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Abstract

Context: This work presents the development of a dynamic model for human
lower limb motion in the sagittal plane during the gait cycle. The primary objective
of this model is to serve as a powerful tool for the design of rehabilitation and
assistive devices, such as exoskeletons, prostheses, and orthoses. It achieves this
by facilitating the estimation of joint torques, the detailed analysis of kinematic
variables, optimal actuator selection, and the exploration of advanced control
techniques.
Method: The dynamic model consists of two primary components: (1) the plant
model and (2) a closed-loop controller. The plant model represents the forward
dynamics of human gait and is based on a multi-mass pendulum composed of three
segments of the lower limb (thigh, lower leg, and foot) and three joints (hip, knee,
and ankle). It is analyzed using the Euler-Lagrange formulation and the nonlinear
second-order differential equations are implemented in MATLAB’s Simulink. To
reproduce reference human gait trajectories and simulate the functioning of the
neuromusculoskeletal system and the central nervous system, a closed-loop PID
controller is incorporated into the plant model. It is noteworthy that the scope of
this dynamic model is specifically confined to the sagittal plane.
Results: The dynamic model is evaluated in terms of angular displacement tracking
using the relative maximum error (RME) and the root mean square error (RMSE) for
reference trajectories of healthy adult male human gait as reported in the literature.
The model demonstrates tracking with errors below 2.2 [°] in magnitude and 3,5 %
for all three considered segments (thigh, lower leg, and foot).
Conclusions: The quantitative results show that the dynamic model developed in
this work is reliable and allows for a precise reproduction of human gait trajectories.
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Resumen

Contexto: Este trabajo presenta el desarrollo de un modelo dinámico del movimiento del miembro
inferior humano en el plano sagital durante el ciclo de marcha. El objetivo principal de este modelo
es servir como una herramienta poderosa para el diseño de dispositivos de rehabilitación y asistencia,
como exoesqueletos, prótesis y órtesis. Esto lo logra facilitando la estimación de torques en las
articulaciones, el análisis detallado de variables cinemáticas, la selección óptima de actuadores y la
exploración de técnicas avanzadas de control.
Método: El modelo dinámico se consiste en dos componentes principales: (1) el modelo de la planta y
(2) un controlador de lazo cerrado. El modelo de la planta representa la dinámica directa de la marcha
humana y se basa en un péndulo de múltiples masas compuesto por tres segmentos del miembro
inferior (muslo, pantorrilla y pie) y tres articulaciones (cadera, rodilla y tobillo). Este es analizado
utilizando la formulación de Euler-Lagrange y las ecuaciones diferenciales de segundo orden no
lineales se implementan en Simulink de MATLAB. Para reproducir las trayectorias de referencia de la
marcha humana y simular el funcionamiento del sistema musculoesquelético y del sistema nervioso
central, se implementa un controlador PID de lazo cerrado en el modelo de la planta. Es importante
destacar que el alcance de este modelo dinámico se limita específicamente al plano sagital.
Resultados: El modelo dinámico es evaluado en términos del seguimiento del desplazamiento angular
usando el error relativo máximo (RME) y el error medio cuadrático (RMSE) para trayectorias de
referencia de la marcha humana de adultos masculinos sanos reportadas en la literatura. El modelo
demuestra un seguimiento con errores por debajo de 2.2 [°] en magnitud y 3,5 % para los tres segmentos
considerados (muslo, pantorrilla y pie).
Conclusiones: Los resultados cuantitativos muestran que el modelo dinámico desarrollado en este
trabajo es confiable y permite reproducir precisamente las trayectorias de la marcha humana.

Palabras clave: biomecánica, Euler-Lagrange, marcha humana, control PID, Simulink
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1. Introduction

Gait, also referred to as bipedal locomotion, is a cyclic and fundamental movement that involves
a sequence of repetitive events, initiating and concluding with the contact of the initial foot with the
ground. This dynamic process encompasses a steady-state gait cycle, comprising the stance phase
(when the reference foot is on the ground) and the swing phase (when the reference foot is off the
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ground). Gait constitutes a complex functional task that necessitates intricate coordination between
numerous major joints within the human body, with particular emphasis on the lower limb (1).

The modeling of human gait has garnered substantial attention from researchers in recent decades
due to its profound implications in biomedical engineering. This interest arises from its applications
in designing rehabilitation and assistive devices, as well as analyzing abnormal gait patterns and their
consequences. Currently, the design of such devices, including exoskeletons, prostheses, and orthoses,
often relies on empirical and trial-and-error approaches. Many of these devices are constructed and
subsequently tested on individuals before obtaining valuable feedback, resulting in an inefficient and
costly design process. Dynamic models provide a robust tool for designers by enabling the estimation
of crucial kinematic and kinetic variables, such as angular displacements, velocities, accelerations,
joint torques, and muscle forces. This facilitates optimal actuator selection and in-depth investigation
into control techniques in order to achieve satisfactory performance before implementation (2–4). A
rigorous and precise modeling approach enables the extrapolation of simulation results into practical
applications, allowing designers to thoroughly evaluate their devices in a virtual environment before
prototyping and human testing, thus reducing risks and costs (5). Additionally, dynamic modeling
serves as a valuable resource for clinicians, rehabilitation experts, and researchers, enhancing their
comprehension of both normal and pathological gait patterns and assisting in the identification of
causes and effects related to abnormal movement patterns. A comprehensive understanding of the
gait cycle, its parameters, and the principles underlying the musculoskeletal system and the central
nervous system (CNS) provides essential insights for evaluating and treating locomotion dysfunctions
in clinical environments (1).

Research regarding the dynamic modelling of human gait can be categorized into two main fields:
(1) musculoskeletal models and (2) biped robotics models. Musculoskeletal models (6) focus on the
interaction and contributions of individual muscles, tendons, and ligaments during gait, emphasizing in
the physiological aspects of bipedal locomotion. These models are highly intricate and computationally
intensive, given their numerous degrees of freedom (DOF), diverting attention from the fundamental
dynamics of the human gait. In contrast, biped robotics models aim at real-time gait control and the
evaluation of kinematic and kinetic variables of joints and body segments. According to (7), biped
robotics models can be divided into five groups: (1) pendulum models, (2) passive dynamic walkers,
(3) zero-moment-point (ZMP) methods, (4) optimization-based methods, and (5) control-based methods.

Pendulum models are based on the principle of energy conservation, capturing the exchange
between the kinetic and potential energy inherent in walking. Research in this area ranges from simple
planar (8,9) to 3D (10,11) and multi-mass pendulum models (12,13). Pendulum models offer advantages
in terms of simplicity, closed-form analytical solutions, and their ability to represent energy exchange
principles during gait. However, they can oversimplify dynamics when certain joints and segments,
such as the knee, ankle, lower leg, or foot, are not explicitly considered.

Passive dynamic walkers (14–16) are biped models that emulate a compass-like mechanism driven
purely by gravity as they descend gentle slopes. These models do not involve any actuation or control of
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joint angles or torques at any point. During their descent, the leg follows a pendulum-like trajectory, and
the swing foot’s contact with the ground is dictated by the conservation of angular momentum. Passive
dynamic walkers are simple and efficient models suitable for investigating the fundamental principles
of human gait, including the relationship between step length and velocity, energy expenditure, and
the transition from walking to running. However, like pendulum-based models, they may oversimplify
dynamics by neglecting certain joints and segments.

ZMP methods (17–19) focus on achieving bipedal walking by enforcing the body’s balance to follow
predefined locations. Each ZMP represents a point on the ground where the net moment of active forces,
including inertia, gravity, and external forces from actuators, is zero. The dynamic equations in this
approach primarily serve to ensure balance constraints rather than coordinate the entire gait trajectory.
ZMP methods are computationally efficient for the real-time control of biped robots. However, it is
essential to note that preplanned ZMP locations do not precisely mimic human walking principles or
the CNS’s control of gait.

Optimization-based methods (7, 20, 21) are computational approaches that seek to uncover the
criteria governing human gait generation by the CNS. In these methods, the objective function –
intended for optimization – typically represents a gait-related performance measure, such as dynamic
effort, mechanical energy, metabolic energy, jerk, or stability. Constraints encompass the joint range of
motion (ROM) and maximum joint torques. These methods offer insights into the relationship between
gait and performance measures, shedding light on the working principles of human walking. However,
they demand significant computational resources, are not well-suited for real-time applications, and
rely on experimental data.

Control-based methods are deployed in humanoid robots to facilitate bipedal walking, allowing for
interaction with the environment, responses to external disturbances, and real- time task execution. This
approach closely approximates the natural control mechanisms of the human CNS, ensuring accurate
analysis, estimation, and tracking of normal and pathological gait motions. Control-based methods can
be classified into three categories: (1) tracking control, (2) optimal control, and (3) predictive control.
Tracking control (22,23) involves calculating input forces or torques required to achieve desired walking
trajectories for body segments using kinematic feedback. In optimal control approaches (24, 25), input
forces or torques are treated as unknown variables in motion equations and are continuously optimized
for the subsequent time step, also employing kinematic feedback. Predictive control methods (5, 22) are
rooted in iterative finite horizon optimization, where online calculations are used to determine input
forces or torques. This process minimizes a cost function incorporating kinematic feedback.

This paper introduces a dynamic model of human lower limb motion in the sagittal plane during
the gait cycle. This model falls under the category of biped robotics and represents a hybrid approach
incorporating elements of both pendulum and control-based methods. The model comprises two
primary components: (1) the plant model, founded on a multi-mass pendulum, and (2) a closed-loop
PID controller. The plant model captures the forward dynamics of human gait, employing the
Euler-Lagrange formulation while considering the lower limb as consisting of three segments (thigh,
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lower leg, and foot) and three joints (hip, knee, and ankle). The PID controller is integrated to estimate
the joint torques necessary for replicating human gait reference trajectories. It constitutes a potent tool
for the design of rehabilitation and assistive devices, facilitating joint torque estimation, kinematic
variable analysis, optimal actuator selection, and the exploration of control techniques.

2. Dynamic model

As mentioned in the introduction, the dynamic model proposed for human lower limb motion
encompasses two essential components: (1) the plant model and (2) a closed-loop PID controller. The
plant model (the core of the dynamic model) represents the forward dynamics of human gait, and the
closed loop controller simulates the working principle of the neuromusculoskeletal system and the CNS.

It is worth noting that the scope of this dynamic model is specifically confined to the sagittal plane.
This deliberate limitation stems from the recognition that the motion and dynamic effects of the lower
limb within the frontal and transverse planes exhibit diminished relevance compared to those within
the sagittal plane (1).

2.1. Plant model

The plant model, responsible for capturing the dynamics of human lower limb motion, is
meticulously formulated using the Euler-Lagrange formulation. This mathematical framework is
applied to the system depicted in Fig. 1, which comprises three lower limb segments (thigh, lower
leg, and foot) interconnected by three joints (hip, knee, and ankle). Each of the lower limb segments
is modeled as a rigid bar by specific attributes. These attributes include length Ln, mass mn, and the
proximal gravity center ln. These segments are positioned at angular positions θn relative to the vertical
axis. To distinguish between the individual segments within the model, subscripts are employed as
follows: ‘1’ for the thigh, ‘2’ for the lower leg, and ‘3’ for the foot. The foundation of this modeling
framework is established in a fixed coordinate system with its origin situated at the hip joint.

The Lagrangian L is established as the difference between the system’s kinetic energy T and its
potential energy V :

L = T − V (1)

The kinetic energy is defined by Eq. (2), which incorporates the kinetic energy of each individual
segment. In this equation, vn represents the linear velocity, Jn denotes the moment of inertia, and θ̇n

represents the angular velocity.

T =
m1v

2
1

2
+

J1θ̇
2
1

2
+

m2v
2
2

2
+

J2θ̇
2
2

2
+

m3v
2
3

2
+

J3θ̇
2
3

2
(2)

The linear velocity can be expressed as the magnitude of the first derivate of the position vector rn
of the gravity center for each segment: vn = |ṙn|. The centers of gravity for the thigh, lower leg, and foot
are situated at positions r1, r2 and r3, respectively:

r1 =

[
l1 sin θ1

−l1 cos θ1

]
(3)
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Figure 1. Representation of human lower limb for dynamic modeling

r2 =

[
L1 sin θ1 + l2 sin θ2

−L1 cos θ1 − l2 cos θ2

]
(4)

r3 =

[
L1 sin θ1 + L2 sin θ2 + l3 sin θ3

−L1 cos θ1 − L2 cos θ2 − l3 cos θ3

]
(5)

Therefore, the linear velocities of the thigh, lower leg, and foot are established as:

v1 = θ̇1l1 (6)

v2 =

√
θ̇21L

2
1 + θ̇22l

2
2 + 2θ̇1θ̇2L1l2 cos(θ1 − θ2) (7)

v3 =

√
θ̇21L

2
1 + θ̇22L

2
2 + θ̇23l

2
3 + 2θ̇1θ̇2L1L2 cos(θ1 − θ2) + 2θ̇2θ̇3L2l3 cos(θ2 − θ3) + 2θ̇1θ̇3L1l3 cos(θ1 − θ3)

(8)
Substituting Eqs. (6), (7), and (8) into (2) results in the following expression for the kinetic energy of

the system:

T =
m1θ̇

2
1l
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2
+

J1θ̇
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+

m2θ̇
2
1L
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2
+

m2θ̇
2
2l

2
2

2
+m2θ̇1θ̇2l1l2 cos(θ1 − θ2) +

J2θ̇
2
2

2

+
m3θ̇

2
1L

2
1

2
+

m3θ̇
2
2L

2
2

2
+

m3θ̇
2
3l

2
3

2
+m3θ̇1θ̇2L1L2 cos(θ1 − θ2)

+m3θ̇2θ̇3L2l3 cos(θ2 − θ3) +m3θ̇1θ̇3L1l3 cos(θ1 − θ3) +
J3θ̇

2
3

2
(9)
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The potential energy is defined by Eq. (10), which incorporates the potential energy of each
individual segment. In this equation, g denotes the gravity, and hn represents the height of the center of
gravity relative to the coordinate system.

V = m1gh1 +m2gh2 +m3gh3 (10)

The height of the center of gravity for the thigh, lower leg, and foot can be expressed in terms of the
angular displacement as:

h1 = −l1 cos θ1 (11)

h2 = −L1 cos θ1 − l2 cos θ2 (12)

h3 = −L1 cos θ1 − L2 cos θ2 − l3 cos θ3 (13)

Substituting Eqs. (11), (12), and (13) into (10) results in the following expression for the potential
energy of the system:

V = −m1gl1 cos θ1 −m2gL1 cos θ1 −m2gl2 cos θ2 −m3gL1 cos θ1 −m3gL2 cos θ2 −m3gl3 cos θ3 (14)

Eqs. (9) and (14) are substituted into (1) to obtain the Lagrangian of the system:

T =
m1θ̇

2
1l
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+

J1θ̇
2
1

2
+

m2θ̇
2
1L
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2
+

m2θ̇
2
2l

2
2

2
+m2θ̇1θ̇2l1l2 cos(θ1 − θ2) +

J2θ̇
2
2

2

+
m3θ̇

2
1L

2
1

2
+

m3θ̇
2
2L

2
2

2
+

m3θ̇
2
3l

2
3

2
+m3θ̇1θ̇2L1L2 cos(θ1 − θ2)

+m3θ̇2θ̇3L2l3 cos(θ2 − θ3) +m3θ̇1θ̇3L1l3 cos(θ1 − θ3) +
J3θ̇

2
3

2
+m1gl1 cos θ1 +m2gL1 cos θ1 +m2gl2 cos θ2 +m3gL1 cos θ1

+m3gL2 cos θ2 +m3gl3 cos θ3 (15)

The Euler-Lagrange formulation is established by Eq. (16), where k represents the DOF, qk the set of
generalized coordinates, and Qk the set of external (non-conservative) forces applied to the system. In
the context of the system under consideration, there are three DOF associated with the three joints of the
lower limb. The external forces encompass the torque Tn acting at each joint and the viscous damping,
with bn representing the viscous damping coefficient. The Euler-Lagrange formulation is applied as seen
in Eqs. (17), (18), and (19) for the hip, knee, and ankle, respectively.

d

dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= Qk (16)

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= T1 − b1θ̇1 − b2(θ̇1 − θ̇2) (17)

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= T2 − b2(θ̇2 − θ̇1)− b3(θ̇2 − θ̇3) (18)

d

dt

(
∂L

∂θ̇3

)
− ∂L

∂θ3
= T3 − b3(θ̇3 − θ̇2) (19)
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The equations above are solved resulting in the nonlinear second-order differential Eqs. (20), (21),
and (22), which describe the motion of the thigh, lower leg, and foot, respectively.

θ̈1(m1l
2
1 +m2L

2
1 +m3L

2
1 + J1) + θ̈2[m2L1l2 cos(θ1 − θ2) +m3L1l2 cos(θ1 − θ2)]

+θ̈3[m3L1l3 cos(θ1 − θ3)]

+θ̇22[m2L1l2 sin(θ1 − θ2) +m3L1L2 sin(θ1 − θ2)]

+θ̇23[m3L1l3 sin(θ1 − θ3)] +m1gl1 sin θ1 +m2gL1 sin θ1

+m3gL1 sin θ1 = T1 − b1θ̇1 − b2(θ̇1 − θ̇2) (20)

θ̈2(m2l
2
2 +m3L

2
2 + J2) + θ̈1[m2L1l2 cos(θ1 − θ2) +m3L1l2 cos(θ2 − θ3)]

+θ̈3[m3L2l3 cos(θ2 − θ3)]

+θ̇21[−m2L1l2 sin(θ1 − θ2)−m3L1L2 sin(θ1 − θ2)]

+θ̇23[m3L2l3 sin(θ2 − θ3)] +m2gl2 sin θ2 +m3gL2 sin θ2

= T2 − b2(θ̇2 − θ̇1)− b3(θ̇2 − θ̇3) (21)

θ̈3(m3l
2
3 + J3) + θ̈2[m3L2l3 cos(θ2 − θ3)] + θ̈1[m3L1l3 cos(θ1 − θ3)]

+θ̇22[−m3L2l3 sin(θ2 − θ3)] + θ̇21[−m3L1l3 sin(θ1 − θ3)]

+m2gl3 sin θ3 = T3 − b3(θ̇3 − θ̇2) (22)

To simplify the aforementioned differential equations, certain parameters are combined into the
following constants: c1 = m1l2 + m2L

2
1 + m3L

2
1 + J1, c2 = m2L1l2, c3 = m3L1L2, c4 = m3L1l3, c5 =

m1gl1, c6 = m2gL1, c7 = m3gL1, c8 = m2l
2
2 +m3L

2
2 + J2, c9 = m3L2l3, c10 = m2gl2, c11 = m3gL2, c12 =

m3l
2
3 + J3, and c13 = m3gl3. As a result of these simplifications, Eqs. (23), (24), and (25) are obtained.

c1θ̈1 + (c2 + c3)θ̈2 cos(θ1 − θ2) + c4θ̈3 cos(θ1 − θ3) + (c2 + c3)θ̇
2
2 sin(θ1 − θ2)

+c4θ̇
2
3 sin(θ1 − θ3) + c5 sin θ1 + c6 sin θ1 + c7 sin θ1

= T1 − b1θ̇1 − b2(θ̇1 − θ̇2) (23)

c8θ̈2 + (c2 + c3)θ̇1 cos(θ1 − θ2) + c9θ̈3 cos(θ2 − θ3)− (c2 + c3)θ̇
2
1 sin(θ1 − θ2)

+c9θ̇
2
3 sin(θ2 − θ3) + c10 sin θ2 + c11 sin θ2

= T2 − b2(θ̇2 − θ̇1)− b3(θ̇2 − θ̇3) (24)

c12θ̈3 + c9θ̈2 cos(θ2 − θ3) + c4θ̈1 cos(θ1 − θ3)− c9θ̇
2
2 sin(θ2 − θ3)− c4θ̇

2
1 sin(θ1 − θ3)

+c13 sin θ3 = T3 − b3(θ̇3 − θ̇1) (25)
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Eqs. (23), (24), and (25) are solved for the highest order derivatives θ̈1, θ̈1, and θ̈3 respectively, in
order to obtain the following set of motion equations:

θ̈1 =
1

c1
[−

(
(c2 + c3)θ̈2 cos(θ1 − θ2)− c4θ̈3 cos(θ1 − θ3)

)
− (c2 + c3)θ̇

2
2 sin(θ1 − θ2)

−c4θ̇
2
3 sin(θ1 − θ3)− (c5 + c6 + c7) sin θ1 + T1 − b1θ̇1 − b2(θ̇1 − θ̇2)] (26)

θ̈2 = − 1

c8
[−(c2 + c3)θ̈1 cos(θ1 − θ2)− c9θ̈3 cos(θ2 − θ3) + (c2 + c3)θ̇

2
1 sin(θ1 − θ2)

−c9θ̇
2
3 sin(θ2 − θ3)− (c10 + c11) sin θ2 + T2 − b2(θ̇2 − θ̇1)− b3(θ̇2 − θ̇3)] (27)

θ̈3 =
1

c12
[−c9θ̈2 cos(θ2 − θ3)− c4θ̈1 cos(θ1 − θ3) + c9θ̇

2
2 sin(θ2 − θ3)

+c4θ̇
2
1 sin(θ1 − θ3)− c13 sin θ3 + T3 − b3(θ̇3 − θ̇1)] (28)

This plant model of human lower limb motion in the sagittal plane was implemented in MATLAB’s
Simulink, and it utilizes the non-linear second-order differential Eqs. (26), (27), and (28), as illustrated
in the block diagram presented in Fig. 2. The inputs to this model consist of the joint torques (T1, T2 and
T3) measured in units of [N · m], while the outputs are the angular displacements of the thigh, lower
leg, and foot (θ1, θ2 and θ3), reported in units of [rad].

The parameters that make up the plant model are detailed in Table I. These parameters are derived
trough an anthropometric analysis that relies on two primary factors: the body mass M and the
height H of the individual. The mass of each segment and its corresponding length are linked to the
individual’s body mass and height, and the gravity center and radius of gyration are associated with
the segment length (26, 27).

2.2. Closed-loop controller

The neuromusculoskeletal system was conceptualized within a closed-loop feedback control
scheme. In this structured framework, the body’s segments and joints comprise the plant, muscles serve
as the actuators, and an array of sensors, including proprioceptive and tactile sensors alongside visual
and vestibular systems, act as sensory inputs. Overseeing this complex system is the CNS, functioning
as the controller (28). The CNS receives input signals representing desired positions or reference
trajectories, generated by the brain. These inputs are compared against real-time segment locations to
compute tracking errors, which, in turn, guide the CNS in sending neural signals to muscles. These
signals prompt the exertion of forces on the skeletal system, thereby producing joint torques to achieve
the desired motion.

To simulate the neuromusculoskeletal system and the CNS, the model employs three angular
displacement feedback PID controllers for the hip, knee, and ankle. Fig. 3 illustrates these controllers.
Their inputs are tracking errors, computed as the difference between reference trajectories and actual
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Figure 2. Plant model of human lower limb motion in Simulink

segment angular displacements. The controllers’ outputs represent the joint torques required for
carrying out the intended motion. These PID controller outputs feed directly into the plant model,
depicted in Fig. 2. For the sake of clarity and comprehensibility, this plant model is encapsulated within
a Simulink subsystem block, as illustrated in Fig. 3.
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Table I. Parameters of the plant model for human lower limb motion

Segment Parameter Symbol Value Unit

Mass m1 0,1 ·M [kg]

Length L1 0,284 ·H [m]

Proximal center of gravity l1 0,433 · L1 [m]

Thigh Radius of gyration k1 0,540 · L1 [m]

Moment of inertia J1 m1 · k21 [kg · m2]

Viscous damping coefficient b1 0.1 [N · m · s]

Mass m2 0,0465 ·M [kg]

Length L2 0,246 ·H [m]

Lower leg Proximal center of gravity l2 0,433 · L2 [m]

Radius of gyration k2 0,528 · L2 [m]

Moment of inertia J2 m2 · k22 [kg · m2]

Viscous damping coefficient b2 0.1 [N · m · s]

Mass m3 0,0145 ·M [kg]

Length L3 0,152 ·H [m]

Foot Proximal center of gravity l3 0,5 · L3 [m]

Radius of gyration k3 0,690 · L3 [m]

Moment of inertia J3 m3 · k23 [kg · m2]

Viscous damping coefficient b3 0.1 [N · m · s]

Figure 3. Closed-loop PID controllers implemented in the plant model in Simulink
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A notable aspect of this modeling process pertains to unit conversions. While the plant model
operates with angular displacements measured in radians, reference trajectories are presented in
degrees. To ensure consistency, unit conversion is performed using specialized gain blocks designated
as Deg to rad and Rad to deg. These blocks facilitate the transformation of reference trajectories from
degrees to radians before tracking error computation. Furthermore, the angular displacements of the
dynamic model are converted from radians to degrees for visualization purposes.

PID control is a classical closed-loop control technique defined by the Laplace domain transfer
function shown in Eq. (29). It comprises three essential constants: proportional Kp, integral Ki, and
derivative Kd. These constants play distinct roles in shaping system behavior: the proportional constant
enhances the system’s responsiveness; the integral constant reduces steady-state error; improving
precise tracking of reference trajectories; and the derivative constant manages the tracking error’s
evolution over time (2).

PID(s) = Kp +
Ki

s
Kds (29)

To optimize controller performance, an experimental tuning process was conducted on the plant
model. The objective was to achieve optimal tracking performance while ensuring that joint torques
remained within the reported maximum values for normal gait (29). The tuning process resulted in PD
controllers for the three joints, configured as follows: the hip controller was configured with Kp = 10,000

and Kd = 1, the knee controller with Kp = 1,000 and Kd = 10, and the ankle controller with Kp = 1,000

and Kd = 10.

3. Simulations and results

Simulations of the dynamic model were conducted using human gait reference trajectories obtained
from (29), with due consideration to the anthropometric data (body mass and height) reported in their
research. These reference trajectories comprise the angular displacement of the hip, knee, and ankle
joints during the gait cycle of healthy male adults.

Graphical simulation results are presented in Figs. 4, 5, and 6, each consisting of three plots
corresponding to the three lower limb joints: (a) hip, (b) knee, and (c) ankle. Fig. 4 shows the tracking
of angular displacement, with the reference trajectory represented as the dotted line and the angular
displacement of the segment in the dynamic model shown as the solid line. Fig. 5 illustrates the tracking
error regarding angular displacement, calculated as the difference between the reference trajectory
and the angular displacement of the segment. Fig. 6 presents the normalized joint torque during the
execution of the desired gait reference trajectory. This normalization is established relative to the
individual’s body mass.

The assessment of angular displacement tracking in the dynamic model involved the application
of two key metrics: the relative maximum error (RME) and the root mean square error (RMSE), both
in magnitude and as a percentage. These metrics were calculated using Eqs. (30) to (33), where θd

represents the reference trajectory, θn signifies the angular displacement of the segment in the dynamic
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model, and N denotes the signal length (2). Quantitative results from this evaluation are presented in
Table II, encompassing data for the three segments under consideration.

Table II. Angular displacement tracking errors of the dynamic model

Segment RME [°] % RME RMSE [°] % RMSE

Thigh 0,649 1,924 0,240 1,100

Lower leg 2,161 3,410 0,795 2,567

Foot 0,310 0,322 0,125 0,139

RME = max|θd − θn| (30)

%RME =
max|θd − θn|

máx |θd|
· 100 (31)

RMSE =

√
1

N

∑
(θd − θn)2 (32)

%RMSE =

√
1
N

∑
(θd − θn)2√

1
N

∑
(θd)2

· 100 (33)

Figure 4. Angular displacement tracking: (a) hip, (b) knee, and (c) ankle

|Ingeniería| Vol . 29 | No. 1 | ISSN 0121-750X | E-ISSN 2344-8393 | e20333 | 13 of 19



Dynamic Model of Lower Limb Motion in the Sagittal Plane. . . José Luis Sarmiento-Ramos, et al.

Figure 5. Angular displacement tracking error: (a) hip, (b) knee, and (c) ankle

The analysis of the graphical results, as depicted in Figs. 4 and 5, reveals that the most significant
tracking errors tend to appear during the peaks of the reference trajectories. While PID controllers can
be finetuned to minimize tracking errors, it is essential to recognize that pushing these controllers to
achieve such minimal errors could result in joint torques surpassing the reported values for normal
human gait (29).

Angular displacement tracking was effectively accomplished with errors remaining under 2.2 [°]
in magnitude and within a margin of 3,5 % for all three segments considered. Notably, the lower
leg segment exhibited the most substantial tracking errors. This can be attributed to the dynamic
interactions between the thigh and foot segments, which, in turn, impact the lower leg’s overall
performance. Despite these challenges, the tracking errors for the thigh and foot segments were
effectively constrained below 0,65 [°] and 2 %.

4. Conclusions

This paper presented the development of a dynamic model for human lower limb motion in the
sagittal plane during the gait cycle. The dynamic model was composed of two primary components:
(1) the plant model and (2) a closed-loop PID controller. The plant model served as the foundation
for understanding the forward dynamics of human gait. It was constructed based on a multi-mass
pendulum, encompassing three lower limb segments (thigh, lower leg, and foot) and three joints (hip,
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Figure 6. Joint torque: (a) hip, (b) knee, and (c) ankle

knee, and ankle). The governing nonlinear second-order differential equations of the plant model were
derived trough Euler-Lagrange formulation and subsequently implemented in MATLAB’s Simulink.
To replicate human gait reference trajectories and simulate the functioning of the neuromusculoskeletal
system and the CNS, a closed-loop PID controller was integrated to the plant model for tracking
angular displacement.

Simulations were conducted using human gait reference trajectories sourced from healthy adult
males. The accuracy of angular displacement tracking was rigorously assessed, quantified by two key
metrics: the relative maximum error (RME) and the root mean square error (RMSE). The simulation
results affirm the reliability of the dynamic model, demonstrating its ability to faithfully reproduce
human gait trajectories with a high degree of precision. The errors observed were consistently below
2,2 [°] in magnitude and 3,5 % for all three considered segments (thigh, lower leg, and foot).

Within the domain of dynamic human gait modeling, this model resides within the realm of
biped robotics, offering a unique hybrid approach that amalgamates pendulum and control- based
methodologies. This model stands as a potent tool, empowering the design of rehabilitation and assistive
devices, such as exoskeletons, prostheses, and orthoses. It enables crucial functionalities, including
joint torque estimation, analysis of kinematic variables, optimal actuator selection, and exploration of
advanced control techniques.
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