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Abstract

Context: The mining industry is the main culprit behind the generation of acid
mine drainage (AMD). During coal extraction processes, sulfide minerals react with
groundwater, releasing ions such as Fe2+ and Fe3+, sulfates (SO−2

4 ), and protonic
acidity (H+). The low pH of AMD can cause significant environmental damage.
AMD remediation is usually achieved using alkaline systems, wherein the AMD
passes through limestone to be neutralized. Nevertheless, this process requires
prolonged treatment times and constant cleaning steps to remove the coating
formed on the limestone, which reduces its effectiveness.
Method: This study evaluates a novel oxic-limestone rotational system for the
treatment of AMD produced by the coal industry. The AMD collected was
characterized in terms of pH, dissolved oxygen, Fe (Fe total, Fe2+, and Fe3+), and
SO2−

4 .
Results: The results demonstrate the optimal efficiency of the proposed system,
reducing the treatment time from 120 h in conventional systems to 1.5 h when
applying a ratio of 0.25k g of limestone per liter of AMD.
Conclusions: The rotational system enables the superficial degradation of the
limestone, maintaining an active contact area for longer periods. This allows for
optimized AMD remediation efficiency, reducing operating costs and necessitating
fewer system cleanup steps.
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Resumen

Contexto: La industria minera es el principal responsable de la generación de drenaje ácido minero (DAM).
Durante los procesos de extracción del carbón, los minerales sulfurados reaccionan con las aguas subterráneas,
liberando iones como Fe2+ y Fe3+, sulfatos (SO−2

4 ), y acidez protónica (H+). El bajo pH del DAM puede generar
importantes daños medioambientales. La remediación del DAM generalmente se realiza a través de sistemas
alcalinos, donde el DAM pasa a través de roca caliza para ser neutralizado. No obstante, este proceso requiere
tiempos prolongados de tratamiento y etapas de limpieza constante para eliminar el recubrimiento formado en la
roca, lo que reduce su eficacia.
Método: Este estudio evalúa un novedoso sistema rotacional de óxido-caliza para el tratamiento de DAM
producido por la industria del carbón. El DAM recolectado se caracterizó en términos de pH, oxígeno disuelto, Fe
(Fe total, Fe2+ y Fe3+), y SO−2

4 .
Resultados: Los resultados demuestran la eficiencia óptima del sistema propuesto, que reduce el tiempo de
tratamiento de 120 h con sistemas convencionales a 1.5 h al aplicar una relación de 0.25 kg de caliza por litro de
DAM.
Conclusiones: El sistema rotacional facilita la degradación superficial de la caliza, manteniendo un área de contacto
activa durante periodos más largos. Esto permite optimizar la eficiencia de remediación del DAM, reduciendo los
costes de operación y las etapas de limpieza requeridas por el sistema.

Palabras clave: minería del carbón, drenaje ácido minero, sistema rotacional, degradación superficial
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Highlights

• A novel oxic limestone rotational drainage system for the treatment of AMD is proposed in this

study.

• The rotational system promotes a superficial degradation of the limestone, increasing its activity

for longer periods.
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• The novel system improves the efficiency process, cutting AMD treatment time by 98.7 % over

conventional static systems.

1. Introduction

The acid mine drainage (AMD) produced during mining activities is a polluting byproduct formed

by the reaction between minerals, oxygen, and water (1). In the case of coal mining processes, AMD

is characterized by a low pH and a high concentration of ions in the form of SO2−
4 , Fe2+, and Fe3+,

produced by the oxidation of pyrite (FeS2), in addition to other contaminating metal ions in lower

proportions, such as Mn2+ and Al3+, which are typical of AMD waste (2–5). The concentrations of these

ions vary according to the geology of the area where the mining activity takes place (6).

In Colombia, the coal industry is one of the main mining activities, carried out mainly in the Boyacá

region. This region contributes 38 % of the national coal production, which represents 3.087 million

metric tons destined for use in the thermal and metallurgical sectors (7, 8). Coal mining operations in

the area are not efficient, producing a high amount of pollutants that threaten nearby tributaries (9, 10).

This problem is exacerbated by stormwater runoff, which can carry large amounts of AMD along with

particulates and dissolved materials, substantially reducing the oxygen and nutrient content of the soil,

as well as degrading aquatic systems and dependent biota (11, 12).

The application of systems such as aerobic wetlands and limestone drainage are potential

alternatives that allow treating AMD (13,14). The application of an active system (oxic) enables a higher

rate of neutralization and removal of metal contaminants (15, 16). The high concentrations of SO2−
4

depend on the mineralogy of the place (17, 18), which makes water treatment difficult. Furthermore,

the efficiency of open limestone channel (OLC) systems is compromised by the formation of gypsum

(CaSO4·2H2O) on the limestone surfaces, acting as a barrier that reduces its effectiveness during AMD

treatment (19).

Similarly, optimal Fe removal values can be obtained using these systems (3). Nevertheless, these

systems require continuous maintenance stages for their proper functioning, in addition to prolonged

periods of fluid retention (20).

Considering the above, this study aims to evaluate the application of a novel rotational oxic

limestone system to optimize AMD treatment processes. As a control mechanism, a non- moving device

is used, called a static system. Tests were carried out in a controlled manner, using AMD samples collected

from the area of interest. The authors did not find literature related to the evaluation of the effect

of alkalization and the treatment of AMD using similar devices, which reinforces the novelty of this

research.
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2. Experimentation

The AMD used in this study was supplied by Cooperativa Agro-Minera (Coagromin Ltda.), located

at Km 5 of the Paipa-Tunja road in Boyacá, Colombia. The AMD was later processed by adding

limestone with a particle size between 1.27 and 2.54 cm. The limestone used was collected from Cantera

Metrópolis, located at Km 6.6 of the Moniquirá-Arcabuco road (Boyacá). The limestone used in this

study was analyzed via X-ray diffraction (XRD) in a Pananytical diffractometer (Co, λ = 1.75 Å). The

analysis of the XRD pattern was carried out using the HighScore-Plus software, the Crystallography

Open Database (COD), and the Inorganic Crystal Structure Database (ICSD).

3. Static tests

Static tests were performed on the system presented in Fig. 1. The proposed system was isolated

during the analysis period in order to avoid agitation, favoring a greater sedimentation and settling

of the compounds that may be generated. The tests were conducted under controlled conditions, i.e.,

at 2800 meters above sea level (m.a.s.l.), with a pressure of 740 hPa and an average temperature of

17 °C (21). The limestone:AMD ratio was 2.5:1 (in weight), ensuring the total coverage and reaction

of the AMD. In this study, we evaluated the concentration of Fe ions (i.e., Fe2+ and Fe3+) and sulfates

(SO2−
4 ), considering that these are the main dissolved ions in AMD from coal mining processes due to the

presence of pyrite (22). Therefore, other trace metals in AMD samples were not characterized. The tests

were carried out until an optimal removal of Fe (total, Fe2+, and Fe3+) and SO2−
4 was achieved. Fe and

sulfate measurements were taken using the FerroVer (iron reagent, Hach, USA) and SulfaVer IV (sulfate

reagent, Hach, USA) reagents along with a DR6000 spectrophotometer (Hach, USA). The dissolved

oxygen (DO) content was obtained from a Hach-Flexi HQ30d oximeter, and pH measurements were

carried out using a SCOTT HandyLab pH11. Alkalinity was determined using 25 mL of undiluted AMD

samples mixed with phenolphthalein and bromocresol green. The AMD sample was titrated with 0.02

N H2SO4 (i.e., 10 mol·m−3). Likewise, acidity was evaluated by adding phenolphthalein as an indicator

solution. The mixture was also titrated with 0.02 N NaOH (i.e., 20 mol·m−3) (23).

3.1. Dynamic tests using a rotational limestone system

Dynamic tests were performed in a two-reactor rotational mechanical system. The vessel had an

internal length of 30 cm and a diameter of 12 cm, containing a maximum volume of 3393 cm3. The

system was not operated at maximum capacity to preserve the functionality of the pressure gauges

used to measure carbon dioxide (CO2). We employed a vessel inclination of 6° and a rotation speed of

11 rpm. Although an angle of 10° is typically used, as has been reported by (3, 24, 25), we opted for a

smaller inclination to ensure a greater retention of the liquid within the system. Fig. 1 shows a scheme

of the devices used in this study. 0.25 kg of limestone were used for every 1 L of AMD (Limestone:AMD

ratio of 0.25:1). The mixing process was carried out for 0.5, 1, and 1.5 h. pH. DO, alkalinity, acidity, Fe2+,

Fe3+, and SO2−
4 measurements were made using the above-presented procedure.
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Figure 1. Schematic illustration of the AMD treatment device used in this study

4. Results

Fig. 2 shows the XRD pattern of the limestone used in this study. A semi-quantitative

analysis, conducted using the Rietveld refinement method, revealed the presence of calcite—CaCO3,

space group P121/c1 (14), ICSD 150 (26)—, which was the main mineralogical compound (73.2 %).

Likewise, we observed the presence of dolomite—9.3 %, CaMg(CO3)2, R3̄H (148), ICSD 10404 (27)—,

magnesite—0.5 %, MgCO3, R3̄cH (167), ICSD 10264 (28)—, and silicates—17 %, mainly SiO2, P3221 (154),

ICSD 16331 (29)—in a lower proportion. The composition of the limestone was similar to that found in

other regions of Colombia, as reported by (30). A high content of carbonates in the limestone favors an

optimal degree of alkalinity, as well as the limestone’s ability to react with AMD (31). The presence of

amorphous material can be observed in the first degrees of diffraction, which corresponds to organic

material typical of sedimentary rocks.

Figs. 3 and 4 illustrate the behavior of the AMD when treated with a static and a rotational system,

respectively. We followed the Colombian resolution no. 0631/2015 (32) to determine the efficacy of both

systems. An initial characterization of the AMD is presented in Table I. Note that the values are outside

the permissible values as per the aforementioned resolution, which was issued by the Colombian

Ministry of the Environment and Sustainable Development.

Table I. Chemical characterization of the AMD sample used in this study and maximum permissible

limit values for water resources linked to the extraction of coal and lignite according to Resolution 0631

of 2015 (32)

Parameter Unit This study
0631/2015

Legislation

pH a.u. 2.5 6.0-9.0

DO mg·L−1 7.09 -
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FeTotal mg·L−1 228.75 2

Sulphates mg·L−1 3300 1200

Acidity mg SO4·L−1 1180 analysis and report

Alkalinity mg CaCO3·L−1 0 analysis and report

5. Discussion

Limestone is an inexpensive, natural, and efficient raw material for the treatment of AMD from coal

mining processes. Dolomitic limestone, i.e., CaMg(CO3)2, is widely used within AMD systems due to its

ease of reaction (33). Limestone reacts in the presence of hydrogen, enabling the release of carbonic acid,

which can subsequently be converted into bicarbonate ions (3). The process is governed by the chemical

reactions shown in Eqs. (1) and (2) (14, 34). This dissociation generates a buffer effect within the system

that maintains stable pH values during the formation of metal precipitates. The presence of bicarbonate

ions and limestone also favors the removal of Fe, according to Eqs. (3) and (4) (35, 36).

CaCO3(s) + 2H+ ↔ Ca2+ + H2CO0
3 (1)

CaCO3(s) + H2CO3 ↔ Ca2+ + 2HCO−
3 (2)

Fe2+ + CaCO3 → Ca2+ + FeCO3 (3)

Fe2+ + HCO−
3 → FeCO3 + H+ (4)

A lower rate of acidity reduction in AMD after rotational treatment for 0.5 h may be due to the

release of acidity (H+) during the formation of siderite (FeCO3). Nevertheless, part of the H+ produced

can also react with the limestone, which generates CO2, favoring carbonic acid formation (20, 36).

2H+ + CaCO3 → Ca2+ + H2O + CO2 (5)

CO2 + H2O ↔ H2CO3 (6)

Although the generation of acidity by hydrogen should lower the pH of the solution, it can also be

slowed down when carbonic acids come into contact with the limestone, as shown in Eq. (1), as well as

by the formation of CO2 when reacting with part of the carbonic acids formed, i.e.,

HCO−
3 +H+ → CO2 + H2O (7)

Likewise, the pH and alkalinity of the AMD can be leveled by the formation of passive layers

of gypsum and siderite, which can be deposited on the surface of the limestone rock (Fig. 5). These

precipitates act as a barrier that reduces the reactivity between the AMD and the rock (35, 37). Calcium

|Ingeniería| Vol . 30 | No. 3 | ISSN 0121-750X | E-ISSN 2344-8393 | e23475 | 6 of 17



A Novel Rotational Limestone Treatment System for Effective. . . C.R. Blanco-Zúñiga et al

Figure 2. SXRD pattern of the limestone used in this study and collected in the region of Boyacá,

Colombia

sulfate (CaSO4) hydrates with two water molecules, forming gypsum (CaSO4·2H2O). Based on a

stoichiometric analysis, for every 136.14 g of anhydrite, 36.03 g of water are required to form 172.17

g of gypsum. Therefore, no significant reduction in the volume of water in the system is expected due

to this reaction. The volume of gypsum formed may be regarded as negligible, since these are very thin

layers deposited on the limestone, formed to mitigate the rock’s activity.

CaCO3 + SO2−
4 + 2H2O → CaSO4 · 2H2O + CO2−

3 (8)

CO2−
3 + Fe2+ → FeCO3 (9)

The formation of these passive layers allows explaining the low efficiency of the AMD treatment

when occurring in a static system, which is unable to remove the precipitates deposited on the limestone

surface (35,38). Although the limestone:AMD ratio is ten times lower in the rotational system, the latter

favors an autogenous grinding effect of the limestone (39), degrading the particles and removing the

gypsum and siderite coatings.

The delay in Fe2+ removal may be due to the low reactivity of this ion to generate compounds

other than siderite within the AMD, so it is highly dependent on their reactivity with limestone. A

DO concentration greater than 0.5 mg·L−1 favors the reaction of Fe2+ ions with AMD (35, 37, 40). The

difficulties in creating other compounds, e.g., Fe(OH)2, which is greenish, is impaired by the formation

of limonite, Fe(OH)3, from Fe3+, which has a 5/8 10YR (Munsell Soil Color Chart (41)) color, as seen
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Figure 3. Values of a) pH, b) DO, c) acidity, and d) alkalinity for untreated and treated AMD in static

and rotational systems. The pH and DO values obtained in this study were compared against those in

resolution no. 0631/2015 for water quality (32)

Figure 4. Concentration of a) Fe and b) sulfate ions in untreated and treated AMD after static and

rotational treatment. The permissible values for pH and DO obtained in this study were compared

against those in resolution no. 0631/2015 for water quality (32)
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Figure 5. Schematic illustration of gypsum binder formation from the reaction between AMD and

limestone

in Fig. 6. Likewise, the formation of Fe(OH)3 is favored by pH values between 6.5 and 8 (42–45). Our

measurement of the potential in the static and dynamic systems showed values between 0.1 and 0.15

V. As shown in Fig. 7, the final conditions obtained in this study favor the formation of the Fe(OH)3
mineralogical phase.

Figure 6. Photographs of the limestone samples used in this study a) before and b) after the AMD

treatment. A change in the color of the limestone can be observed, which is due to the formation of

precipitates on the rock surface
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Figure 7. Generalized Pourbaix diagram for the Fe-H2O system. The pH values obtained in this work

show a greater tendency towards the formation of the Fe(OH)3 phase

It has been reported that the Fe3+/Fe2+ ratio present in leachate from coal minerals can favor

biodesulfurization through the reaction of sulfate ions, allowing for the formation of pyrite and,

subsequently, the iron (II) (FeSO4) and iron (III) (Fe2(SO4)3) sulfate phases (20, 46). A reduction of Fe3+

ions, in addition to the potential formation of gypsum precipitates adhered to the limestone surface,

explains the blockage during sulfate removal from the AMD. Stagnation in the process of removing

sulfate ions could be observed. This is because the increase in pH caused by the interaction between the

limestone and the AMD inhibits the reactive capacity of the limestone particles with the sulfate and iron

(II) ions, so their concentrations are generally not significantly affected (47). Although removal levels

of 28 and 33 % were obtained for the samples treated in the static and rotational systems, respectively,

it is necessary to apply secondary stages in order to comply with Colombian legislation. Even so, the

application of a limestone system still exhibits an economic advantage compared to other technologies

for the treatment of AMD and the removal of sulfates (35).

A system’s operation must be evaluated based on its working time, as well as on the cost of the raw

materials. The application of our rotational system in this affected region is facilitated by the ease of

obtaining limestone. The authors express their motivation for the further development of this project,

which can help to address the effects generated by mining activities in the region. The application

of raw materials from the affected area and the construction of passive treatment systems allows for

significant cost reductions.
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While these systems can be used in other regions and for different types of AMD, it is necessary

to consider that the effectiveness of the treatment depends on the characteristics and initial conditions

of the raw materials, i.e., the AMD and the limestone. In this study, the feasibility of this system was

supported by the nearby availability of limestone. Therefore, when considering implementation in

other affected areas, the costs of transporting limestone—as well as sustainability and logistical factors

related to mining and transportation—must be considered.

During the AMD treatment, some residual materials were produced in the form of precipitates

and clays. The chemical and toxic complexity of the waste generated currently precludes direct use in

industrial activities due to the high risk of contamination associated with its release into the environment

(48). The authors hope to conduct a feasibility analysis of the waste generated in subsequent studies,

hoping to increase the sustainability of the proposal through new industrial products made from said

waste.

6. Conclusion

This study evaluated the applicability of oxic-limestone drainage for the treatment of AMD and its

effectiveness in the removal of Fe2+, Fe3+ and SO2−
4 using a novel rotational system.

The application of a static system, which was used for comparison, required longer treatment

times and yielded a lower ion removal efficiency compared to the rotational system. This was mainly

due to the formation of precipitates that served as a barrier between the limestone and the AMD,

hindering the system’s ability to react due to a reduction in the active area of the limestone. This barrier

cannot be directly removed within the static system. In contrast, the dynamic behavior of our proposed

solution generates an autogenous grinding process that favors the removal, by wear, of the precipitates

deposited in the limestone, thus maintaining a continuous active contact area between the limestone

and the AMD. The inability to remove sulfate ions was due to the premature depletion of Fe2+ ions and

the formation of precipitates adhering to the limestone surface, which slowed the chemical reactions

generated during the treatment of the AMD.

The authors would like to express their interest in the application of this type of system for the

treatment of AMD and other leachates generated during different industrial activities in the region, as

well as in the application of new raw materials from the area that allow for optimized industrial water

treatment.
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