
Editorial

Solving the Power Flow Problem in Transmission
Networks Using Nonlinear complex-domain

Modeling Via Julia Software

Solving the power flow problem for transmission grids is crucial for ensuring
the reliable and efficient operation of electrical power systems. Power flow
analysis allows engineers to determine the voltage, current, and power flow
of a network, which is essential for maintaining system stability and avoid-
ing overloads. Accurate power flow solutions help to identify potential issues
such as voltage drops, line losses, and system inefficiency, enabling the proac-
tive maintenance and optimization of the network. This analysis is vital for
integrating renewable energy sources, as it ensures effective power distribu-
tion even under variable generation conditions. Ultimately, solving the power
flow problem enhances the overall resilience, reliability, and economic per-
formance of transmission networks, supporting a stable supply of electricity
to consumers.

1 Complex-variable power flow modeling
For electrical systems, the power flow problem can be formulated as a
complex-variable optimization model [1]. This optimization problem takes
the following form:

Objective function:

minPloss = Re

{∑
k∈N

∑
m∈N

V⋆
kYkmVm

}
, (1)

where Ploss represents the active power losses in the transmission system; Vk

and Vm correspond to the voltage variables in the complex domain that are
assignable to nodes k and m; Ykm is the component of the nodal admittance
matrix that relates nodes k and m; and N represents the set that contains all
the nodes in the system. Note that the operator Re {X} obtains the real part of
the complex variable X, while the operator X⋆ obtains its complex conjugate.

�

�

�

�
Citación/How to cite: O. D. Montoya, E. Rivas-Trujillo, and W. Gil-González, “Solving the power flow problem
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Set of constraints:

S⋆
g,k − S⋆

d,k = V⋆
k

∑
m∈N

YkmVm, {∀k ∈ N} (2)

Vs = Vs∠0, s = slack node (3)
|Vj| = Vj, j = PV nodes (4)

Re {Sg,j} = Pg,j. j = PV nodes (5)

where Sg,k corresponds to the complex power injected by the generator connected to node k; Sd,k

represents the complex power demanded at node k; Vs denotes the complex voltage assigned to the
slack node (reference bus), whose magnitude is Vs; Vj corresponds to the magnitude of the voltage
assignable to the nodes; and Pg,j is the active power assigned to these nodes.

It is important to mention that the formulation (1)–(5) can also represent the optimal power flow
problem in the complex domain if the active power constraint assigned to the PV nodes is relaxed,
allowing them to move within their maximum and minimum capacity limits [2].

2 The IEEE-WSCC

To illustrate the solution to the power flow problem in transmission systems according to the for-
mulation (1)-(5), consider the IEEE-WSCC (Western System Coordinating Council) system, whose
impedance and nodal voltage data are shown in Fig. 1. Note that the data reported in this figure
were obtained by applying the Newton-Raphson method [3].
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Figure 1: IEEE-WSCC (adapted from [4])
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3 Julia software implementation

This section illustrates the computational implementation of the mathematical model (1)-(5) in the
Julia software, using the Ipopt solver in the JuMP optimization environment [5].

using DataFrames, LinearAlgebra
Vb = 1; Sb = 100; Zb = 1;
branch_data = DataFrames.DataFrame([
(1,4,0.0000,0.0576,0.0000),(2,7,0.0000,0.0625,0.0000),
(3,9,0.0000,0.0586,0.0000),(4,5,0.0100,0.0850,0.1760),
(4,6,0.0170,0.0920,0.1580),(5,7,0.0320,0.1610,0.3060),
(6,9,0.0390,0.1700,0.3580),(7,8,0.0085,0.0720,0.1490),
(8,9,0.0119,0.1008,0.2090),]);
DataFrames.rename!(branch_data, [:k,:m,:Rkm,:Xkm,:Bk])
node_data = DataFrames.DataFrame([
(1, 3, 1.040, 0.0, 0.0, 0.0, 0.0),
(2, 2, 1.025, 0.0, 0.0, 163.0, 0.0),
(3, 2, 1.025, 0.0, 0.0, 85.0, 0.0),
(4, 0, 1.000, 0.0, 0.0, 0.0, 0.0),
(5, 0, 1.000, 125.0, 50.0, 0.0, 0.0),
(6, 0, 1.000, 90.0, 30.0, 0.0, 0.0),
(7, 0, 1.000, 0.0, 0.0, 0.0, 0.0),
(8, 0, 1.000, 100.0, 35.0, 0.0, 0.0),
(9, 0, 1.000, 0.0, 0.0, 0.0, 0.0),]);
DataFrames.rename!(node_data, [:k, :type, :Vk0,

:Pdk, :Qdk, :Pgk, :Qgk])
N = size(node_data,1); L = size(branch_data,1)
A = zeros(N,L)
for l = 1:L

k = branch_data.k[l]; m = branch_data.m[l]
A[k,l] = 1; A[m,l] = -1

end
z = (branch_data.Rkm .+ im*branch_data.Xkm)/Zb
Sd = (node_data.Pdk .+ im*node_data.Qdk)/Sb
Sgo = (node_data.Pgk .+ im*node_data.Qgk)/Sb
Ybus = A*inv(diagm(z))*transpose(A)
for l = 1:L

k = branch_data.k[l]; m = branch_data.m[l]
Ybus[k,k] = Ybus[k,k] + 1*im*branch_data.Bk[l]/2;
Ybus[m,m] = Ybus[m,m] + 1*im*branch_data.Bk[l]/2;

end
using JuMP, Ipopt
PF = Model(Ipopt.Optimizer);
@variable(PF, Sg[k in 1:N] in ComplexPlane());
@variable(PF,V[k in 1:N] in ComplexPlane(),

start = 1.0 + 0.0im);
for k in 1:N

if node_data.type[k] == 3
@constraint(PF,V[k] == node_data.Vk0[k] + 0*im);

elseif node_data.type[k] == 2
@constraint(PF,abs2(V[k])==(node_data.Vk0[k])ˆ2);
@constraint(PF,real(Sg[k]) == real(Sgo[k]));

else
@constraint(PF, Sg[k] == 0);
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end
@constraint(PF,conj(Sg[k]) - conj(Sd[k]) ==
conj(V[k])*sum(Ybus[k,m]*V[m] for m = 1:N))

end
@objective(PF,Min,Sb*real(sum(conj(V[k])*
sum(Ybus[k,m]*V[m] for m = 1:N) for k = 1:N)));
JuMP.optimize!(PF)
@show objective_value(PF);
bus_data = DataFrames.DataFrame(;k = 1:N,
Vmag = round.(abs.(value.(V)), digits = 4),
Vang = round.(angle.(value.(V))*180/pi, digits = 4),
Pg = round.(real(value.(Sg)),digits = 4),
Qg = round.(imag(value.(Sg)),digits = 4))

By executing this computational routine, the following results are obtained:

EXIT: Optimal Solution Found.
objective_value(PF) = 4.6410214744826453
Row k Vmag Vang Pg Qg

1 1 1.04 0.0 0.7164 0.2705
2 2 1.025 9.28 1.63 0.0665
3 3 1.025 4.6648 0.85 -0.1086
4 4 1.0258 -2.2168 0.0 0.0
5 5 0.9956 -3.9888 -0.0 0.0
6 6 1.0127 -3.6874 -0.0 0.0
7 7 1.0258 3.7197 -0.0 -0.0
8 8 1.0159 0.7275 0.0 0.0
9 9 1.0324 1.9667 -0.0 0.0

Thus, it is possible to note that:

i. The electrical variables, i.e., the magnitude and angle of the voltages at each of the buses, are
equivalent to the solution obtained using the Newton-Raphson method (Fig. 1) [3].

ii. Under the given operating conditions, the active power losses for this system amount to
4.6410 MW.

Remark 1 Suppose that the programmer is interested in solving the optimal power flow problem
for transmission networks. In this scenario, the active power injection at the PV buses is left
unconstrained, allowing the programmer to determine the optimal combination of these power
inputs in order to minimize the total grid power losses.
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Conclusion

This editorial note provides an easily implementable computational routine to deal with the power
flow problem in transmission networks, which can be extended to any single-phase AC grid, using
a complex-domain variable formulation. The solution to the power flow problem is obtained via
the interior point optimizer (i.e., the Ipopt solver) available in Julia’s JuMP optimization environ-
ment. This routine is presented as a tutorial, using the IEEE-WSCC network to demonstrate that
the power flow solution is equivalent to the solution reached with the classical Newton-Raphson
method.

Acknowledgment

This research received support from the Ibero-American Program of Science and Technology for
Development (CYTED), through the thematic network 723RT0150, i.e., Red para la integración a
gran escala de energı́as renovables en sistemas eléctricos (RIBIERSE-CYTED).
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sidad Tecnológica de Pereira, Ingeniero Electricista, Magı́ster en Ingenierı́a Eléctrica, Doctor en
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