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Framing ATM Cells for
Satellite Onboard Switching

ABSTRACT

In this paper we analyze a simple model to study
the convenience of grouping ATM cells into frames
before transmission over satellite channels for
onboard switching, We consider a switch where the
input/output potts are mapped to the spot beams
of the satellite, with several Bernoulli users within
each spot beam. We obtain exact results for the delay
in the terrestrial multiplexing system, based on the
grouping of states of a Markov chain into equivalent
cost classes. Then we obtain an approximate solution
for the onboard switch delay, based on a search
algorithm of the most probable states in an infinite-
sate Markov chain.

By using this kind of framing we reduce the
number of switching operation per unit time, so we
can use smaller and lighter onboard switches.
However, although we also reduce the contention
for accessing the uplink channel, this reduction
cannot always compensate for the additional delay
we incur during the framing process.

Index Terms: ATM-over-satellite, Most probable
states, Performance bounds.

l. INTRODUCTION

THERE are many reasons to interconnect satellite
and ATM networks, mainly the possibility of very
fast deployment of large-scale broadband services
over wide geographical areas. However, several
problems arise that prevents a seamless integration
of these two technologies. For example, the cell
transport method should be adapted to the burst
error characteristics of satellite links, which are very
different to those of fiber optic; the link access
schemes should be optimized for ATM technology;
more elaborate traffic management procedures are
necessary in order to maintain the QoS of ATM
connections over satellite channels; etc.[1].
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Several of these problems can be better dealt with
if we allow for onboard processing. In fact, the
requirement of inexpensive and small user terminals
has been satisfied by the use of multiple beams, which
suggests the possibility of some form of switching
between beams. Of course, the space environment
imposes several constraints to the onboard switches,
which should be added to the typical system
requirements found in terrestrial networks. These
constraints include, mainly, lightweight to meet the
size, mass and power limitations of the satellite, and
increased fault tolerance to meet the expected life
reliability of the satellite [2].

For all these reasons, it has been asked if terrestrial
ATM cells should be grouped into frames before
transmission over satellite channels for onboard
switching [3]. In effect, if each user sends its cells
directly to the satellite, the contention will work in a
cell basis as well as the onboard switching operations,
i.e., one contention and one switching operation per
cell slot. But if we form clusters of users within each
spot beam, grouping their cells into frames according
to their destination and sending these frames to the
satellite, then the number of contenders, the number
of contentions and the number of switching
operations will be reduced. Furthermore, such
framing process can be easily implemented with
current ATM-satellite multiple access schemes such
as MF-TDMA.

In this report we consider an onboard switch where
the input/output ports ate mapped to the spot
beams, with several Bernoulli users within each spot
beam. To compare the framing concept with direct
cell transmission we propose a very simple model
and find approximations for the average delay. These
approximations can be made arbitrarily close to the
actual delay with a tradeoff between accuracy and
computational cost.

The paper is organized as follows. In the second
part we describe the multiplexing system and the
mathematical model. In the third part we develop a
performance analysis on this model, which leads to
approximate results on the average delay. After some
numerical results, we give some conclusions and des-
cribe the additional work to be done. An important
result is proved in the appendix.
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Il. THE MULTIPLEXING SYSTEM

We consider a satellite communication system that
uses an onboard switch in which the input/output
ports are mapped to the spot beams of the satellite,
where there are several Bernoulli users competing
for the uplink channel access.

If each user sends its cells directly to the satellite,
there will be a contention every cell slot among those
users that have pending cells in that cell slot. Also,
the satellite switch must work in a cell basis, i.e., it
must switch each cell independently of the others.
This would require a very fast switch, with
corresponding implications on mass, size and power
consumption.

If we form clusters of users within each spot beam,
grouping their cells into frames according to their
destination and sending these frames to the satellite,
then the number of contenders will be reduced since
now contention will not be among users but among
clusters within each spot beam. Also the number of
contentions per unit of time will be reduced if the
frames are not transmitted at every cell slot but at
longer frame periods. And, most important, the
number of switching operations per unit time will
also be reduced because of the longer frame periods
and because switching the first cell of a frame will
be enough to switch all the cells of that frame. This
would requite a simpler and slower switch, but can
have a negative impact on the QoS parameters of
the ATM connections.

Since we are interested in comparing these two
alternatives regarding the grouping of cells into
frames, we pay no attention to other aspects of the
multiplexing systems. In particular, the onboard swit-
ch gets the arriving cells directly to their output port
queues with no blocking nor delays. We do not even
consider propagation delays.

For the mathematical model, we consider two
output ports and two users at each spot beam trying
to access these ports. The sources are iid Bernoulli
processes, each one generating one cell per slot with
probability p. The destination of each cell is selected
independently and equally likely. Within each spot
beam there is a frame builder as well as two separate
buffers for each kind of cells. The frame builder looks
at these queues every T slots. If at least one of the
queues has # or more cells, a frame is constructed
with up to T cells taken from the longest queue.
Otherwise, no frame is constructed. The frames atre
sent through the uplink to their corresponding output
port with no switching overhead, where they are
served at a rate of one cell per slot (Figure 1).

Looking at the system at frame periods of T cell
slots we find an embedded Markov chain whose state
is given by the lengths of each of the six queues, as
seen by the frame builders. In effect, given the current

state, the next state will depend only on the number
of arrivals to each terrestrial queue during the next
frame period, which is a tetradimensional random
vector, independent from past and future arrivals.
However the huge cardinality of this Markov chain
makes it very difficult to carry out an exact analysis
of this model, so we will also look for
approximations. These approximations can be made
arbitrarily close with a tradeoff between accuracy and
computational cost.
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Figure 1. Mathematical model for frame transmission

In the next section, the doubly infinite state space
cardinality of the terrestrial queues is reduced by the
systematic approach for the construction of bounds
presented in [4]. Furthermore, this approach will lead
us to an exact solution obtained from the analysis of
a much simpler system.

Notice that the satellite queues are deterministic
servers fed with batch arrivals occurring during the
phase transition of a multidimensional Markov chain
of infinite cardinality in each dimension, for which
the bound construction approach of [4] is not easily
applied. Several authors have solved similar models
under a finite number of states in the modulating
chains. For example, [5] analyzes a discrete-time D-
BMAP/D/1/K system vety similar to ours but with
finite queues, and [6] analyzes a BMAP/D/1 system.

Our approach will be to look for a “typical set” of
states of the terrestrial queues, so that we can com-
pute the joint probability of a sequence of arrivals
to a satellite queue. It comes out that the correlation
between current and past arrivals to the satellite
decays very quickly with time. Consequently, we
consider only a few terms of this correlation by
assuming that the arrival process to a satellite queue
is an order-» Markov chain. Next section contains
the corresponding details.

lll. Performance Analysis

Consider the system at frame periods of T cell
slots. The state of the system at time 4 #(?), is given
by the lengths of the queues as seen by the frame
builder at the beginning of the # frame period (a 6-
Dimensional vector). For a state , let 7, and », be
the length of the queues at spot beam 0, 7, and 7,
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be the length of the queues at spot beam 1, and 7,
and z_ be the length of the queues at the output
ports. So we get a Markov chain in which the one
step transition probability from state # to state [ is

given by
o_n'b"'fo%:ﬂ%\: z_mz"'fz%:I
1_ml+f1 O 3_n5+f3

+f+f, —T,O))EI (/-‘5 = max(ms ++f —T,O»

O
p(m, ) = PrEA—E‘
I (1, = max(m,

where PrfA = (A, A)"] is the probability that
there are A, destination 0 arrivals and A4, destination
1 arrivals in a spot beam during T'cell slots, (f,f, ) is
the number of cells taken by the frame builder from
the terrestrial queues when it finds (m,,, ) cells in
them, for /=0 or 2, and I(x) is the indicator function
of the event x.

The arrival probability above is easily found to be
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Note that the terrestrial processes within each spot
beam are identical and independent, so we can
analyze just one of them. In fact, given a sequence
of states of these subsystems, the output port
behavior becomes completely deterministic.

In analyzing the frame building subsystem, we will
focus on the cases #=7 (when the frame builder
constructs a frame whenever it finds that the queues
are not both empty) and #»=T (when the frame builder
constructs a frame only if it can take exactly T cells
away).

In the first case, the number of cells taken away
by the frame builder when it finds (#, ,) cells in
the queues is

(e

O(min(T,m,) o) itm>m (2
O : T )

00 min(r,m)) if m,<m,
Bany of theabovewith equal probability if m, =m,

And the one-step transition probability between
states (7,7,)" and (k,k )" is

A ok~ PPomiot oo iki-it fliod) (3

This is a tetradimensional infinite array, which
implies it is very difficult to solve for the stationary
distribution. However, following [4], we can find
bounds for the performance measures of interest.

Consider, for example, the average number of cells
in the queues. Let ¢(7) be the average number of
cells in both queues during a frame period that begins
in state 7 and let us call it “the cost of state »/”. If
7i(m) is the equilibrium probability mass function

corresponding to transition probability (3), then the
average number of cells in the subsystem is

g =7 c(m)L(m) (@

To compute g we need the cost ¢(z) and the
probability p(») of each state . From Figure 2 we

see that the first quantity is
> T

o(m) =1 J]E%ﬂ

where f{m) is given by (2) and A; is the number of
arrivals during the # cell slot. Taking out E/A ]=/p
pJ" from the sum, evaluating the resulting sum as
(T+1)/2 and carrying out the vector multiplication
we get

c(m) = my, +m —min(T, max(m,,m))+ (T +1)p ()

We still need p() to evaluate (3), but it is not easy
to obtain this exact distribution, so we construct
bounds for g by modifying the state transitions as
explained next [4].

A. The Terrestrial Queues
Consider the average total cost over a time interval
of 7 frame periods starting in state #, v(t, m), i.c.,

v(t,m) =c(m) +

DTN

- NN e(n,)+c(n, )+ +c(n,))

‘mF+AG+. AT

Figure 2. Queue occupancy after the frame builder finds the
system in state m. f is the number of frames taken
away and A is the number of arrivals during the t®

cell slot (all these quantities are 2x1 vectors).

where @ is the one step transition probability
given by (3) Notice that this expected cost can be
recursively defined as

v(0,m) =0
v(t +1,m) =c(m) + z a,, (t,u) r=012.. ®)
m

Also note that, assuming ergodicity, the average
number of cells in the system, given by (4), can be
expressed almost surely as

= ||m v(t m) @
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for any recurrent state 7.

Always following [4], we say that state » has
precedence over state U (or that [ is more attractive
than , or that (m[) is a precedence pair, or that
m— W) if v(tm) < v(t,l) for all #2 O The bounds we
are looking for will be obtained by introducing some
modifications to the original system so that, in some
states, we redirect some (or all) of the outgoing
transitions. For example, if we redirect all the
transitions leading to state £ as transitions leading to
state /, the new system will have the same one-step
transition probabilities of (3), b=a, except for {4 =0,

+a, | for every state m}.

b _ﬂm,k ,

my

Now assume that all transition redirections are
made between precedence pairs (j,£), i.e. we are
redirecting to more attractive states. We want to prove
that, in this case,

v, (t,m)< v(t, m) ®)

for every #=0,1,2,... and every recurrent state  in
the modified system, where » (4m) is the
corresponding expected cost of 7 frame periods
starting in state 7 for the modified system.

In effect, inequality (8) holds for 7=0 since both
costs are zero. Now we show that, if it holds for 7 it
also holds for 7+7. By the recursion (6) and using
the hypothesis, we get for the modified system

Y(t+1m) =c(m)+ 3 b, T, (t ) s c(m)+ 3 b,,, T(t, 1)

But notice that

Ua,, if therewereno redirectionsinvolving u
b, = E 0 if trangitionsto y redirected to someother state

%\mv“ +a,, if transitionstok redirectedto

so the above inequality becomes
wt+Lm)scm)+ a,, B /J)-(Z)amk vt k)it i)
scm)+y a,, It 1) =vit+1m)

whete {(j,k)} are the precedence pairs for which
we made the transition redirections. The second
inequality above comes from the fact that »(, &) 21(%,)
since / is more attractive than 4. This proves (8).

The importance of (8) is that, from (7), we get
1 1
g, = !Im;Vb('[, m)< Itlmgv(t, m)=g

So, if the modified system is easier to analyze than
the original one, we can compute a lower bound for
the average number of cells in the terrestrial queues.

In an identical way we can prove that if we redirect
some transitions to less attractive states, the
corresponding average number of cells will constitute
an upper bound for g.

Notice that if we redirect some transitions to
equivalent states (7 « £), we obtain a modified system
that has exactly the same average cost of the origi-
nal one, g=g. We will use this property to obtain exact
values of the terrestrial queue lengths.

An Arbitrarily Tight Lower Bound For n=1

Let ¢e=(7 0)". In the appendix we prove that, for
n=1, the state » is more attractive than the state #7+e,
ie., m — m+e Using symmetry and transitivity,

(S LR N e TR

In particular, for some M>0,

LA oo

is a set of precedence pairs. So, by truncating the
queues at a maximum length of M cells, the average
number of cells in the truncated system is a lower
bound for the average number of cells in the origi-
nal system. And since we get a finite number of states,
we can easily solve this truncated system. Also notice
that, making M larger and larger we are getting closer
to the original system, so this lower bound can be
made arbitrarily tight (with a penalty in the
computational cost, of course).

Notice that truncating the queues at length M
modifies (3) as follows:

&jvi2). (k)™ p(“-=k1’11*”3‘“e(11*12>1 ) (kM) (

P(Allzklflerfram%jl,jz)l, 2l=k2,j2+frane(jl,j2)2> it (k=M):(k,<M
( i )1 A2I2k2712+fra'ne<|1,12) ) ( ) (
( ) ) it (o)

2/1

,A2I=k27jz+freme(jl,jz>
A

P(AL=k - J1+frame(jl, A

PA1|2k1—11+frame(j1,j ,Azizszjzérframe(jl‘jz)

Since now we have a finite number of states,
(M+1)%, we can reindex them to convert the above
tetradimensional array into a matrix and solve for

the equilibrium distribution.
An Exact Solution For n=1

We postulate the following equivalencies:

H m, modT m, modT

ﬁq +T Efloor@%%“ E?; EH ET[]+T D‘Iooré'%

Proof. The second equivalence comes from the first
one by symmetry. To prove the first one, it is enough
to prove the equivalence between (%, 7,)" and (m,+T,
m -T)" for m 2T, since the iterated application of this
equivalence leads to (9). For #,<m +2T the result is
immediate since both states will leave the queues in
(my m-T)" (we are assuming »,<m,, without loss of
generality). In effect, from (5), notice that the cost
of the sate 7 depends on how many cells does the
frame builder leave in the queues when it finds them
in the state 7. Accordingly, all states that leave the
system with the same number of cells at each queue

—~
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become equivalent since, by a simple coupling
argument, they will behave identically under the same
sequence of arrivals. For »,>m +2T we proceed as
in the appendix. Notice that the equivalence of states
leaving the system with the same number of cells at
each queue implies that {(w,m )" o 0,m+T)",
mSm ST}, since those states leave the system with
O0,m,)" cells, and {(0,m,)" & (0,0)", m T}, since those
states leave the system empty.

With these equivalencies we can construct a tractable
system that has an average cost exactly equal to the
average number of cells we are interested in. In effect,
if we redirect all transitions to (Uy,H,)" as transitions
to (m,, m,)" given by (10) below, we will get the same
average #frame-period cost for every /20. So the
average cost of the modified system becomes the
average number of cells in the original system.

my, = min(u, modT, i, modT)

m =+ —m
— — \T : —
" lif (m, < T)then m=( o) if m =0
m=(0 T+m,) otherwise

(1) 19

returnm

Adding a few dummy transient states, these
redirections lead to a system of «quasi-birth-death»
type, where the transition probability matrix is a block
tridiagonal one of the form

BO A0 O O -

Eél A A O -
P=00 A2 AL AD -
o 0 A2 Al ---
a. . . .
R

(11)

ooooooo

The blocks A0, A1, A2, BO and BT ate T(T+1)/2-
square matrices, so we have reduced one of the
dimensions of the state space from infinity to
T(I+1)/2. Although the solution can be obtained
using moment generating functions, the matrix-
geometric approach gives an easily implementable
algorithmic technique to find the steady state
distribution of the modified system and,
consequently, its average cost.

Other Bounds For n=1

Putting together the equivalence relations (9) and
the precedence relations (#,m+e), we get a rich cost
structure to build upper and lower bounds for g. Fi-
gure 3 shows such structure for the case T=3, #n=1.

Figure 3. Cost structure for the case T=3, n=1

For example, we can eliminate one of the queues
as follows. If (m,m )" has an equivalent state of the
form (0, )", we can redirect the transitions to (#,,
m,)" as transitions to (0, 4,)" without altering the ave-
rage cost. Otherwise, it has an equivalent state of
the form

oo 1) -0 < pty <T, 11, =KT +b, 11 <b<T k=123,..}

for which the cost structure above gives us
following precedence pairs

(0: Ho + kT)T - (uova + b)T - (O' Ho + (k +1)T)T

Consequently, redirecting transitions to (#,m,)" as
transitions to (0,4, +KT)" will give us a lower bound
on g, while redirecting them to (O, + (k+1)T)" will
give us an upper bound. These bounds are easier to
evaluate since the corresponding blocks of the
canonical form (11) are only T-square matrices.
However these bounds can become loose under very
heavy loads.

An intermediate state to which we can redirect those
transitions is (0, p,+KT+b)". This modification will
give us an approximation since it is something between
a lower and an upper bound. In fact, notice this
modified system corresponds simply to the case g=7
in which we have a single queue: except for the
boundary conditions in which the modified transitions
are to equivalent states {(m;,m,)" (0,m+T)T,
M<m<T} and {(O,m)"« (0,0)", M<T}, all transitions
to other states (M,m,)" are redirected to (O,m+m,)".
Consequently we expect it to give us a tighter lower
bound on g In effect, although the relationship
V(t,(O,KT+b+ 1)) < v(t,(1,,KT+b)™) does not hold for
every 120, we can verify that this inequality holds for
every ¢ large enough, which supports our intuition in
the light of (7).

Although this modification leads only to an
approximation (a lower bound, in fact), its
computational cost is much less than the exact
solution we found before since the corresponding
blocks of the canonical form (11) are of size T
instead of TX(T+1)/2. This is advantageous since
the bound is tight enough for practical purposes.

Bounds On Other Performance Measures

We have established a set of precedence pairs
(m— ) for the cost function (5), with which we
found upper and lower bounds for E[q+q,], the
expected number of cells in the queues. This set is
the same for every cost function ¢ for which ¢(m) <
C(1) [4]. Consider, for example, the following cost
function

¢,(m) = Ef(g, + 0. ] = Egzgeﬂ(w;&g%

eft(m)* + (T +1) o -2 0eft(m) +1+ p+5 CpifT -1
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where /left(m)=m*m -min(T,max(m,m )) is the
number of cells left by the frame builder in the queues
when it finds them in state 7 and A_is the number
of cells that arrive to the queues during the s cell
slot of the next frame period.

So, using the same system modifications as before,
we can also find the exact value and upper and lower
bounds for

Elle +a)?)= . (m)r)

and, consequently, for the variance of the number
of cells in the queues.

Case n=T

In this case, it is enough to prove that (M,
m)" o (M+Tm-T)" for m=T, m = m, in order to
prove that (9) still holds. This can be done by
induction as before.

On the other hand, since all states that leave the

system with the same number of cells at each queue
become equivalent (by a simple coupling argument,
they will behave identically under the same sequence
of arrivals), we also have that {(m, m)" « (m,
m+T)", m<T, m<T}.
By these equivalencies, if we redirect all transitions
to (Uy,H,)" as transitions to (M, M)" given by (12)
below, we will get the same average ~frame-period
cost for every t20 of the original system and,
consequently, the average cost of the modified
system is exactly the average number of cells in the
terrestrial queues.

m, = min(u, modT, 1, modT)
m(u) =[m =l + iy —m,
if (T <m < 2T)then m:sort((m) m ‘T)T)

Adding a few dummy transient states, these
redirections lead to a system with a block tridiagonal
transition probability matrix of the form

(12)

MO CO O 0 -
B1oct oA 0B
P=00 A2 AL A0 --.O (13)
0o o0 A2 AL ---O
0. . . .. 0
B: ~ .0

where the blocks AO, Al, A2, BO, B1, CO and C1
are T(T+1)/2-square matrices. The matrix-geomettic
approach gives an easily implementable algorithmic
technique to find the steady state distribution of the
modified system and, consequently, the average
number of cells in the queues of the original system.

Unlike the case #=1, it is difficult to find a rich
cost structure for #=T. For example consider the case
#=T=2 and the states (0 1)" and (100 100)". At a
very low arrival rate pLD, starting in the first state
will keep one cell in the queues forever making g=1,
while starting in the second state the queues will be

emptied after 100 frame periods, making g=0.
However, it is easy to see that truncating the queues
at a multiple of T cells we get a lower bound, i.e.,
there is a precedence relation {(KT KT)" - (kT+a
KT+B)", a=0, B=0}. To prove this, by the previous
equivalencies, it is enough to prove that {(0 KT)T -
(o KT+P)T, 0<0<T, B=a}, which is easily done by
induction as before.

Again, making M=KT larger and larger, we are
getting closer to the original system, so this lower
bound can be made arbitrarily tight.

B. The Satellite Queues

Each of these queues is a deterministic server with
batch arrivals occuring during the phase transition
of a tetradimensional Markov chain. With an infinite
number of states in each dimension of the Markov
chain, there is no known solution for this system.

However we can use another arbitrarily close
approximation. Assume we know the steady state
pmf of the terrestrial queues as seen by the frame
builder, TG, SO that we can compute the following
sequence of conditional probabilities:

p, = Probability of 7 cell arrivals in one frame
period, 7=0,1,2,...,2T.

P,;= Probability of ; cell arrivals in one frame
period, given that there were 7 cell arrivals in
the previous frame period, 77 = 0,1,2,...,27T.

P, = Probability of & cell arrivals in one frame
period, given that there were a sequence of
(4,5) cell arrivals in the previous two frame
periods, 4,4 = 0,1,2,....2T.

If in each case we ignore dependencies of higher
order, we are approximating the arrival process to
an r-order Markov chain: In the first case, we get
independent artivals, so the state of the satellite queue
(as seen by the frame builder) is a very simple Markov
chain. In the second case, the arrivals form a Markov
chain so the current arrival and the current queue
length form a bidiminesional markov chain. In
general, if we approximate the frame arrival process
as a r-order Markov Chain, the previous r-1 arrivals,
the current arrival and the current queue length form
a (r+1)-dimensional Markov Chain. Renumbering
adequately each state, we could construct a transition
probability matrix suitable again for matrix-geometric
algorithmic solution techniques and, hopefully, we
would notice that the autocorrelation of the arrival
process decays so quickly that a second order Markov
chain is a close enough model to use.

But, of course, we do not know the steady state
pmf of the terrestrial queues. However, consider
again the terrestrial multiplexer. Evidently, the
transitions between states have highly unbalanced
probabilities, i.e. it is unlikely to go to a state in which
one of the queues is empty while the other one is
highly occupied. In other words, within the huge state
space, only a relatively small number of states account



for most of the probability. If we can select a “typical
set” of states for the terrestrial queues, we will be
able to obtain a finite pmf that accurately represents
the true distribution of the length of the queues.
Consequently, we will be able to analyze the satellite
queues as suggested above. In what follows, we will
propose a dynamic search procedure to find a set of
states that accounts for 100[{1-8) % of the
probability, for any given small d. It is a simplified
and more efficient version of the procedure in [7].

To simplify the notation, we enumerate the possible
states of the system so that to the state (mM,m,) we
associate the index 1+m+(m+m,)* (m+m+1)/2.
Conversely, we can recover the state from the index
with a simple algorithm: X=floor ((sqrt(8lihdex-7)-1)/
2); m=index-(1+x[(x+1)/2); m=x-m,. From now on,
we will use integer numbers to specify, without
ambiguities, the states of the terrestrial queues.

At step h of our dynamic procedure we have
selected h states in our reduced model, Q<"
Associated with this set is the set L™ of states that
are not in {*™, but through which we can leave *".
This is, there are some states in Q™ with transitions
outside ", and LM is the set of states to which
those transitions are directed. We have included in our
model all transitions within ™ and from Q™ to
L=<", but we still do not have transitions from L<".

Now we conduct the following experiment:
Starting at the initial state Q(1) -the one we choose
to initialize {*'-, we generate a sequence of states
within ™ until we leave "> and we register the
state 7 in L™ through which we leave Q™. If we
repeat the experiment 7 times, we can measure the
number of times we leave through each state ; of
L<r>, tj. In the limit as the number of experiments
go to infinite we get the probability of leaving Q™
through state jOJ L™

PL<J.h> = Itimttl joL"™ (14)

Since at the end of each experiment we restart
from the original initial state, we can realize an infinite
number of experiments by analyzing the following
Markov chain:
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where P, is the probability of going from the i"" state
in ™ to the K" state in Q™ and 1-3_, | P, is the
probability of leaving "™ by going from the 1" state

in ™ to any state in L.

Let M > =[m 1 1 ... T 71T ] be the steady
state solution to the above Markov Chain. Then
F’Lj<h> can be computed easily as

h
<h> _
PL™ = Z 75 Pog.Laiy
£

where Py ) is the transition probability from the
i state in ™ to the j" state in L<™.

The (h+1)* state to be included in the Typical set
Q is the one that maximizes PL, i.e. we find

k =arg max PL™ (16)
jOU

then move the cortesponding state from L to Q
and update L, ie.,

Q<" = Q< {L<h> (k}
L = { R (R (k}c} 0{Neighborsof L (k) notin @}

The algorithm terminates when the last element
of [T is less than or equal to J, in which case the
probability of remaining in ™ is 1-0.

Notice that, to find h states, we need to solve h
Markov Chains of increasing size from 2 to h+1.
However, we do not need to invert any matrix
because we can use the previous [ as an
apptroximation for the next [7and solve each Markov
Chain iteratively.

Once we have selected the states to be included in
our simplified model, we can block the arrivals that
lead to a non-typical state. This is a special kind of a
truncation model that, according to the results of
section III(A), leads to a lower bound on the buffer
occupancy. Of course, adding more states we can
obtain a better approximation.

Using this specially truncated model, the satellite
queues become a discrete-time batch Markovian
arrival process served by a deterministic server (a
D-BMAP/D/1 system [5]). In effect, the two earth
stations form a discrete-time Markov chain and, at
each phase transition of this chain, a batch of size
equal to the sum of the length of the frames with
destination 0 arrive to the queue of the output port
0. The size of the batch is a random function of the
phase of the modulating chain (fy(m,m,) + f (m,,m,),
which is deterministic when m,zm, and m,zm,, but
it is random when m=m, or m,=m,). In [5] there is
an analysis of a similar system modeling a source of
VBR video. However, in this special case, as explained
before, the autocorrelation function of the frame
arrival process decays so fast that it is enough to
consider only a first or second order term to obtain
highly accurate results.

IV. NUMERICAL RESULTS

The total delay of a cell in the whole system is the
sum of the delay in the earth station and in the output
port of the satellite, as appreciated in Figure 4.

Figure 5 compares the multiplexing system (with
n=1), for different values of T, against the cell arrival
rate for the cases of direct cell transmission with

]
=
-
=
=
[
=)
=



K]
=
=
=
@
o
=

For small values
of 7and for n=17,
the figure shows

a favorable
performance of
the framing
system
compared with
more realistic
access schemes.

TDMA, binary exponential backoff Alloha and an
ideal multiple access scheme in which every cell seizes
the uplink channel in strict order of arrival and with
zero overhead due to contention.

Figure 5. Total delay for different frame sizes T and n=1.

Cleatly, the ideal medium access scheme is better
in terms of delay than any choice of parameters of
the framing system, as expected. However, for small
values of T and for #=1, the figure shows a favora-
ble performance of the framing system compared
with more realistic access schemes.

The delay increases with # and T but in different
ways: While an increase in T produces an overall
increase in the mean delay, higher values of # affect
principally (and dramatically) the light load region
of the delay plot. This makes intuitive sense since,
for #>1, the first cell that arrives to an empty
terrestrial queue must wait, at least, the arrival of #-
1 more cells to that queue before being transmitted
over the uplink channel. This event can take quite a
long period of time if the probability of arrivals is
very small.

Also notice that, once we choose a pair of
parameters (T,#), the onboard switch must be
designed to be able to carry out two switching
operations every T cell slots, irrespectively of the
value of 7 When we choose a big value for 7, for
example #=T, the onboard switch will be very
efficiently operated, since each operation will switch
T cells at once. However, this will not give any
advantage if we leave the switch idle while there are

cells waiting in the earth queues, in which case the
QoS will be negatively impacted. Consequently, the
parameter # must be chosen to be 1, i.e., the frame
builder must take whatever it finds in the terrestrial
queues (up to the maximum of T cells).

The parameter T should be chosen as big as
possible to reduce the size, weight and power
consumption of the onboard switch, as long as the
impact on the average delay is acceptable for the QoS
requirements. Comparing with the ideal access
scheme, this condition implies that we can choose
only among very small values of T. However, it scems
that we can choose higher values of T'if we compa-
re the performance against more realistic access
schemes. In fact, it seems possible to choose some
small T with which we can obtain both benefits: a
simpler onboard switch and a smaller average delay.

V. CONCLUSIONS

In this paper we presented the partial results of an
ongoing work to assess the convenience of grouping
ATM cells into frames before transmission over
satellite channels for onboard switching, We analyzed
a simple model that captures the advantage of
requiring a smaller onboard switch and shows that
the price that we must pay for such benefit is an
increase in the average cell delay. However it seems
possible to choose the main parameter T so as to
compensate the increase in the delay with the reduction
of contention for channel access, in which case the
framing of ATM cells will be more plausible.

We also observed how important it is to attend
any backlogged traffic at each frame period, even if
the payload of the corresponding frame is just a sin-
gle cell (i.e., choosing the parameter # to be 1).
Otherwise we can introduce an unnecessary high
delay under light traffic, without obtaining any
apparent benefit.

We used the interesting cost structure approach
of [4] to obtain exact analytical results for the average
delay in the terrestrial queues. However, such method
did not allow us to compute the steady state pmf of
the terrestrial queue lengths, which is necessary to
obtain accurate results on the satellite buffer
occupancy. To this purpose, we developed a dynamic
procedure to obtain a set of ‘typical states’, one which
accounts for the (1-8)[00% of the whole probability.
With this finite set we computed some conditional
probabilities on the cell arrival process to the satellite
queues. Based on the fact that the autocorrelation
function of these sequences of arrivals decays so
fast with time that we can consider only a few of its
first terms, we computed a very close approximation
to the delay in the satellite buffer.

With the methods above we can consider a more
general model for the input traffic that allows a better
representation of the effects of the reduced
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contention. For example, we should consider a bigger
number of users grouped into clusters with
contention among clusters. We should also measure
additional performance parameters (specially the
overflow probabilities) to consider the special
problems of guaranteeing a given QoS for ATM over
satellites.

APPENDIX

In this appendix we prove that, for n=1, m -
m+e, where €=(1 0)". Notice the condition for
precedence holds for t=1

c(m+e) —c(m) =1+ min(T,max(m)) - min(T, max(m+€))

D ifmsm<T

Otherwise O v, m+e)=v(l,m)

Now assume V(t,m+€)=v(t,m) holds for some t
(we have just shown it holds for /=7). We want to
show that this implies V(t+1,m+€)2v(t+1,m). From
(6), the corresponding average costs for 747 frame
petiods are

v(t +1,m) = ¢(m) +
gmze am, + A0 1 (m, = m, ) min(T, m, )
;o ;b PA% a1 "Hm, + AL 1(m, <m,)dmin(T,m)

and

v(t+1m+e) =c(m+e)+

2T 20-A0

; gh PP

where A0 is the number of destination 0 arrivals
and A1 is the number of destination 1 arrivals during
one frame period. If we define the difference

Av(t,m) = v(t,m+e) —v(t, m)
then what we want to show is that

AV(t,m)=0 0 Av(t+1m)=0

Ijmo+1+A0 I(m, +12 m, )0
'Hom+ A= i(m, +1<m,)i

in(T, m, +1)§

in(T,m,)

For any state 7 we have
Av(t +1,m) =c(m+e) —c(m) +

E E’%*‘“AO I(m, +12 m ) tnin(T, mo*‘l)%__

O
m+ AL~ |m,+1<m)nmm(T m) 1

+ A0 I (m, = m ) tmin(T, my) E
HH::+A1 Imo<ml Dmm(T ml)% g

We will rewrite this expression for 6 different cases,
as shown in figure 6.
Case 1: M <M, <T In this case c(m+e)=c(m)
and V(t,m+ e+ A-f(m+€))=v(t,m+ A-f(m)) so
Av(t+1,m) is zero.
Case 2: m, 2 max(ml T) In this case (9)
becomes

20 20T-A0

BEmes

2T 2T-A0

Av(t+1,m) =1+ AZO gpronAl O

AR

which is greater than or equal to 1 since, by
hypothesis, the difference of costs within the sum is
nonnegative.

Case3: my+1<m, <T In this case (9) becomes

20 20-A0

Av(t+],m)=1+AZ ; PA O

R

which is also greater than or equal to 1 by hypothesis.

Case 4: m 2 max(T, m, + 2) In this case (9)
becomes
200 20-A0

Av(t+1,m) =1+ ;0 gb PAL O

N T

m, + A0
+AL-T

Figure 6. States with different expressions for Av(t+1,m).

which is also greater than or equal to 1 by
hypothesis.

Case 5: My+1=m <Tn this case (9)
becomes

20 20M-A0

Av(t+1,m) =1+ g gb PAL

SELIORC

To verify that this quantity is always positive notice
that, from (1) we get PAy = PAy ppr SO we can
factorize these terms in the above sum yielding
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By symmetry we know that V(t,(m; m)") = v(t,(m,
m)"). Applying this reversing in some costs above
we get

Av(t+1,m)=1+ Ai PALG po

T%;E}%Iorh +AO+1% E Erh +AO%...
EE“”“”%VE'E“”“

BT

which is greater than or equal to 1 by hypothesis.

mmoooog

Case6: My +1=m =T In this case (9) becomes

20 2T-A0

Av(t+1L,m) =1+ A;O ;npAAO,Al O

+1+A0-TH m, + A0
’Emm] +1+ Al B, +1+AL-T
Using the same factorization and reversing of Case
5, we get

;
Av(t+1,m)=1+ g PP o O
=0

E/E m, +1+ A0 %VE m, + AO %
", +1+ AO-T "Hm, +1+A0-T
T-1 20-A0
AZ PAo 0 0
=0A1=A0+1
B A
OH tm, +1+A0-T Hmy +1+ AO-T
AR RS
+1+ AL-T Hmy +1+ AL-T
which is also greater than or equal to 1 by
hypothesis.
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