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Solving the power flow problem for transmission grids is crucial for
ensuring the reliable and efficient operation of electrical power systems.
Power flow analysis allows engineers to determine the voltage, current,
and power flow of a network, which is essential for maintaining system
stability and avoiding overloads. Accurate power flow solutions help to
identify potential issues such as voltage drops, line losses, and system
inefficiency, enabling the proactive maintenance and optimization of the
network. This analysis is vital for integrating renewable energy sources,
as it ensures effective power distribution even under variable generation
conditions. Ultimately, solving the power flow problem enhances the overall
resilience, reliability, and economic performance of transmission networks,
supporting a stable supply of electricity to consumers.

1. Complex-variable power flow modeling

For electrical systems, the power flow problem can be formulated as a
complex-variable optimization model (1). This optimization problem takes
the following form:

Objective function:

mı́nPloss = Re

{∑
k∈N

∑
m∈N

V⋆
kYkmVm

}
, (1)

where Ploss represents the active power losses in the transmission system;
Vk and Vm correspond to the voltage variables in the complex domain
that are assignable to nodes k and m; Ykm is the component of the nodal
admittance matrix that relates nodes k and m; and N represents the set that
contains all the nodes in the system. Note that the operator Re {X} obtains
the real part of the complex variable X, while the operator X⋆ obtains its
complex conjugate.

Ed
it

or
ia

l
© The authors;

reproduction
right holder
Universidad

Distrital
Francisco José de

Caldas.

|Ingeniería| Vol . 29 | No. 3 | ISSN 0121-750X | E-ISSN 2344-8393 | e22697 |

https://revistas.udistrital.edu.co/index.php/reving/issue/view/1241
https://doi.org/10.14483/23448393.22697
https://orcid.org/0000-0001-6051-4925
https://orcid.org/0000-0003-2372-8056
https://orcid.org/0000-0003-2372-8056
https://ror.org/02jsxd428
https://ror.org/01d981710
https://creativecommons.org/licenses/by-nc-nd/4.0/


Solving the Power Flow Problem in Transmission Networks. . . O. D. Montoya et al.

Set of constraints:

S⋆g,k − S⋆d,k = V⋆
k

∑
m∈N

YkmVm, {∀k ∈ N} (2)

Vs = Vs∠0, s = slack node (3)

|Vj | = Vj , j = PV nodes (4)

Re {Sg,j} = Pg,j . j = PV nodes (5)

where Sg,k corresponds to the complex power injected by the generator connected to node k; Sd,k
represents the complex power demanded at node k; Vs denotes the complex voltage assigned to the
slack node (reference bus), whose magnitude is Vs; Vj corresponds to the magnitude of the voltage
assignable to the nodes; and Pg,j is the active power assigned to these nodes.

It is important to mention that the formulation (1)–(5) can also represent the optimal power flow
problem in the complex domain if the active power constraint assigned to the PV nodes is relaxed,
allowing them to move within their maximum and minimum capacity limits (2).

2. The IEEE-WSCC

To illustrate the solution to the power flow problem in transmission systems according to the
formulation (1)-(5), consider the IEEE-WSCC (Western System Coordinating Council) system, whose
impedance and nodal voltage data are shown in Fig. 1. Note that the data reported in this figure were
obtained by applying the Newton-Raphson method (3).
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Figure 1. IEEE-WSCC (adapted from (4))
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3. Julia software implementation

This section illustrates the computational implementation of the mathematical model (1)-(5) in the
Julia software, using the Ipopt solver in the JuMP optimization environment (5).

using DataFrames, LinearAlgebra

Vb = 1; Sb = 100; Zb = 1;

branch_data = DataFrames.DataFrame([

(1,4,0.0000,0.0576,0.0000),(2,7,0.0000,0.0625,0.0000),

(3,9,0.0000,0.0586,0.0000),(4,5,0.0100,0.0850,0.1760),

(4,6,0.0170,0.0920,0.1580),(5,7,0.0320,0.1610,0.3060),

(6,9,0.0390,0.1700,0.3580),(7,8,0.0085,0.0720,0.1490),

(8,9,0.0119,0.1008,0.2090),]);

DataFrames.rename!(branch_data, [:k,:m,:Rkm,:Xkm,:Bk])

node_data = DataFrames.DataFrame([

(1, 3, 1.040, 0.0, 0.0, 0.0, 0.0),

(2, 2, 1.025, 0.0, 0.0, 163.0, 0.0),

(3, 2, 1.025, 0.0, 0.0, 85.0, 0.0),

(4, 0, 1.000, 0.0, 0.0, 0.0, 0.0),

(5, 0, 1.000, 125.0, 50.0, 0.0, 0.0),

(6, 0, 1.000, 90.0, 30.0, 0.0, 0.0),

(7, 0, 1.000, 0.0, 0.0, 0.0, 0.0),

(8, 0, 1.000, 100.0, 35.0, 0.0, 0.0),

(9, 0, 1.000, 0.0, 0.0, 0.0, 0.0),]);

DataFrames.rename!(node_data, [:k, :type, :Vk0,

:Pdk, :Qdk, :Pgk, :Qgk])

N = size(node_data,1); L = size(branch_data,1)

A = zeros(N,L)

for l = 1:L

k = branch_data.k[l]; m = branch_data.m[l]

A[k,l] = 1; A[m,l] = -1

end

z = (branch_data.Rkm .+ im*branch_data.Xkm)/Zb

Sd = (node_data.Pdk .+ im*node_data.Qdk)/Sb

Sgo = (node_data.Pgk .+ im*node_data.Qgk)/Sb

Ybus = A*inv(diagm(z))*transpose(A)

for l = 1:L

k = branch_data.k[l]; m = branch_data.m[l]

Ybus[k,k] = Ybus[k,k] + 1*im*branch_data.Bk[l]/2;

Ybus[m,m] = Ybus[m,m] + 1*im*branch_data.Bk[l]/2;

end

using JuMP, Ipopt

PF = Model(Ipopt.Optimizer);

@variable(PF, Sg[k in 1:N] in ComplexPlane());

@variable(PF,V[k in 1:N] in ComplexPlane(),
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start = 1.0 + 0.0im);

for k in 1:N

if node_data.type[k] == 3

@constraint(PF,V[k] == node_data.Vk0[k] + 0*im);

elseif node_data.type[k] == 2

@constraint(PF,abs2(V[k])==(node_data.Vk0[k])^2);

@constraint(PF,real(Sg[k]) == real(Sgo[k]));

else

@constraint(PF, Sg[k] == 0);

end

@constraint(PF,conj(Sg[k]) - conj(Sd[k]) ==

conj(V[k])*sum(Ybus[k,m]*V[m] for m = 1:N))

end

@objective(PF,Min,Sb*real(sum(conj(V[k])*

sum(Ybus[k,m]*V[m] for m = 1:N) for k = 1:N)));

JuMP.optimize!(PF)

@show objective_value(PF);

bus_data = DataFrames.DataFrame(;k = 1:N,

Vmag = round.(abs.(value.(V)), digits = 4),

Vang = round.(angle.(value.(V))*180/pi, digits = 4),

Pg = round.(real(value.(Sg)),digits = 4),

Qg = round.(imag(value.(Sg)),digits = 4))

By executing this computational routine, the following results are obtained:

EXIT: Optimal Solution Found.

objective_value(PF) = 4.6410214744826453

Row k Vmag Vang Pg Qg

1 1 1.04 0.0 0.7164 0.2705

2 2 1.025 9.28 1.63 0.0665

3 3 1.025 4.6648 0.85 -0.1086

4 4 1.0258 -2.2168 0.0 0.0

5 5 0.9956 -3.9888 -0.0 0.0

6 6 1.0127 -3.6874 -0.0 0.0

7 7 1.0258 3.7197 -0.0 -0.0

8 8 1.0159 0.7275 0.0 0.0

9 9 1.0324 1.9667 -0.0 0.0

Thus, it is possible to note that:

i. The electrical variables, i.e., the magnitude and angle of the voltages at each of the buses, are
equivalent to the solution obtained using the Newton-Raphson method (Fig. 1) (3).

ii. Under the given operating conditions, the active power losses for this system amount to
4.6410 MW.
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Remark 1. Suppose that the programmer is interested in solving the optimal power flow problem for transmission

networks. In this scenario, the active power injection at the PV buses is left unconstrained, allowing the

programmer to determine the optimal combination of these power inputs in order to minimize the total grid power

losses.

Conclusion
This editorial note provides an easily implementable computational routine to deal with the power
flow problem in transmission networks, which can be extended to any single-phase AC grid, using
a complex-domain variable formulation. The solution to the power flow problem is obtained via the
interior point optimizer (i.e., the Ipopt solver) available in Julia’s JuMP optimization environment.
This routine is presented as a tutorial, using the IEEE-WSCC network to demonstrate that the power
flow solution is equivalent to the solution reached with the classical Newton-Raphson method.
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