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Abstract

Context: This paper presents a MATLAB code implementation and the GUI (General User Inter-
face) for fuzzy random variable generation. Based on previous theoretical results and applications, a
MATLAB toolbox has been developed and tested for selected membership functions.

Method: A two–step methodology was used: i) a MATLAB toolbox was implemented to be used as
interface and ii) all .m functions are available to be used as normal code. The main goal is to provide
graphical and code–efficient tools to users.

Results: The main obtained results are the MATLAB GUI and code. In addition, some experiments
were ran to evaluate its capabilities and some randomness statistical tests were successfully performed.

Conclusions: Satisfactory results were obtained from the implementation of the MATLAB co-
de/toolbox. All randomness tests were accepted and all performed experiments shown stability of the
toolbox even for large samples (>10.000). Also, the code/toolbox are available online.
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Resumen

Contexto: Este trabajo presenta una implementación de código de MATLAB y un GUI (interfaz de
usuario) para la generación de variable aleatoria difusa. Basados en resultados teóricos y aplicación
previos, un toolbox de MATLAB fué desarrollado y validado para diferentes funciones de pertenencia.

Método: Una metodologı́a de dos pasos ha sido implementada: i) un toolbox de MATLAB es im-
plementado para usarse como interfaz y ii) todas las funciones .m están disponibles para usarse como
código normal. La meta principal es proveer herramientas gráficas y de código a los usuarios

Resultados: Los resultados principales de este trabajo son el MATLAB GUI y el código subyacente.
Adicionalmente, algunos experimentos fueron realizados para evaluar las capacidades del toolbox, y
algunas pruebas estadı́sticas de aleatoriedad fueron realizadas con éxito.

Conclusiones: Resultados satisfactorios de la implementación del código/toolbox de MATLAB fueron
obtenidos. Todos los tests estadı́sticos fueron aceptados y todos los experimentos realizados mostraron
que el toolbox es estable aún para tamaños de muestra grande (>10.000). Adicionalmente, el tool-
box/código está disponible online.

Palabras clave: Números aleatorios difusos, generación de variable aleatoria, MATLAB.
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1. Introduction
Random variable generation from a probabilistic point of view is based on the ideas, postulates,

theorems of A. N. Kolmogorov [8] which have been widely applied to different sciences, including
the theory of random processes theory (see Grimmet & Stirzaker [4] and Ross [13]). Even mo-
re, commercial simulation software packages including ARENA, ProModel, FlexSIM, MATLAB-
EventSIM etc. are successful commercial applications of random variable theory and methods.

Most of probabilistic methods are based on the cumulative probability function (which is mo-
notonic non-decreasing and injective) and the idea behind is to use uniform random numbers to
generate probabilistic variables. Further information about probabilistic random variable theory
and methods can be found in Devroye [5], Law & Kelton [9], Monahan [10], Grimmet & Stirza-
ker [4], Wilks [15] and Mood et al [11].

Analogous concepts for fuzzy numbers have been proposed by Varón-Gaviria et al. [14] and
Pulido-López et al. [12] who used the well known α-cuts representation of a fuzzy set and the
cumulative membership function ψA(x) of A (see Figueroa-Garcı́a & López-Bello [2], [3] and
Figueroa-Garcı́a [1]). This way, it is possible to efficiently generate random variables using uniform
random numbers and fuzzy sets easy to implement in general purpose code/software like MATLAB.
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This paper focuses on the implementation of two fuzzy random variable generation methods into
a toolbox over MATLAB general purpose software. Some graphic analysis and statistical test are
performed to verify independence and randomness of the obtained samples.

This paper is divided into six sections: Section 1 introduces the main problem. Section 2 presents
a theoretical background; two methods for fuzzy random variable generation are introduced in
Section 3; Section 4 presents the developed MATLAB toolbox; some experiments are presented in
Section 5, and finally Section 6 shows some concluding remarks.

2. Theoretical background
First, we refer to well known definitions for fuzzy sets/numbers (see Klir & Folger [6], Klir &

Yuan [7]) and the two implemented methods: α-cuts and cumulative membership function.

2.1. Basics on fuzzy sets
A fuzzy set is denoted by emphasized capital letters A with a membership function µA(x) over

a universal set x ∈ X . µA(x) measures the membership of a value x ∈ X regarding the con-
cept/word/label A. P(X) is the class of all crisp sets, F(X) is the class of all fuzzy sets, F(R) is
the class of all real-valued fuzzy sets, and F1(R) is the class of all fuzzy numbers. Thus, a fuzzy
set A is a set of ordered pairs of an element x and its membership degree, µA(x), i.e.,

Ã = {(x, µA(x)) |x ∈ X}. (1)

A fuzzy number is defined as follows:

Definition 1 Let Ã : R→ [0, 1] be a fuzzy subset of the reals. Then Ã ∈ F1(R) is a Fuzzy Number
(FN) iff there exists a closed interval [xl, xr] 6= ∅ with a membership function µA(x) such that:

µA(x) =


c(x) for x ∈ [cl, cr],
l(x) for x ∈ [−∞, xl],
r(x) for x ∈ [xr,∞],

(2)

where c(x) = 1 for x ∈ [cl, cr], l : (−∞, xl)→ [0, 1] is monotonic non-decreasing, continuous from
the right, i.e. l(x) = 0 for x < xl; l : (xr,∞) → [0, 1] is monotonic non-increasing, continuous
from the left, i.e. r(x) = 0 for x > xr.

The set of elements with membership degree larger than α are called the α-cut i.e. αA

αA = {x |µA(x) > α} ∀ x ∈ X, (3)
αA =

[
ı́nf
x

αµA(x), sup
x

αµA(x)
]

= [ ǎα, âα ] . (4)

and its α-level namely Aα is the set of elements with membership degree equal to α, i.e.

Aα = {x |µA(x) = α for some x ∈ X}, (5)

Aα =
{

ı́nf
x

αµA(x), sup
x

αµA(x)
}

= { ǎα, âα } . (6)
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The support of A ∈ F1(R), supp(A) is the set of all elements x ∈ X with nonzero membership:

supp(A) = {x |µA(x) > 0} ∀ x ∈ X, (7)
supp(A) = [ǎ, ā]. (8)

and the core of A ∈ F1(R) is the set of elements with maximum membership degree:

core(A) = {x |µA(x) = 1} ∀ x ∈ X, (9)
core(A) = [cl, cl]. (10)

A trapezoidal fuzzy number is shown in Figure 1.

Figure 1. Fuzzy number A ∈ F1(R)

2.2. The Cumulative Membership Function (CMF)
The cumulative function F (x) of a probability distribution f(x) is defined as:

F (x) =

∫ x

−∞
f(t) dt, (11)

where x ∈ R. Its fuzzy version is as follows (see Figueroa-Garcı́a & López-Bello [2], [3], Figueroa-
Garcı́a [1] and Pulido-López et.al [12]).

Definition 2 (Cumulative Membership Function) Let Ã ∈ F(R) be a fuzzy set andX ⊆ R, then
the cumulative membership function (CMF) of Ã, ψA(x) is defined as:

ψA(x) = PsA(X 6 x), (12)

Eq. (12) is nothing else but the possibility that all elements of X are less or equal than a value x,
i.e. Ps(X 6 x). In the probabilistic theory F (∞) = 1 so in the possibilistic theory 1 < ψ(∞) < Λ,
where Λ is the cardinality of Ã:

ΛA =

∫ ∞
−∞

µA(t) dt. (13)
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A normalized ψA(x) is obtained as follows:

ψA(x) =
1

ΛA

∫ x

−∞
µA(t) dt. (14)

Clearly, ψA(x) is an surjection, so if we assume α ∈ [0, 1] then there exists one and only one
value that satisfies ψA(x) = α i.e. ψ−1A : α→ X .

3. Implementation of fuzzy random generation methods
There are essentially two kinds of fuzzy numbers: Singleton–core i.e. core(A) = c ∈ R and

interval–core i.e. core(A) = [cl, cl] ∈ I. The α-cuts method is adequate for single–core fuzzy num-
bers (triangular, Gaussian, exponential, etc), and the cumulative membership function approach is
adequate for interval–core sets (trapezoidal, bell shaped, etc.). Both procedures are shown next:

3.1. α–cuts procedure
This method was proposed by Varón–Gaviria et al. [14] for single–core fuzzy sets. The main idea

is to use the core c of A ∈ F1(R) to compute the partial areas namely Λ1,Λ2 around c, as follows:

Λ1 =

∫
x∈R

l(x)dx; Λ2 =

∫
x∈R

r(x)dx, (15)

Λ = Λ1 + Λ2 =

∫
x∈R

l(x)dx+

∫
x∈R

r(x)dx. (16)

so the normalized areas λ1, λ2 of µA ∈ G1(R) are defined as follows:

λ1 =
Λ1

Λ
; λ2 =

Λ2

Λ
, (17)

λ1 + λ2 = 1.

Procedure 1 show the implemented routine.

Procedure 1 α-cuts method
Require: n ∈ N+ and µA ∈ F1(R)

Compute λ1 and λ2 using Eq. (17)
for n : 1→ N do

Set αn = U1 ∈ [0, 1] and ln = U2 ∈ [0, 1]
Compute Aαn = {ǎαn , âαn}
If ln 6 λ1 then xn = ǎαn , otherwise set xn = âαn

end for
return [X,α] = {(x1, α1), (x2, α2), · · · , (xN , αN)}

3.2. Cumulative membership procedure
For interval-core fuzzy numbers, we implement the proposal of Pulido–López et al. [12] based

on Eqs. (11) and (14), as shown in Procedure 2:
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Juan Carlos Figueroa–Garcı́a • Jhoan Sebastian Tenjo–Garcı́a

Procedure 2 ψA CMF method
Require: n ∈ N+ and µA ∈ F1(R)

Compute ψA(x)
for n : 1→ N do

Set αn = U ∈ [0, 1]
Compute xn = ψ−1A (αn)

end for
return [X,α] = {(x1, α1), (x2, α2), · · · , (xN , αN)}

4. MATLAB Toolbox implementation
The implementation of both methods within MATLAB is divided into two parts: The code for all

the implemented membership functions (useful for implementing fuzzy random variables as em-
bedded code in other MATLAB routines/toolboxes) and the code for the GUI which are described
as follows. Fig. 2 shows a screenshot of the MATLAB toolbox.

Figure 2. MATLAB Toolbox

4.1. MATLAB functions
MATLAB functions for five random generators are described below:

1. Triangular random generator

>> FT(a,m,b,n)
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2. Gaussian random generator

>> FG(m,k,n)

3. Trapezoidal random generator

>> FTz(a,b,c,d,n)

4. Quasi-exponential random generator

>> FQe(m,k,n)

5. Double-gaussian random generator

>> FGT(m1,k1,l,r,m2,k2,n)

4.2. FRand toolbox
Basically, the toolbox contains all the previously described functions within a single file

FRand.m

that can be opened by simply writing

>> FRand

into the MATLAB command window.

4.3. Online availability
All functions have been compiled and compressed into a single file, available via the website of

the Laboratory of Automation and Computational Intelligence (LAMIC) of the Universidad Distri-
tal Francisco José de Caldas. To download the toolbox, please locate the file FRcode.zip at the
URL:

https://comunidad.udistrital.edu.co/lamic/tools/

To install the functions, just copy the folder

FRand

into the path \˜\MATLAB\˜˜˜˜˜\toolbox\ e.g. for the Release 2017b:

\˜\MATLAB\R2017b\toolbox\

then add the toolbox path within MATLAB

File --> Set Path --> Add
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https://comunidad.udistrital.edu.co/lamic/tools/


Juan Carlos Figueroa–Garcı́a • Jhoan Sebastian Tenjo–Garcı́a

The folder \˜\MATLAB\R2017b\toolbox\FRand\ contains the files:

FGT.m
FQe.m
FTz.m
FT.m
FG.m

After installing the folder and adding the path, the functions are ready to use and can be called
from either the MATLAB command window, MATLAB SimuLink, MATLAB DiscreteEvents or
any other toolbox.

Remark 1 It is important to note that our approach uses MATLAB R2017a uniform random num-
ber routines, so it may not be compatible with future MATLAB versions.

5. Experimentation and statistical analysis of generated data
To test the toolbox, we generated n = 1000 realizations of the following fuzzy random variables:

>> FT (44,60,85,1000)
>> FTz (10,15,20,22,1000)
>> FG (50,0.3,1000)
>> FQe (200,0.8,1000)
>> FGT (12,0.6,10,18,14,0.8,1000)

Then its mean, variance, runs test, turning points test, GAP (gap test) with the Kolmogorov Smir-
nov test, Chi–square test, and autocorrelation (min: ↓ and max: ↑) are computed to test if the obtai-
ned sequence is an independent. The results are shown in Table I.

Table I. Independence test on simulated variables(p-values)
Test FT FTz FG FQe FGt

Mean 59,83 16,66 49,9 200,02 12,71
Variance 137,61 7,13 3,24 14,58 5,61

Runs 0,202 0,704 0,999 0,999 0,759
t. points 0,227 0,271 0,921 0,281 0,221

K-S 0,035 0,038 0,,031 0,027 0,018
χ2 35,91 40,65 29,34 32,18 28,93

Autcor ↑ 0,088 0,071 0,069 0,082 0,0936
Autcor ↓ -0,109 -0,092 -0,087 -0,096 -0,088

Runs and turning points tests show statistical significance of the hypothesis of independence on
samples at a 95 % confidence level (see Table I). The autocorrelation test shows a Pearson test on
autocorrelations for the 10 first lags where autocorrelation. ↓ is the lowest observed autocorrelation
and autocorrelation. ↑ is the largest observed autocorrelation (at a 95 % confidence level).
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The evidence shows that the generated samples are independent since the hypothesis of random-
ness is significant at a 95 % confidence level (p-value ¿0.05), and there is no evidence autocorrelated
samples since the hypothesis of existence of autocorrelation is not significant at a 95 % confidence
level (p-value ¡0.05). With the two gaps test, in the first case the Kolmogorov-Smirnov test is eva-
luated with a critical value Dα = 0,043 for each membership function, all the values are less than
Dα, therefore the 1000 numbers are randomly ordered, and finally the Chi-Square test, presented a
value χ2 = 44,98 with 95 % confidence level and for n =

√
1000−1. All the values obtained allow

us to infer that the hypothesis that data are randomly distributed is significant for every membership
function.

Figures 3–7 shows the exact location of the simulated values and their membership degree α.

Figure 3. Simulated triangular random variables

Figure 4. Simulated trapezoidal random variables
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Figure 5. Simulated quasi–exponential random variables

Figure 6. Simulated Gaussian random variables

Figure 7. Simulated double–exponential random variables
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Note that Figs. 3–7 are good representations of each fuzzy number since the obtained shapes
correspond to each membership function.

6. Concluding Remarks
The theoretical results of Varón–Gaviria et al. [14] and Pulido–López et al. [12] were successfully

implemented as MATLAB functions. All of them are available to download for free, and the are
compatible with MATLAB 9.2 R2017a and later versions.

A theoretical background has been provided to explain how to use the implemented MATLAB’s
functions and toolbox. All functions are easy to understand, use, and are also complaint with
MATLAB specifications for coding and compatibility.

Finally, some experiments are presented and tested using statistical tests on randomness and au-
tocorrelation. The obtained results show generated samples to be independent and random, so the
evidence supports the idea that the toolbox provides random samples.
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	Introduction
	Theoretical background
	Basics on fuzzy sets
	The Cumulative Membership Function (CMF)

	Implementation of fuzzy random generation methods
	–cuts procedure
	Cumulative membership procedure

	MATLAB Toolbox implementation
	MATLAB functions
	FRand toolbox
	Online availability

	Experimentation and statistical analysis of generated data
	Concluding Remarks

