the y axis, which are the smallest among the features
of the other planes. Additionally, the projection of occlusions can be improved if they are projected
in the point in which an imaginary ray from the sensor intersects with the planes identified as walls.
Finally, the labeling of other objects is possible if all of those that were not labeled and that have
some relationships among them are analyzed. For instance, planes parallel to the floor that are not
labeled as ceilings can be the top of a table under some contextual relationships.

Tabla IV. Characteristics of some semantic labelled systems Part I.

Paper Classes Sensor Processor
Computer

Processing time

Cloud Time
Size (sec)

Point cloud
register Features

Using Context to
Create Semantic 3D

Models of Indoor
Environments [1]

Wall, Ceiling and
Floor

Scanner
laser - -

Through the use
of fiducial
markers

Are, Patch orientation,
Height, Orthogonatity,
Parallelism, Adjacency

and Coplanarity

Automatic creation
of semantically rich
3D building models
from laser scanner

data [2]

Wall, Ceiling,
Floor, Window
and doorway

(partially occluded)

Scanner
laser - -

Manual
registration

Orthogonality, Parallelism,
Occupancy, Area,
Aspectratio, Size

relative to
encompassing surface

and Distances from
the sides of a rectangular

area to the edges of
the surface

3D Modeling of
Indoor Surfaces

with Occlusion and
Clutter [17]

Wall, Floor,
Ceilingand Obstacle

Scanner
laser

2.6 GHz
Intel Core 2 Duo 25470 - 13.7 -

Adjacency, Parallelism,
Intersection and

Overlapping

Our proposal

Wall, Ceiling,
Floor, Window
and Doorway

(partiallyoccluded)

Kinect
2.6 GHz

Intel Core 2
Duo

583052 - 10.14
Geometric

transformation

Patch orientation,
Patchcentroid, Patch

maximum and
Minimum, Line

parallelism,Distances
between parallel
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Tabla V. Characteristics of some semantic labelled systems Part II.
Methodology

Paper Pre-process Planes detection
and segmentation

Classification of
basic structures

Opening
detection

Classification
of door ways
and windows

Number of
test point

cloud

Using Context to
Create Semantic 3D

Models of Indoor
Environments [1]

Voxelization

Growing Region,
Rectangle with
the minimum

surrounding area,
and Total Least
Squares(TLS)

Conditional
Random

Field (CRF)

It does
not apply

It does
not apply

9 Scenes
81 Walls
11 Floors

10 Ceilings

Automatic creation
of semantically rich
3D building models
from laser scanner

data [2]

Voxelization

Growing Region,
Rectangle with
the minimum

surrounding area,
and Total Least
Squares(TLS)

Stacking
algorithm

Range
Images and
Rectangle
detection
through
Hough

Support
Vector

Machine(SVM)
13 Scenes

3D Modeling of
Indoor Surfaces

with Occlusion and
Clutter [17]

Outlier
elimination Convex Hull

Contextual
relationships

It does
not apply

It does
not apply -

Our proposal
Voxelization
and Smooth

Growing Region,
RAN-SAC planes

and Projection

Contextual
relationships

Concave Hull,
RANSAC Lines
and Rectangle

forming

Contextual
relationships

24 Scenes
90 Walls
24 Floors

24 Ceilings
28 Door-ways

The proposed system is designed to classify and label walls, ceilings, floors, doorways with open
doors, doorways with closed doors recessed into walls, and partially occluded windows. However,
there may be scenarios with doors to the level of the wall, curtained windows or glass walls. The
system should be modified to have proper operation in such cases. In the first two cases, because
the depth of objects does not change, i.e. the door or curtain are considered to be at the same level
of the wall, but there is a change in texture or color, the modification would be to incorporate to the
system color or texture descriptors, obtained from the image analysis. To deal with situations with
glass walls, given that this material has properties of non Lambertian reflectance, the reconstruction
technique of the scene should be modified. In [31] some of these reconstruction techniques are
reviewed.

6. Conclusions
This paper presents a new method for semantic labeling of indoor scenes. The methodology that
has been presented assumes a Manhattan indoor structure and is based mostly on contextual re-
lationships among the objects, such as parallelism, orthogonality, window and doorway position
related to the walls, and usual heights and widths of windows and doorways. The classification
and labeling were performed without the need for a classifier that requires both training and a large
amount data for that purpose. They were performed with contextual rules that allow an easy un-
derstanding of the process and also an identification of the reasons why there are some errors in
labeling.

Furthermore, the data were captured with a low-cost sensor with a low resolution, and the com-
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puter employed to perform the tests has a processor that is below the standard. Although the
algorithm can be tied to the way in which the data were collected, both the accuracy of labeling and
processing time are satisfactory, and the computational requirements are closer to real time.

The next step is to continue with the improvement of this system. Firstly, making it less depen-
dent on data collection and enlarging the objects or structures that can be identified, and particularly
expanding the structures of indoor environments to structures that do not meet the Manhattan as-
sumption. Secondly, assembling the acquisition system in a mobile robot.

References
[1] Xuehan Xiong and Daniel Huber, Using Context to Create Semantic 3D Model of Indoor Environments. Proceed-

ings of the British Machine Vision Conference, 2010, pp. 1-11.
[2] Xuehan Xiong, Antonio Adan, Burcu Akinci and Daniel Huber, Automatic creation of semantically rich 3D build-

ing models from laser scanner data. Automation in Construction, Volume 31, May, 2013, pp. 325-337.
[3] Lei Shi, Sarath Kodagoda and Ravindra Ranasinghe, Fast indoor scene classification using 3D point clouds, Pro-

ceedings of Australasian Conference on Robotics and Automation (ACRA), 2011.
[4] Lei Shi, Sarath Kodagoda and Gamini Dissanayake, Laser range data based semantic labeling of places, Interna-

tional Conference on Intelligent Robots and Systems (IEEE/RSJ), 2010, pp. 5941-5946.
[5] Radu Rusu, Zoltan Marton, Nico Blodow, Andreas Holzbach and Michael Beetz, Model-based and learned se-

mantic object labeling in 3D point cloud maps of kitchen environments. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2009, pp. 3601-3608.
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