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Abstract

Context: Vision-based measurement (VBM) systems are becoming popular as an
affordable and suitable alternative for scientific and engineering applications. When
cameras are used as instruments, motion blur usually emerges as a recurrent and
undesirable image degradation, which in fact contains kinematic information that is
usually dismissed.
Method: This paper introduces an alternative approach to measure relative
acceleration from a real invariant uniformly accelerated linear motion-blurred
image. This is done by using homomorphic mapping to extract the characteristic
Point Spread Function (PSF) of the blurred image, as well as machine learning
regression. A total of 125 uniformly accelerated motion-blurred pictures were
taken in a light- and distance-controlled environment, at five different accelerations
ranging between 0,64 and 2,4 m/s2. This study evaluated 19 variants such as tree
ensembles, Gaussian processes (GPR), and linear, support vector machine (SVM),
and tree regression.
Results: The best RMSE result corresponds to GPR (Matern 5/2), with 0,2547 m/s2

and a prediction speed of 530 observations per second (obs/s). Additionally, some
novel deep learning methods were used to obtain the best RMSE value (0,4639 m/s2

for Inception ResNet v2, with a prediction speed of 11 obs/s.
Conclusions: The proposed method (homomorphic mapping and machine
learning) is a valid alternative for calculating acceleration from invariant motion
blur in real-time applications when additive noise is not dominant, even surpassing
the deep learning techniques evaluated.
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Resumen

Contexto: Los sistemas de medición basados en visión (VBM) están ganando popularidad como una
alternativa asequible y apta para aplicaciones científicas y de ingeniería. Cuando se utilizan cámaras
como instrumentos, el desenfoque de movimiento suele surgir como una degradación de imagen
recurrente e indeseable, que de hecho contiene información cinemática que normalmente se descarta.
Método: Este artículo introduce un enfoque alternativo para medir la aceleración relativa a partir
de una imagen borrosa real de movimiento lineal uniformemente acelerado invariante. Esto se hace
utilizando mapeo homomórfico para extraer la point spread function (PSF) característica de la imagen
borrosa, así como regresión de aprendizaje automático. Se tomaron un total de 125 imágenes borrosas
de movimiento uniformemente acelerado en un entorno de luz y distancia controladas, en cinco
aceleraciones diferentes en un rango de 0,64 a 2,4 m/s2. Este estudio evaluó 19 variantes tales como
ensambles de árboles, procesos Gaussianos (GPR) y regresión lineal, regresión con máquina de vectores
de soporte (SVM) y regresión con árboles.
Resultados: El mejor resultado de RMSE corresponde a GPR (Matern 5/2), con 0,2547 m/s2 y una
velocidad de predicción de 530 observaciones por segundo (obs/s). Además, se utilizaron algunos
métodos novedosos de aprendizaje profundo para obtener el mejor valor de RMSE (0,4639 m/s2 para
Inception ResNet v2, con una velocidad de predicción de 11 obs/s.
Conclusiones: El método propuesto (mapeo homomórfico y aprendizaje automático) es una alternativa
válida para calcular la aceleración a partir del desenfoque de movimiento invariante en aplicaciones
en tiempo real cuando el ruido aditivo no es dominante, incluso superando las técnicas de aprendizaje
profundo evaluadas.

Palabras clave: aceleración, visión artificial, aprendizaje profundo, aprendizaje automático, desenfoque
de movimiento, medición basada en la visión
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1. Introduction

Vision-based measurement (VBM) systems use cameras as an instrument (1). This emerging trend
is becoming increasingly popular as an affordable and suitable alternative for many applications such
as on-road vehicle detection, tracking, behavior understanding (2), robotics (3), physics (4), biology (5),
and engineering (6).

This work introduces a method to calculate acceleration from a real uniformly accelerated
motion-blurred image. It uses homomorphic mapping to extract the characteristic point spread function
(PSF) of the degraded image, in order to train a machine learning regression model with 125 known
instances and responses that finally predicts acceleration as a regression. This approach considers the
motion angle to be equal to zero, even though constant acceleration is obtained from an inclined slider.
The ground-truth acceleration of each blurred image was measured independently since the sliding
camera platform’s friction could slightly change the acceleration from measurement to measurement.

Homomorphic filtering is widely used in several applications, as shown in (7, 8), and (9). Although
image restoration based on homomorphic filtering is a usual task in image processing, this approach
has not been proposed in the literature for acceleration estimation. Homomorphic filtering objectively
enhances the image but does not calculate acceleration in the filtering process.

There are two classes of acceleration measurement techniques. The first one involves direct
measurements carried out by accelerometers without the need for individual calculations. These
accelerometers can be classified based on their operation principle: the piezoelectric effect, the
capacitive effect, microelectromechanical systems (MEMS), and the electromechanical servo principle.
Some drawbacks of this class are that they are range-fixed, more expensive, and invasive. Direct
measurement accelerometers usually need wires that run from the moving target to the analysis system.
In some cases, cables can negatively influence the action measured (4). The second class is indirect
measurements, where acceleration is estimated from another kinematic variable, using circuits or a
computational algorithm.

Kinematic quantities, such as acceleration, are related to the forces that engineering structures
can support (10). For instance, some constructions such as floors, footbridges, buildings, and bridges
must be continually monitored to evaluate their structural safety (11). Usually, motion sensors need
to be connected to a monitoring system, which is often hard to place due to wiring and power issues.
Some vision-based displacement measurement systems have been recently developed for structural
monitoring because they overcome the already listed issues (6, 12).

Motion, velocity, and acceleration are related to kinematic quantities through time. This means that it
is possible to obtain one from another via integration or differentiation. The differential of displacement
is called velocity, and the differential of velocity is acceleration. Conversely, the integral of acceleration is
velocity and, if velocity is integrated, displacement is obtained. In real-world applications, integration
is widely used due to its beneficial noise attenuation. Differentiation, on the contrary, amplifies noise.
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This makes acceleration more suitable for calculating other kinematic quantities when initial conditions
are known. Lastly, it is noteworthy that knowing the instant acceleration provides information about
the physical forces applied to moving systems which other quantities cannot supply (13).

Machine learning methods involve mathematical techniques that automatically provide systems
with the ability to learn, improve, and predict from training data without being explicitly programmed
to do so (14).

Classification and regression are the main tasks of supervised machine learning. The first predicts
the specified class to which some input variables belong, and the second one calculates a numerical
value within a range that does not necessarily correspond to an exact, previously trained response, as
classification indeed does.

The well-known linear regression model assumes a direct relationship between the input variables
and the response. Linear regression is the most manageable regression model, as it is effortless to follow
and code. Furthermore, it is faster when compared to other approaches. Sensitivity to outliers is one of
the drawbacks, which affects its prediction accuracy (15).

In this regard, the Gaussian process regression (GPR) is a Bayesian learning algorithm that has
recently gained significant attention due to its usability and accuracy in multivariate regression. GPR
considers the joint probability distribution of model outputs to be Gaussian. It shows the predictors as
a linear combination of nonlinear basis functions instead of a linear combination of coefficients, as other
approaches do (16, 17). Our study also used support vector machines (SVMs) because of their efficiency
in multi-variable spaces. Furthermore, they are suitable for regression when the data’s dimensionality
is greater than the number of instances, which was the case (18). Even though the method’s main
characteristics are known, we assessed one by one with the PSF data obtained from the extraction.

1.1. Acceleration model for linear motion blur

The PSF plays an essential role in image formation theory. All-optical systems have a characteristic
PSF, which intrinsically describes the degradation process of the image during its formation. Therefore,
the PSF can include information about kinematic quantities such as motion, velocity, and acceleration
over the exposure time.

Its nature can classify blur as optical, mechanical, and medium-induced blur (19). This document
only considers the mechanical blur that happens when the objects and the camera that captures the
image move during the exposure time of the light sensors (20).

A formulation for the PSF in the presence of accelerated motion (introduced in (21)). Even though
this research focused on image formation on light-sensitive emulsion film during exposure, it has been
a reference for many modern types of research, given its visionary usability in digital image processing.
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This PSF model of linear uniformly accelerated motion is shown in Eq. (1):

h(x, y) =


1

T (v2
0+2ax)

1
2

0 ≤ |x| ≤ L

0 otherwise
(1)

where a, vo, x, and T are the values of the uniform acceleration, the initial velocity, the displacement,
and the exposure time interval, respectively. Fig. 1a illustrates the PSF for constant velocity, and Fig. 1b
does so for constant acceleration. Notice that Eq. (1) becomes Eq. (2) when a = 0, which corresponds to
a uniform velocity. The product Tvo is equal to L, the blur’s length. Additionally, the Fourier Transform
of both is depicted in Figs. 1c and 1d, respectively. Moreover, note that a constant acceleration causes a
smear in the Fourier Transform of the PSF, which complicates parameter extraction.

h(x, y) =

 1
Tv0

0 ≤ |x| ≤ L

0 otherwise
(2)

We cannot infer where the camera is moving towards using the PSF shown in Eq. (1). When the
capture system is moving at a constant velocity, the PSF is symmetrical with respect to the y-axis. It
does not provide any clue as to whether the motion is from right to left or from left to right. A particular
situation arises when the system is accelerated. When this happens, the initial velocity is different from
the final one, so the PSF curve is not symmetrical. There are two cases: if the initial velocity is lower
than the final one (positive acceleration), the PSF curve is higher on the left side. On the contrary, when
the final velocity is lower than the initial one (negative acceleration), the function is higher on the right.
Thus, the PSF does not allow determining the motion’s direction.

When the camera is not operating horizontally, the angle of motion can be measured regardless of
the velocity and the acceleration if the motion blur is long enough.

In some cases, such as velocity estimation, the PSF height 1
Tv0

is not explicitly required. Velocity
can be calculated using the blur length L and the exposure time T , although height is also related to
the initial velocity (Fig. 1a). On the other hand, acceleration can be calculated using Eq. (3). The blur
length L in pixels can be obtained from the inverse Fourier transform of Fig. 1d. However, to estimate
the acceleration a, information about the change in velocity v2f − v20 is also needed. Although v0 and vf

are, at first glance, inferable from the PSF (Fig. 1b), they do not correspond to the values obtained, since
the extracted PSF is also altered by the exposure time, the brightness, the contrast, the noise, and the
image’s frequency content, among other aspects.

a = k
(v2f − v2o)

2L
(3)

Some authors have concluded that uniform acceleration causes less degradation to the image than
uniform velocity (22–24). Partly for this reason, it is more difficult to estimate acceleration than velocity
from a single motionblurred image. As an example, Fig. 2 depicts the difference between constant
velocity and accelerated motion. Most frequency methods use the zero crossings of the collapsed
Fourier transform of the motion-blurred image to estimate the blur length (25–28). The zero crossing
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(a) (b)

(c) (d)

Figure 1. PSF for (a) uniform velocity and (b) uniformly accelerated motion. (c) Fourier transform of the

PSF in (a) and (d) Fourier transform of (b). These are only illustrative examples

values are inversely related to the PSF length. When a uniformly accelerated blur degrades the image,
its Fourier transform valleys move away from the zero-crossing line axis.

1.2. Kinematic quantities using vision-based approaches

The PSF has an essential role in image formation theory. All-optical systems have a characteristic
PSF, which intrinsically describes the degradation process of the image during its formation. Therefore,
the PSF can include information about kinematic quantities such as motion, velocity, and acceleration
over the exposure time.

Its nature can help to classify blur as optical, mechanical, and medium-induced blur (19). This
document only considers the mechanical blur that happens when the objects and the camera capturing
the image move during the exposure time of the light sensors (20).
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1.2.1. Motion blur approaches

(20) and (29) introduced a way to calculate the speed of vehicles from a single motion-blurred
picture, with the aim of supporting transit authorities. Their proposal used the geometry of the scene,
the camera parameters, and the blur length. These authors stated that their method’s error was less
than 10 % when applied in real speed detection scenarios.

(30) suggested an approach to measure the speed of a vehicle using motion blur analysis which
involves inspecting the speedometer of automotive vehicles. Speed was calculated by analyzing the
characteristics and regularities in a single blurred image of a simulated road surface. The authors
reported errors of less than 10 %. Moreover, there is some research on speed estimation from actual
motion-blurred, as is the case of (31, 32), and (33).

(34) used code exposure for the accurate reconstruction of motion-blurred images. They proposed
statistical blur calculations to obtain precise motion measurements of constant velocity, constant
acceleration, and harmonic rotation in actual pictures. For their experiments, they took pictures of a toy
car that slid freely on a tilted track only under the influence of gravity. Alternatively, they generated
harmonic rotation by using a pendulum-like system. The authors set the camera at the same angle as the
tilted platform in order to make the blur almost horizontal in the captured image. They validated their
method by measuring the quality of de-blurred images. These authors only estimated motion because
their work was mainly focused on image restoration, which does not require a precise reconstruction of
the point spread function to improve the image. Their study was based on (35).

(36, 37), and (38) introduced a method for estimating the velocity of a vehicle using a camera
moving in the opposite direction to generate blur. They argued that the inclination of the motion blur
pattern line in a single image was inherently linked to the velocity of the vehicle and the modulation
speed. They also denoted that the inclination level could be calculated by employing line detection
techniques such as the Hough transform or the Gabor filter. They estimated that the absolute velocity
error was below 2,13 km/h and concluded that their method was independent of the exposure time.
Lastly, they inferred that their proposal could be used for vehicular technology.

(39) introduced a defocus correction procedure to obtain the velocity of particles from a single-frame
and singleexposure image (SFSEI). They based their proposal on the changes in focus, size, and shape
of particles, both close and distant, captured in a blurred snapshot. This method was confirmed in a
free-falling particle experiment.

(40) presented a method to determine the position and calculate the velocity of an object by locating
the blur’s initial and final position. The researchers noticed that, under constant illumination, the
motion’s start and end could not be determined. To solve this issue, they used modulated illumination,
i.e., red light at the beginning and blue light at the end, in order to tag the blurred image. They reported
that their method had not yet been implemented in real conditions.
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The work by (42) and (43) introduced a technique to calculate velocity from a single linear
motion-blurred picture. The discrete cosine transform was used to extract the PSF of the actual
motion-blurred images as a basis to measure the blue extent L and the angle. This was done in
combination with the exposure time T .

(44) proposed a novel approach involving adversarial blur attack against visual object tracking
algorithms. Rather than adding imperceptible noise, they actively synthesized natural motion blur
on video frames in order to mislead state-of-the-art trackers. The attack was performed by tuning
two sets of parameters controlling the motion pattern and light accumulation process that generate
realistic motion blur. An optimization-based attack iteratively solved an adversarial objective function
to find the blurring parameters. A one-step attack predicted the parameters using a trained neural
network. Experiments on four tracking benchmarks demonstrated significant performance drops for
multiple trackers, showing the threat of adversarial motion blur. The key contributions of this work
were introducing adversarial motion blur as a new attack angle and designing optimization and
learning-based approaches to craft natural adversarial examples. The limitations included heavy
computation loads for the optimization attack and reliance on a specific tracker for training examples.
All methods proposed by the authors used video frame sequences instead of a single image, and
this attack revealed the brittleness of trackers against common video corruptions, thus motivating the
development of robust motion-blur algorithms.

1.2.2. Multi-frame approaches

(45) introduced a cell segmentation and competitive survival model (CSS) together with the
traditional methods of particle image velocimetry (PIV). They used their algorithm with actual and
artificial pictures and made comparisons with other strategies.

(3) presented a system to estimate the position, velocity, and acceleration of a planar moving robot
using a calibrated digital black-and-white camera and light emission diodes as markers. They employed
a multi-frame approach that made use of the Kalman filter to calculate velocity and acceleration. These
authors stated that the blur motion should be limited, so that the exposure time was short when
compared to the change in the position of the light markers. They concluded that their video approach
method is accurate, but they suggested that using a faster CCD sensor would yield better results.

(4) suggested an acceleration measurement approach using various synchronized video cameras
based on videogrammetric reconstructions. Their method located the centroid of visible marks set
by the researchers on a shaft run by a shaker. They built a prototype to carry out the proof of
concept. They also attached some calibrated accelerometers directly below the target marks in order to
obtain ground-truth data to compare with their results. They calculated the second derivative of the
videogrammetric position data using the seven-point numerical algorithm to estimate the acceleration.
Finally, they provided some overlapped plots aimed at contrasting their results to the accelerometer’s
measurements. They concluded that their results were similar to those obtained using accelerometers.
No error was explicitly calculated.
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(13) proposed a variational method to estimate the acceleration of dynamic systems based on
image sequences. They stated that their approach went further than the traditional optical flow
methods because they can calculate acceleration. They also pointed out that fluid flow images for
calculating acceleration have not been thoroughly studied, even though they are of significant interest.
They suggested the use pf acceleration fields and an energy function for their calculations, relying on
space-time constraints. When they confronted their results to ground-truth data, they estimated a 7 %
average relative error.

Moreover, (46) described a non-invasive method to estimate the pressure distribution in a flow field
while employing PIV.

(47) proposed an approach to measure the speed of a rotating item. They used a pair of cameras
to capture a temporal sequence of pictures from coded targets (CTs), which were set on the rotating
surface of the object to work as visual marks. This feature matching-based algorithm depends on the
motion estimation of contiguous target image pairs. In their experiments, the authors used a rotating
fan at 120 rpm and a convolutional neural network (CNN) to identify changes in the position of the CTs
during the exposure time. Even though they did not explicitly calculate the speed of the blades, they
concluded that their method benefits high-speed object measurement applications. This technique used
multiple consecutive images to calculate speed and acceleration.

(48) introduced a computationally efficient computer vision method to estimate the trunk’s flexion
angle, angular speed, and angular acceleration during lifting by extracting simple bounding box
features from video frames. Regression models estimated trunk kinematics from these features. The
advantages of this approach are computational efficiency, non-intrusiveness, and the potential for
practical lifting assessments in the workplace, and its limitations include reliance on simulated training
data and lower precision than motion capture methods. This study demonstrated the feasibility of
using simple video features to estimate biomechanical quantities related to injury risk, allowing for
automated ergonomic evaluation over extended periods.

In their review, (49) covered deep learning methods for the estimation of fluid velocity
fields, including fluid motion estimation from particle images and velocity field super-resolution
reconstruction. Supervised and unsupervised convolutional neural network approaches have shown
excellent performance in estimating fluid motion from particle image pairs. GAN and physics-informed
neural network methods have also shown potential for the high-resolution reconstruction of velocity
fields. The key advantage of deep learning is the ability to learn feature representations directly from
data, thus surpassing traditional methods. Limitations included the need for extensive training datasets
and difficulties in incorporating physical knowledge. All reviewed methods used video sequences
or image pairs for estimation. Overall, this review demonstrated that computer vision and deep
learning hold great potential for estimating kinematic quantities in fluid flow and human biomechanics
applications, with anticipated growth in the future integration of these methods.
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Further reading about PIV acceleration measurement can be found in (50) and (51), and other
multi-frame video strategies for velocity are shown in (52, 53), and (54).

1.3. Works related to machine learning

(55) used support vector machines (SVM) regression to forecast water flow velocity. Even though
they asserted that their approach was not fully successful – as expected –, it was promising and useful
for future research.

(56) suggested a method for estimating the velocity profile of small streams by using robust
machine learning algorithms such as artificial neural networks (ANNs), SVMs, and k-nearest neighbor
algorithms (k-NN), with the latter outperforming the others in the results.

(57) introduced a machine learning approach based on a CNN model to estimate velocity fields
using PIV with missing regions. These authors also argued that, despite recent advances, no studies
have focused on machine learning applications using this approach. They used artificial images
generated with a direct numerical simulation, concluding that it is possible to estimate the velocity
fields with less than 10 % error.

The work by (58) should be highlighted, as they suggested a method to assess structural damage
by estimating acceleration at multiple points via a traditional sensor approach. Alternatively, they
interpreted the results using the supervised machine learning algorithm called random forest.

As mentioned above, some remarkable studies have been carried out to estimate velocity and
acceleration from multi-frame and multi-camera methods. However, we did not find any strategy based
on motion-blurred images for measuring acceleration.

1.4. Works related to deep learning

Deep learning is a technique derived from neural networks that has recently supported
instrumentation and measurement. In the scientific literature, it can already be found in combination
with traditional instrumentation, such as light detection and ranging (LiDAR) (59), radars (60), and
PIV (61, 62), in order to estimate the velocity of objects and particles. However, we found no evidence
of similar works using deep learning and a single motion-blurred image.

Estimating kinematic quantities from a single image is a challenging yet potentially beneficial issue.
A moving system, such as a vehicle, a robot, or a drone, can use motion-blurred images to estimate these
parameters without the need for bulkier, heavier, and more expensive devices. Moreover, processing
one image is often easier than processing a video sequence.

The contributions of this study are as follows:

• The construction and metrological calibration of an electromechanical incline slider to generate
different acceleration values.
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• The development of a dataset with 125 invariant, uniformly accelerated motion-blurred images in
a controlled environment.

• The comparison of some machine learning techniques against deep learning for acceleration
estimation.

Figure 2. Differences between a degraded image with a uniform and a uniformly accelerated motion

blur. (a) Invariant motion-blurred image related to constant velocity. Here, the blur is more visible to the

naked eye. (b) Invariant motion-blurred image related to constant acceleration. Here, the blur is lower.

(c) Modulation transfer function of (a). (d) Modulation transfer function of (b). (e) Collapsed MTF on

the u-axis of (c). (f) Collapsed MTF on the u-axis of (d)
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• A proposal for the estimation of acceleration from a real single invariant, uniformly accelerated
motion-blurred image.

The remainder of this paper is organized as follows. Section 2 introduces our proposal for
acceleration estimation using machine learning and the PSF as a source of characteristic feature
patterns. Section 3 presents the experimental setup and the testing carried out. Section 4 outlines the
results obtained in the experiments by comparing different regression approaches (including deep
learning) and their metrics. Section 4 contrasts the results with those of previous authors and discusses
the limitations and benefits of the method. Finally, Section 5 presents the conclusions of this work.

This paper is a product of and reuses, with due authorization, content from the PhD thesis and
research project entitled “A contribution to the estimation of kinematic quantities from linear motion-blurred
images” cited in (43).

2. Proposed measurement method

An image system is modeled as the convolution of the PSF with the blur-free image. This does not
allow for the use of linear filtering approaches to extract the PSF. Alternatively, homomorphic filtering
uses nonlinearity transformations, such as logarithmic transformations, to map convolution into a
separable linear additive domain (63–66). As a theoretical basis, this research used the homomorphic
filtering principle to extract the PSF.

Consider that g(x, y) corresponds to the degraded blur image, i(x, y) is the blur-free image, and
h(x, y) represents the degradation kernel (PSF). If noise of any kind is not added and the blur system, it
is considered to be linear and stationary, and the process can be described as seen in Eq. (4):

g(x, y) = i(x, y) ∗ h(x, y) (4)

The product ∗ denotes convolution in two dimensions. Additionally, the image convolution from (4)
can be also represented as an integral, as shown in Eq. (5):

i(x, y) ∗ h(x, y) =
∫ +∞

−∞

∫ +∞

−∞
i(x′, y′)h(x− x′, y − y′)dx′dy′ (5)

Considering that Eq (5) deals with finite blur images in space, it is defined in the intervals
x2 ≤ x′ ≤ x1 and y2 ≤ y′ ≤ y1. It should be noted that the convolution interval must be larger than the
PSF interval of the blur.

Now, the discrete Fourier transform (DFT) is applied to both sides of Eq. (4) to obtain Eq. (6), which
represents a point-wise multiplication in frequency domain instead of a convolution in space.

G(u, v) = I(u, v)H(u, v) (6)

G(u, v), as shown in (6), is a complex value, so it can also be written in polar coordinates using
magnitude and angle, as shown in Eq. (7).

|G(u, v)|ejϕG = |I(u, v)|ejϕI |H(u, v)|ejϕH (7)
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This relation can be split into magnitude and phase components, as shown in Eqs. (8) (10),
respectively.

|G(u, v)| = |I(u, v)||H(u, v)| (8)

ϕG = ang[I(u, v) +H(u, v)] (9)

log |G(u, v)| = log |I(u, v)H(u, v)|

Only the log magnitude portion of the complex logarithm of the DFT is used, as shown in Eq. (10).

log |G(u, v)| = log |I(u, v)|+ log |H(u, v)| (10)

Although some images can be very different in space, their average frequency is usually very much
alike and almost indistinguishable to the naked eye. This allows using the average of Q hypothetical
blur-free images I(u, v)k to estimate the prototype clear blur-free image P (u, v) in frequency, as shown
in Eq. (11) (65).

P (u, v) =
1

Q

Q∑
k=1

I(u, v)k (11)

in such a way that
log |I(u, v)| ∼= log |P (u, v)| (12)

log[I(u, v)] ∼=
1

Q

Q∑
k=1

log |I(u, v)k| (13)

Replacing Eq. (13) into Eq. (10), and then solving for |H(u, v)|,

|H(u, v)| ∼= exp
[
log |G(u, v)| − 1

Q

Q∑
k=1

log |I(u, v)k|
]

(14)

where |H(u, v)| is the modulation transfer function (MTF) of an arbitrary blur, which can be
estimated without knowledge of the actual blur-free image using a set of Q reference images to generate
a prototype-average log spectrum.

Even though the classical approach for the PSF estimation of an image suggests using statistically
close images to generate the prototype average log spectrum, this study used 5 still background
images as the clear image in order to estimate the MTF only once for all the experiments. Q = 5 was
recommended in (65). Subsequently, the inverse Fourier transform (iDFT ) of H(u, v) is applied to obtain
h(x, y), the PSF, as seen in Eq. (15).

h(x, y) = iDFT (H(u, v)) (15)

Fig. 3 presents the proposed method for acceleration estimation using homomorphic filtering and
machine learning regression. In this method, five blur-free images i(x, y)k are taken to the unchangeable
background with the camera at rest. This helps reduce the additive noise, subtracting the average of
a set of hypothetical blur-free images. Consequently, the MTF is obtained for each of the five images
and then averaged, added, and divided by five. This yields a prototype blur-free background log |P |,
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Figure 3. Diagram depicting the process followed to estimate acceleration using homomorphic filtering

while applying machine learning. Some blur-free images of the background are needed to separate the

PSF for training

which is subtracted from the MTF of the motion-blurred image log |G(u, v)| to obtain the output s(u, v).
Afterwards, the exponential function is used to remove the logarithm. This allows obtaining the optical
Fourier transform H(u, v) of the blurred image, which leads to the PSF h(x, y) in two dimensions via
the inverse Fourier transform. As the motion occurs only in the horizontal axis, the actual PSF in one
dimension h(x) can be extracted from the central horizontal line of the PSF h(x, y).

Therefore, this research took only the central horizontal row of the inverse Fourier transform,
yielding a one-dimension vector containing the characteristic PSF.

If the motion is not horizontal, the one-dimension PSF can also be extracted, but the angle of
rotation of the line must be estimated and then rotated. This angle can be calculated using the Radon
transform, the Hough transform (42), or principal components analysis (PCA).

Before training, the instances are space-reduced to avoid redundancy using PCA. Finally, a set of
uniformly accelerated motion-blurred images with a known acceleration is used for training.

3. Methodology

The experiments presented in this section were carried out to measure constant acceleration from a
linear motion-blurred image by using homomorphic filtering to extract the PSF and machine learning to
predict the actual response. First, all parts of the rig setup are introduced, with the purpose of providing
a more detailed description of the procedure. Then, an overview of the aforementioned machine learning
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and deep learning methods is presented, and, finally, the evaluation metrics are described regarding the
regression methods evaluated.

3.1. Rig setup parts

This section shows the materials and the laboratory equipment needed for the experiments, some
of which were specifically constructed within the framework of this study.

Slider

A 185-cm-long aluminum slider constructed for previous speed experiments was used (42), which
was slightly modified for our study. Fig. 5 shows the physical layout parts modeled in order to validate
the proposed method. Five preset posters were used as a background scene (Fig. 4). Additionally, the
camera was placed in parallel to and 171 cm away from the rig. An inclinometer was also installed on
the camera. A constant acceleration was achieved by raising an end of the platform to one of the five
possible preset angles (A1, A2, A4, A5, and A7) listed in Table I. Sliding occurred evenly and only under
the force of gravity. Fig. 6 presents the rig setup used to carry out the experiments. More information
about its construction and calibration can be found in (67).

Image analysis system

Motion-blurred image capture and processing were performed on a 64-bit desktop computer with
a Core I3 processor and 2GB RAM. Additionally, a 64-bit laptop computer with an AMD A3 processor
and 2GB RAM was used for analyzing the acceleration data from the controller system. Both computers
used Windows 7 and were running MATLAB 2017b.

Images

Our experiments were carried out in a controlled environment. A scientific digital camera (Basler
acA2000-165um USB 3.0) (68) was used to take the pictures. In addition, the artificial white light from
the led panel lamps was about 255 Lux, the distance to pattern poster was set at 171 cm, the maximum
exposure time of the camera was 100 ms, the slider acceleration was between 0,6 and 2,40 m/s2, and
the aperture of the lens diaphragm (69) was F/4.

Blurred images of five different pattern posters were taken (Fig. 4). Afterwards, the captured digital
images were clipped and converted to grayscale (70). These experiments considered the angle of motion
at zero degrees. Although the camera slid on an inclined plane, the motion blur was horizontal with
respect to the camera angle. The background scene posters were not rotated, so, at the naked eye, they
looked crooked. Fig. 5 shows each of the elements described.

PCA feature extraction

Feature extraction is a relevant topic in signal processing, mostly due to the high dimensionality of
data and their redundancy (71). PCA is a classical and widely accepted statistical approach for feature
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extraction in pattern recognition and computer vision (72). In this study, PCA feature extraction was
used to reduce redundant data from the extracted PSF. The multidimensional space was transformed
from 125 to 76 characteristics.

Machine learning regression

Five different approaches were used to predict the acceleration from the PSF data of actual
motion-blurred images. Tree ensembles, Gaussian processes (GPR), and linear, SVM, and tree regression
and their variations were evaluated, as presented in Table II.

Regression model assessment

The metrics applied to assess the regressions were the root mean square error (RMSE), the prediction
speed in observations per second, and the training time in seconds.

(a) (b) (c)

(d) (e)

Figure 4. Color version of some accelerated motion-blurred images. The degradation is almost

imperceptible by visual inspection

4. Experimental results

Five pictures were taken at each of the five preset accelerations. Additionally, five background scene
posters were used, for a total of 125 motion-blurred images.
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Figure 5. Setup parts and their location. Background pattern poster (1), leveling rubber feet (2), digital

pitch gauge-inclinometer (3), camera sliding carriage platform (4), camera (5), lifting base (6), controller

(7), oiled stainless steel rods (8), low-friction linear bearings (9), laser-cut toothed steel sheet (10), camera

trigger (11), image capture computer (12), and data analysis computer (13)

Although the acceleration values were almost always the same as in Table I, the error was estimated
individually using the electromechanical instrument and our vision-based acceleration values.

4.1. Instrument calibration

The uniformly accelerated motion system involved an Arduino Nano microcontroller, which was
responsible for measuring the time it took to block each tooth of the steel sheet. Its operation consisted
of allowing the camera carriage platform on the steel rods to slide at five different angles, yielding
different accelerations depending on the height. The angles and their accelerations are shown in Table I.

Calibration was performed by measuring the acceleration with both the controller system and the
Phywe Cobra4 Sensor-Unit 3D-Acceleration standard instrument (±2 g and a resolution of 0,001 g),
using the Cobra4 wireless link to transmit the acceleration data (73). The combined uncertainty and
the sensitivity coefficients were evaluated to estimate the total expanded uncertainty according to
guidelines regarding the expression of uncertainty in measurement (74, 75). See (67) for more detailed
information about the calibration process.
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Figure 6. Rig setup to generate uniformly accelerated motion-blurred images

Table I. Acceleration values and uncertainties obtained from the calibration procedure

Index Angle (Degree) Acceleration (m/s2)

A0 15◦ 2, 4630± 0, 0285

A1 13, 3◦ 2, 1782± 0, 0233

A2 10, 1◦ 1, 5416± 0, 0161

A3 7, 9◦ 1, 2292± 0, 0130

A4 4, 5◦ 0, 6448± 0, 0074

4.2. Data acquisition results – Machine learning

Five folds were used to validate all of the proposed regression models. Table II shows the results
for the basic regression models and their variants. Note that, even though only five major approaches
were assessed, each one had a subset of variants, for a total of 19. The best RMSE results were reported
by GPR (Matern 5/2), linear regression, and SVM (quadratic) regression, with 0,2547, 0,2553, and 0,2843
m/s2, respectively. GPR (Matern 5/2), linear regression, and SVM (quadratic) regression reported
values of 530, 470, and 540 obs/s, respectively. Finally, the fastest training time corresponded to GPR
(Matern 5/2), with 1,373 s. See Table II for more details.

Moreover, predicted vs. actual and residuals plots were employed for the best three RMSE results.
The residuals plots for GPR (Matern 5/2), linear regression, and SVM (quadratic) regression (Figs. 8a,
8b, and 8c, respectively) showed that the acceleration residuals tend to change their sign from negative
to positive when the acceleration is higher than 1,4 m/s2. Furthermore, the acceleration residuals are
smaller in all cases when the acceleration is higher than 1,0 m/s2. This makes GPR (Matern 5/2) more
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suitable for real-time applications. In summary, the plots for GPR (Fig. 8a) and linear regression (Fig. 7)
are almost identical.

As expected, decision trees showed the worst results since they tend to fail when training data is
limited.

(a) (b) (c)

Figure 7. Predicted vs. actual plots for (a) Matern 5/2 regression, (b) Linear regression, and (c) SVM

regression

(a) (b) (c)

Figure 8. Residual plots for (a) Matern 5/2 regression, (b) linear regression, and (c) SVM regression

4.3. Data acquisition results – Deep learning

Deep learning techniques have some advantages, such as the automatic extraction of features. In
addition, input images can be used without any prior processing beyond the geometric transformations
of the training images when expanding the dataset becomes necessary. Therefore, in this part of the
experimentation process, homomorphic mapping was not used as a source of features for the regression.

The executed algorithms were coded in MATLAB R2020b, using the Deep Network Designer
toolbox. It is crucial to emphasize that the learning algorithm corresponds to a regression instead of a
classification process, which allows generating response values outside the training data.
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As mentioned earlier, 125 training images were used, which were 512 x 512 x 3 pixels in size.
However, the pre-trained networks required different dimensions. Therefore, the pixel size of the
images was set at 224 x 224 x 3 for GoogleNet and VGG-16, at 227 x 270 x 3 for AlexNet, and at 299 x
299 x 3 for Inception ResNet-v2.

The performance of a CNN depends mainly on hyperparameters such as the learning rate, the
mini-batch size, the number of epochs, the number of iterations, and the solver algorithm. For a
good performance, a determining factor is the pre-trained model, which typically uses hundreds
or thousands of images. Therefore, in our study, it was necessary to extend the image dataset by
performing rotations and reflections to obtain 750 images. The image size scale was not changed, as it
implicitly includes the blur length attributes.

The dataset was divided as follows: 80 % for training, 10 % for validation, and 10 % for testing. Thus,
the 750 images were divided into 600 training images, 75 validation images, and 75 testing images. All
of them were randomly selected from the dataset.

As can be seen in Table III, AlexNet offered the shortest training and prediction times while
using the GTX1650 and the GTX1050 GPUs. Regarding the RMSE, the lowest value (0,4639 m/s2) was
obtained using Inception ResNet v2. However, this is far from what was achieved using homomorphic
mapping, which showed a smaller RMSE (0,2547 m/s2).

It should be noted that only GPUs were used with the deep learning algorithms and CPUs with the
machine learning algorithms.

5. Discussion

Even though there are some studies on estimating speed using vision-based measurement (VBM),
to the best of our knowledge, only a few deal with acceleration. Likewise, there is no evidence of studies
that estimate acceleration from a motion-blurred image.

Some approaches have been introduced to measure acceleration, and all of them require at least
two consecutive frames (45, 46, 76), while others also use high-speed or multiple cameras (4, 77), thus
making make classical approaches more expensive and bulkier.

This field of research has great potential across various applications, including forensic sciences,
particle physics, and autonomous drones. The proposed technique can extract essential motion
parameters from a single image, simplifying processes that traditionally rely on multiple video frames
or complex sensor configurations. Consequently, it reduces the complexities associated with runtime
and computation, resulting in substantial savings regarding storage space and energy consumption.
This efficiency makes it an environmentally sustainable and cost-effective approach, underscoring its
importance.
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The acquisition of blurred images relies on the adjustment of camera settings, particularly the
exposure time relative to the scene’s motion. While creating motion blur is relatively straightforward in
general photography, achieving controlled motion blur in scientific or forensic contexts often requires
specific conditions. Moreover, analyzing the variables, conditions, or parameters involved in obtaining
motion blur becomes more intricate when the subject or object in motion is not the camera itself. In
such scenarios, both the camera and the subject’s movements affect the resulting blur, necessitating
the application of specialized methodologies. The attributes of a camera employed to capture motion
blur data are not rigidly prescribed, but several critical features contribute to its effectiveness. These
encompass adjustable exposure settings, sensor sensitivity, image stabilization capabilities, and the
camera’s lens and sensor quality. These attributes significantly influence the quality and reliability of
the analysis. Consequently, the selected camera and its settings emerge as a pivotal consideration, with
a substantial influence over the outcomes of motion blur analysis in diverse applications.

Table II. Machine learning results obtained using tree ensembles, GPR, and linear, SVM, and tree

regression

Regression

models
Variant

RMSE

(m/s2)

Prediction

Speed (Obs/s)

Training

Time (s)

Ensembles

of trees

Bagged trees 0,4124 420 1,7598

Boosted trees 0,3507 480 1,8514

GPR

Exponential 0,3187 460 1,4044

Matern 5/2 0,2547 530 1,373

Rational 0,2553 530 1,6424

Quadratic squared exponential 0,2553 470 1,5473

SVM

Linear 0,2553 470 1,5175

Coarse 0,6607 510 1,0678

Gaussian fine 0,4611 480 1,0486

Gaussian medium 0,5243 500 1,0921

Gaussian linear 0,3747 500 1,0779

Quadratic 0,2843 540 1,804

Trees

Coarse tree 0,6327 570 0,9837

Fine tree 0,4915 540 1,0379

Medium tree 0,4604 540 1,0037

This alternative blur-based method has benefits. Motion blur is a usual and undesirable degradation,
but it is possible to take advantage of it, as it allows for acceleration estimations. In addition, this
approach can be implemented with low-cost cameras, instead of high-speed multi-frame video
equipment, which is more expensive.

Likewise, the proposed method has some limitations. One is that it needs a set of blur-free images as
reference for training. However, in some cases, this is easy to obtain from the background. For example,
a drone can obtain the prototype images from an initial image (a prototype with no motion blur) of a
crop and then fly over it while estimating the acceleration. Noise is another limitation of this proposal:
when the noise is dominant, the extraction of the PSF can fail along with the estimation. Finally, the
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Table III. Deep learning results for AlexNet, GoogleNet, VGG-16, and inception ResNet v2

Regression

models
Variant

RMSE

(m/s2)

Prediction

speed (Obs/s)

Training

time (s)

AlexNet
GTX 1050 0,8088 74 125

GTX 1650 0,6585 52 95

GooleNet
GTX 1050 0,5918 44 667

GTX 1650 0,6112 43 432

VGG-16
GTX 1050 0,7334 4 1.655

GTX 1650 0,6377 21 755

Inception

ResNet v2

GTX 1050 3,0234 13 8.229

GTX 1650 0,4639 11 5.582

space-invariant model introduced in this study assumes that the exposure time is relatively short, and
the length from the rig setup to the camera is fixed to ensure invariant blur on all images.

6. Conclusions

With some degree of accuracy, the machine learning models successfully estimate relative
acceleration from a single motion-blurred image, using homomorphic filtering to extract the features of
the PSF, which depends on the initial velocity, the acceleration, and the exposure time, as shown in Eq.
(1).

The proposed method is a valid alternative to estimate acceleration with invariant motion blur.
The best machine learning methods were GPR (Matern 5/2) and linear regression, with RMSE values
of 0,2547 and 0,2553 m/s2, respectively. These methods were able to perform 530 and 470 obs/s,
respectively. Finally, the best results were obtained when the acceleration was above 1,0 m/s2. This
makes machine learning an alternative approach that can be used in real-time applications for estimating
acceleration when motion blur is invariant, and noise is not dominant.
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