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Skull image compression
using Wavelet Transform coding

RESUMEN

Hoy en dia la compresion de imagenes es esencial
en aplicaciones de transmision y almacenamiento en
bases de datos. Este trabajo expone el disefio de un
sistema de compresién haciendo uso de la técnica
de codificacién por transformacion y en particular
haciendo uso de la transformada Wavelet. El disefio
se centrd en un conjunto de imagenes médicas debi-
do a la alta calidad visual que requiere este tipo de
imagenes. A causa de la gran variedad de filtros
Wavelet disponibles, se escogié un filtro especifico
de acuerdo con el Algoritmo de Mejor Base. El dise-
fio de la etapa de cuantificacién tiene como soporte
la modelacion estadistica de los coeficientes Wavelets,
principalmente hacia una distribucién Laplaciana. De
acuerdo con el algoritmo de Linde-Bruno-Gray, se
construye un cuantificador escalar multiresolucion
general para todo el conjunto de imagenes en estu-
dio. Finalmente, la codificacién en entropia se alcanza
por medio de un codificador aritmético. Dentro del
desarrollo del documento se describen los diferen-
tes analisis hechos para obtener un disefio final con
una tasa de compresion igual a 5.43:1 y preservando
la calidad de la imagen original.

Palabras clave: Compresién de imagenes, trans-
formada Wavelet, cuantificacion, codificacion arit-
mética, algoritmo de mejor base.

ABSTRACT

Now days, image compression is essential in
transmission and data base storage applications. This
work exposes the design of a compression system
using the transform coding technique and in parti-
cular using the Wavelet transform. The design is
centered on a set of medical images because the high
visual quality required for this kind of images. Due
to the large diversity of available Wavelet filters, it
was chosen a specific filter according to the Best Basis
Algorithm. The quantization stage design has as
support the statistical modeling of the Wavelet
coefficients, mainly towards a Laplacian distribution.
Following the Linde-Bruno-Gray algorithm, it is built
a general multiresolution scalar quantizer for the

whole set of studied images. Finally, the entropy
encoding is achieved by means of an arithmetic
coder. Inside the document is described the several
analysis done to obtain a final design with a
compression rate equals to 5.43:1 and preserving the
original image quality.

Key words: Image compression, wavelet
transform, quantization, arithmetic coding, best basis
algorithm.

Compresion de Imagenes Craneales Usando
Codificacion por Transformada Wavelet

INTRODUCTION

Because of the high and increasing amount of
information managed by communication and
information systems today, the research about
compression techniques keeps on constantly evolution.
Also, current applications require bigger compression
rates besides a good quality at the recovered images.
From the 90's years, Wavelet transform have become
one of the most important tool on the signal
processing world. A good example is how Wavelet
transform has replaced the Discrete Cosine transform
into the JPEG image compression standard [1].

All of the compression systems take advantage of
the data redundancy to diminish the amount of
storage or bandwidth. Some of them are /oseless, i.c.,
the image before and after compression are exactly
equals. However, /ssy techniques are more common
because their higher compression rates. Transform
Coding is a lossy technique constituted by three steps:
Transform, Quantization and Entropy Coding. As
an important feature, the loss of information occur
at the quantization process.

Our study was concentrated over 128 skull images
(see Figure 1). As main objective we planed to
implement a compression system able to accomplish
a good visual quality together with high rate
compression. Figure 2 shows the general structure
of the designed system.



Figure 1. Some skull images used in the compression process proposed here.

Section 2 describes the wavelet transform coding
scheme used in this paper. First, a review of wavelets
in general is presented in addition to the two-dimen-
sional wavelet transform implementation and the best
basis algorithm. Next, the quantization stage is
explained. We focus particularly on the statistical
properties of the wavelet coefficients and the bit
assighment. The quantizer design was oriented to find
a general codebook for the whole set of images.
Various probed alternatives are mentioned. Last, a
brief review of the arithmetic coder algorithm explains
its operation. Section 3 shows how the quantizer per-
formance was measured. In particular, both the best
and the worst case by mean of the MSE are shown.
Section 4 summarizes the experimental results
obtained after the entropy coding stage.
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Figur 3. Wavelet transform coding scheme used.

l. WAVELET TRANSFORM CODING

1.1. WAVELET TRANSFORM

The Wavelet transform can be considered as a
Fourier transform evolution, which allows us to
represent a signal both at the frequency and time

domain. As a result of applying a window function
h(?) and its scaled version, defined as

=i 1 t
h(t) = w(t)e ™!, hat=—wELE 1
(t) = w(t) ® Ja e O
respectively, where a is the scale factor (that is
f=1o), the simplest way to define the wavelet
transform is:
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WF(r,a)_MIf(t)hE‘T@t. ©

In order to implement the Wavelet transform, it is
useful to use a multiresolution analysis [2], which
permits computing the wavelet transform as a set of
convolutions, with a high-pass filter (5) and a low-
pass filter (g), as shown in Figure 3.
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Figure 3. Discrete Wavelet transform

according with multiresolution analysis.

Here 7 is the resolution level, ¢ contains the detail
coefficients (high-pass filtered) and & contains the
smoothness coefficients (low-pass filtered). The 27-
£ sub-index shows the process of sub-sampling by
2. Being the transformation step completely reversi-
ble, the wavelet transform does not produce loss of
information. Thus, the original signal can be sorted
by the inverse transform described in (4).

a'm—l,l ( f ) = z [h2n—l a'm,n ( f ) + an—I Cm,n ( f )] (4)

l. TWO DIMENSIONAL WAVELET
TRANSFORM

The wavelet transform of a two-dimensional
signal, such as an image, can be calculated following
the next procedure: First, for each row on the image
is calculated one step of decomposition. Second, for
each resultant column is calculated one step of
decomposition. Third, over the quadrant that
contains the smooth values in both vertical and ho-
rizontal directions is repeated the whole process. The
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decomposition is stopped either at the choice level
or until reach an image of 2X2 pixels. Figure 4 shows
the procedure described above. Our implementation
set the decomposition levels to 3, obtaining 10
subbands, as shown in Figure 5.
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Figure 5.Wavelet decomposition. A indicates approximation,
H horizontal, V Vertical and D Diagonal. The top sequences on

each subband means a series of convolutions with the H (high
pass filter) and G (low pass filter).

1.3. CHOOSING A WAVELET FILTER

At the moment of compute the wavelet transform,
a large set of different wavelet filters are available. A
study over each one of the wavelet filters would have
been too extensive. Therefore, the Best Basis
Algorithm [3] was used to determine the filter with
the greatest concentration of coefficients.

This algorithm establishes that the best basis to
represent a signal is the basis whose functional
information cost is minimal. Information cost
represents the expenses of storing the chosen
representation. So, it defines a functional information
cost on sequences of real numbers u(k), to be any
real-valued function M satisfying the additive
condition below:

M (u) = gzu(\u(k)): K =0

Q)

Here Mis a real valued function defined on [0, ).
We suppose that Y , #(u(k)) converges absolutely; Mwill

be invariant under rearrangements of the sequence

Now, for x signal, it is calculated the transform
into each basis B as u(k) = B* x(k) = <bk, X>. The
best basis will be one whose M(x) value is minimal.

Some examples of information cost functions are:

. Number above a threshold. We can set an arbitrary
threshold &€ and count the elements in the
sequence x whose absolute value exceeds € . This
information cost function counts the number of
sequence elements needed to transmit the signal
to a receiver with precision threshold €.

. Concentrationin | *. Chosen an arbitrary 0<p<2
and set U(w) :Mpso that M (u) :H{L}Hz_Note
that if we have two sequences of equal energy
HUH = HVH but M(x) < M(»), then # has more of its

energy concentrated into fewer elements.

TABLE I. INFORMATION COST VALUES

Threshold
10303
9295
10220
9670
9078
8940
9087
10303
8660
9625
8178
8315
10303
12166
9961
14932
10312
8178 (Bior4.4)

Filter
Haar
Daubechies 4
Daubechies 8
Symlet 2
Symlet 4
Coifman 2
Coifman 4
Biortogonal 1.1
Biortogonal 2.2
[ Biorfogonal 3.1
| Biorfogonal 4.4
Biortogonal 5.5
[ Rev. Biortogonal 1.1
Rev. Biortogonal 2.2
Rev. Biortogonal 2.8
Rev. Biortogonal 3.3
Rev. Biortogonal 4.4
Minimum

Concentration 1
578.029.267
578.029.267
578.029.267
578.029.267
578.029.267
578.029.267
578.029.267
578.029.267
622.117.975
908.305.283

565978409 |

538.978.091
578.029.267
567.098.391
555.109.103
574.830.122
595.201.911

538.978.091 (Bior5.5)

In order to find the optimal representation, it was
calculated these two measures setting p=2 and &€ =10.
As a result, the minimum value was found with
biortogonal 4.4 filter. Some of the values obtained
for a particular image are shown on the Table 1.

1.4. QUANTIZATION

The purpose of the quantization stage is to restrict
the wavelet coefficients to a small set of values and
allows a better entropy coding. At the current work,
we use the most traditional method, the well-known
LBG-Algorithm [4]. In order to create a training set
of wvalues, this algorithm needs to establish the
probability density function (pdf) followed by the data
set. Thus, it is necessary a statistical study over the
wavelet coefficients in each one of the ten subbands.

1.5. STATISTICAL PROPERTIES
OF WAVELET COEFFICIENTS

Several previous works [5], [0] illustrate how the
detailed wavelets coefficients are well approximated by
a Laplacian distribution, given by (6). In addition, given
that the lowest resolution subband is a low-passed
version of the original image, it is expected to find a
similar statistical behavior between both of them.

p(x) =2£§e<p%%>4g ©)



Since Laplacian distribution can be seen as a double
exponential distribution, given by (7), the detailed
coefficients were modeled as a negative and positive
branch with the parameters wrote down on Table 2.

TABLE II. AVERAGE VALUES
FOR PARAMETER I’l - EXPONENTIAL DISTRIBUTION

Orientation | Horizontal Diagonal Vertical
Level Hp Hn Hp Hn Hp | Hn
1 2.003 | 2529 | 0.691 | 0.693 | 2.499 | 2.855
10.02

2 7.558 | 8.823 | 4.409 | 4.481 | 9.287

1.6. BIT ASSIGNMENT

For each one of the 10 subbands, obtained after
the transform stage, is assigned a bit rate. To obtain
optimal assignment bits involves a complex study,
out of focus of the present work; however a good
description can be found in [5]. Following a similar
research [7], we decide to use the bit rate shown at
Table 4 that gives more importance to the high
resolution levels and establishes a compression rate
equal to 2.6256:1 before coding.

0
3 19.34 | 16.20 | 12.06 | 12.65 | 23.18 | 19.22 TAELE 1Y, (E ASHERET
- — 8 . 7 9_ 9 . > 1 4 Subband N“mbder of bpp resultant bits
sub index p indicates positive branch, sub index n indicates negative branch pixels
A 32x32 8 8.192

To illustrate how the coefficients are well described by Havi'/ Ds ?5);242 45 ég?gg
a Laplacian distribution, Figure 6 shows real distribution %2 : 64x64 3 12:288
and Laplacian distribution obtained with values contained Hy, Vi 128x128 3 88.204
in Table 2 for one of the images in study. D 128x128 2 32.768
Compressed Data - - 199.680
. 1on0 Original Image 256x256 8 524.288

160
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A similar situation occurs when modeling the
approximation subband. However, as was explained
before, this subband follows a pdf similar to the ori-
ginal image. As a result of studying its histogram, we
decide to build a pdf as the composition of Laplacian,
Gaussian, and Uniform distributions with parameters
included in Table 3 and illustrated in Figure 7.

TABLE Illl. PARAMETERS FOR APPROXIMATION SUBBAND

Distribution Laplacian Gaussian Uniform
Population 50% 39% 11%

Range 121, Z5] = [-100,100] [[72536 i‘)]og] (20,24 = [-55.28, 1758.44]
Parameters Up WUn u o -

Values 5.241 1.245 768.419 | 75.174 --

Z, Z z
T .l..ﬁ s
a0 100 1500 4 2000

Figure 7. Left. Left. Original image histogram. Right. Approximation Subband histogram;
Z index values correspond to the range interval for each distribution.

A=Approximation, H=Horizontal, V=Vertical, D=Diagonal. Subindexes refer to
resolution level.

To increase the rate compression reached, they
were tested with several options, such as reject the
diagonal coefficients of the first resolution level
obtaining a bit rate of 3.1411:1, case A. For hori-
zontal and vertical coefficients of the third resolution
level were assigned a 4bpp rate instead of 5bpp,
increasing the rate compression to 3.1411:1, case B.
Likewise, for horizontal and vertical coefficients of
the first resolution level were assigned a 2bpp rate
instead of 3 bpp, increasing the rate compression to
3.9084:1, case C.

1.7 ARITHMETIC CODING

The coding stage is the last one at the whole
compression system. As input, the coder takes an
index stream coming from the quantizer and provides
variable length codes as output. However, whereas
the most common Huffman coder maps each
quantization index into a bit stream, the arithmetic
coder maps a complete message (a set of indexes)
into a bit stream. This property allows coding each
index as a fractional number instead of an integer
number of bits such as the Huffman coder does.
Therefore, the arithmetic coder was chosen over the
Huffman coder.

A complete description of arithmetic coding can
be found in [8]. The arithmetic coding represents an
input message as a real number into the range [0,1)
and the code is built with the following algorithm:

1. Divide the interval [0,1) into segments
corresponding to the M symbols; the segment
of each symbol has a length proportional to its
probability.

2. Choose the segment of the first symbol in the
string message.
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3. Divide the segment of this symbol again into M
new segments with length proportional to the
symbols probabilities.

4. From these new segments, choose the one
corresponding to the next symbol in the message.

5. Continue steps (3) and (4) until the whole
message is coded.

0. Represent the segment's value by a binary fraction.

II. QUANTIZER PERFORMANCE

The images used are sampled as 256x256 black
and white images. The intensity of each pixel is coded
on 256 gray levels (8 bpp). Numerical evaluation of
the coder's performance is achieved by computing
the mean square error (MSE) and pixel-to-pixel
percentage error between the original image and the
coded image.

Following, Figure 8 shows the MSE for different
bit assignments (cases A, B, C) over the whole set of
images with bit rates of 2.6256, 3.1411and 3.9084
respectively. Even the increasing error, after see the
pixel-to-pixel error there is no evidence of a great
distortion. Figure 9 shows pixel-to-pixel error of the
three cases. Accordingly with the MSE, the worst
case is presented on the skull072 image and the best
on the skull114.
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Figure 9. Mean square error for different bit allocations.
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Figure 10. Pixel-to-pixel error for different bit allocations.

Figure 10 shows the distribution error for the
image with the highest MSE (skull072) at three
different bit allocations. A logarithmic scale is used
on vertical axis and it shows the number of pixels
below a percentage error. Cleatrly, it can be seen how
just less than 30 of the 65.536 pixels have an error
over 20 % for the case-C (bottom, highest bit rate
and MSE). At the top left of this Figure is shown
the case-A which has the minor MSE error and only
105 pixels exceed 10% error. At the top rightis shown
the case-B where just 11 pixels exceed 20% error.
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10*
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Figure 11. Pixel-to-pixel error distribution. Top-left distribution

represents case A. Top-right distribution represents case B.
Bottom distribution represents case C.

lIl. EXPERIMENTAL RESULTS

After we probed the quantizer design, the index
stream was coded using the arithmetic-coding
algorithm explained previously. Due to the fact that
there is no loss of information at the coding stage,
the final examination consists of obtaining the bit
rate and the final compression rate after the entire
process. Table 5 summarizes the values of bit rate
for each subband and the total number of output
bits for the initial design (case A) and the improved
design (case C). It is notice that high-resolution levels
have a superior bit rate than the low-resolution levels,
which validates the importance of high-resolution
levels in image information. Another detail to notice
is that diagonal subbands present a fewer number
of output bits than horizontal and vertical subbands.
Therefore, diagonal subbands have lower bit rates.
This effect is produced for the wavelet transform,
which establishes that horizontal and vertical are the
preferential orientations. Given that, the output bits
amount depend on the probability of each index
coming from the quantizer; a lesser amount of output
bits reveal that the quantizer indexes have a higher
concentration at these subbands than other
otientation subbands.

In the next table is shown how is achieved a 5:43:1
compression rate, which is neatly to say that we have
reduced to less than 20% the size of the original image.



TABLE V. ARITHMETIC CODING COMPRESSION RATE

Subband (No. of Initial design Improved design _
bits) bpp | output bits | bitrate | bpp | output bits rl:Ite
A (12168) 8 8812 5.3 8 8304 55
Hs (12168) 5 4456 29 5 4680 31
V3 (12168) 5 4032 2.7 5 4312 28
D3 (12168) 5 4120 2.7 5 3280 22
H; (39200) 4 10840 2 4 11680 2
V, (39200) 4 10248 2 4 11072 2
D, (39200) 4 8904 18 4 9376 1.9
H1 (139392) 3 26136 1 2 18216 1
V1 (139392) 3 31360 2 2 25704 1
D; (139392) 0 0 0 0 0 0
Total bits - 108208 - -- 96624 -
Comp. Rate 4.85:1 543:1

IV. CONCLUSIONS

This paper describes an image coding scheme
combining the wavelet transform, a scalar quantizer
and arithmetic coding.

The biortogonal filter 4.4 was found as the filter
with the minimal functional information cost and
for that reason it was used in the Wavelet transform
stage. The bit assignment chosen permits us to keep
a good visual quality besides a reasonable high
compression rate. Also, after several attempts, we
figure out that high resolution levels coefficients are
more important to keep good quality. In addition,
resultant data showed how the diagonal coefficients
are not so important as horizontal and vertical
coefficients.

A good feature of the designed quantizer is the
general codebook for the whole set of images. Hence,
for transmission applications, it is not needed to send
the quantizer information so there is no reduction
over the compression rate reached.

Further research should include test on the
obtained design over a set of images including both

medical and photography sources. Also, a good
research would be if it is found an optimal allocation
bit in order to achieve higher compression rates.
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