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On the fuzzy extension principle
for LP problems with Interval
Type-2 Technological Coefficients

Acerca del principio de extensión para
problemas LP con parámetros difusos
Tipo-2 de Intervalo

Abstract
A special kind of Linear Programming (LP) problems involve linguistic uncertainty

that can be represented by Interval Type-2 Fuzzy numbers using the extension principle
for fuzzy sets. This principle has been widely used in decision making, computation of
a function of fuzzy sets, fuzzy optimization, etc, so this paper focuses to clarify some
aspects about its use in LPs with interval Type-2 fuzzy technological parameters.

Key words: Fuzzy Sets, Linear Programming, Extension Principle.

Resumen
Una familia especial de problemas de programación lineal (LP) incluyen incertidum-

bre lingüı́stica que puede ser representada a través de números difusos Tipo-2 de interva-
lo que a su vez se operacionalizan a través del principio de extensión. Este principio ha
sido ampliamente utilizado en toma de decisiones, cómputo de funciones de conjuntos
difusos, optimización difusa, etc, por lo que en este artı́culo hacemos algunas claridades
acerca de su aplicación en problemas LP con coeficientes tecnológicos definidos como
números difusos Tipo-2 de intervalo.

Palabras claves: Conjuntos Difusos, Programación Lineal, Principio de Extensión.
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1. Introduction

In some situations decision making is performed by a group of people instead of a single
person, so disagreement, ambiguity, and other uncertainty sources can affect the selection of a
particular parameter. The main idea of combining Linear Programming (LP) models to fuzzy
sets is to include the opinion of multiple experts who define the left hand side parameters on
an LP problem, namely aij .

In some practical applications, the parameters aij are just realizations of an unknown ran-
dom process that can be represented through multiple experts perceptions, so the analyst has
to find a solution given those operation conditions. This way, there is a need for correlate
practical issues (random realizations of aij) to experts perceptions and opinions about aij .

On the other hand, there is a need for computing the membership degree that a random
selection of technological coefficients of an LP problem has, to later analyze their results to
what it is expected by experts.

Different approaches to Fuzzy Linear Programming (FLP) problems have been presented in
bibliography. Rommelfanger [19], [20], [17], [18], Ramı́k [14], [15], Ramı́k & R̆imánek [16],
and Gasimov & Yenilmez [9] who treated the field of classical fuzzy sets and its application
in LP problems.

Figueroa-Garcı́a [4] has proposed a model for FLP with uncertain technological parameters
defined as Interval Type-2 Fuzzy Numbers (IT2FN), Figueroa-Garcı́a & Hernández [7], [6]
proposed a method for solving LP problems with Type-2 fuzzy constraints, Figueroa-Garcı́a,
Chalco-Cano & Román-Flores [5], and Figueroa-Garcı́a & Hernández [8] provide some defi-
nitions on fuzzy constraints and fuzzy ordering. Building upon these results, in this paper we
apply them to the particular issue of handling random values of aij in order to compute its
optimal solution and it satisfaction degree.

This paper focuses on how to compute the membership degree of a random realization
of aij given previous experts perceptions and/or opinions about aij which are represented
using interval Type-2 fuzzy sets, and applied in LP problems. The paper is divided into six
sections; a first one that introduces the main problem; a second one that shows some basic
concepts on interval Type-2 fuzzy sets; a third one that presents the interval Type-2 fuzzy
linear programming model; a fourth section introduces the extension principle for fuzzy sets;
a fifth section presents and application example, and finally some concluding remarks are
shown in section 6.

2. Basics on Type-2 fuzzy numbers

Firstly, we want to clarify some notations used throughout this paper. An Interval Type-2
Fuzzy Set (IT2FS) is denoted by emphasized capital letters Ã whose membership function
µÃ(x) is defined over x ∈ X . A classical fuzzy set µA is a measure of the affinity of a
particular value x ∈ X regarding a concept/word/label A, and µÃ(x) measures uncertainty of
a value x ∈ X regarding A.
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In this paper, we use notations and definitions provided by Jerry Mendel [12]. A Type-2
fuzzy set is an ordered pair {((x, u), µÃ(x, u)) : x ∈ X, u ∈ Jx ⊆ [0, 1]}, where A is
its linguistic label, so Ã represents uncertainty around the word A; F1(X) is the class of all
Type-1 fuzzy sets over X; F2(X) is the class of all Type-2 fuzzy sets over X; P(X) is the
class of all crisp sets over X . A Type-2 fuzzy set can be represented as follows:

Ã : X → F([0, 1])

Ã = {(x, µÃ(x)) | x ∈ X}
Ã = {((x, u), µÃ(x, u) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]}

where Jx is the set of primary membership degrees of x ∈ X , 0 6 µÃ(x, u) 6 1, and u is its
domain of uncertainty.

An IT2FS Ã encloses an infinite amount of clasical fuzzy sets into its Footprint of Uncer-
tainty (FOU), and Ae is a Type-1 fuzzy set embedded in its FOU (see Mendel et al [13]):

Ã = {(x, µÃ(x)) |x ∈ X}

where µÃ(x) is completely characterized by Jx ⊆ [0, 1].

A simpler Type-2 fuzzy set is called Interval Type-2 fuzzy set (IT2FS) in which u = 1, and
is characterized by two primary membership functions: Upper Membership Function (UMF)
namely µÃ, and Lower Membership Function (LMF) namely µ

Ã
. Figure 1 shows the set Ã.

Figura 1. Interval Type-2 Fuzzy set Ã

As discussed by Figueroa-Garcı́a, Chalco-Cano & Román-Flores [5], a Type-2 fuzzy num-
ber (T2FN) is considered as the extension of a Type-1 fuzzy number. This is, Ã is a T2FS
whose UMF and LMF are fuzzy numbers e.g a normal fuzzy set, αA is closed interval for all
α ∈ [0, 1], and its support supp(A) ∈ P(R) is bounded which means that a fuzzy number is a
convex fuzzy set as well.

The α-cut of A is defined as αA = {x |µA(x) > α}. This makes the computation of any
function f(x) of fuzzy sets easier. Here, z∗ = c′x∗ comes from f(Ãi)(z

∗), so we want to
compute f(Ãi)(z

∗) by using α-cuts instead of mapping xi. The α-cut of A is simply the cut
αJx = {x |µA(x) > α} done over its primary membership function Jx (see Figueroa [3],
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and Figueroa-Garcı́a, Chalco-Cano & Román-Flores [5]). A graphical representation of αÃ is
provided in Figure 2.

Figura 2. αÃ of an Interval Type-2 Fuzzy set Ã.

3. The Interval Type-2 fuzzy LP problem

First, the classical crisp LP problem is basically is a model that relates a set ofm inequalities
whose goal is to maximize the value of an objective (a.k.a goal) function, as follows:

Max
x

z = c′x+ c0

s.t.

Ax 6 b (1)
x > 0

where x ∈ Rn, c ∈ Rn, c0 ∈ R, A ∈ Rn×m, and b ∈ Rm.

Now, when technological parameters A cannot be well defined or they are bad measured,
we need to use other methods to get those parameters. A popular way to get them is by using
experts opinions, so the use of fuzzy sets to quantify its perceptions about A become an im-
portant information source. Commonly in the industry, there are more than one expert who
can provide valuable information about A, so we need to comprise all their perceptions and
opinions into a single measure: an IT2FN.

This leads us to re-define the crisp LP model as an IT2FLP, as follows:

Max
x

z = c′x+ c0

s.t.

Ãx 4 b (2)
x > 0

where x ∈ Rn, c ∈ Rn, c0 ∈ R, Ã ∈ F2(X).
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This model cannot be solved in a closed form, so the idea in this paper is to show how to
compute the membership degree of any crisp solution and how to understand its sense. Based
on the results of Figueroa-Garcı́a [4] we do a complement of his results by clarifying some
concepts about random solutions instead of α-cuts (which is also a reasonable method).

The α-cuts approach proposed by Figueroa-Garcı́a [4] is way to go from Ã to z̃ (which
is the IT2FS of optimal solutions), but it does not include random choices of A. A random
choice of A is a selection of different aij that depends on the current conditions of the system,
and mostly are just available conditions under the system has to operate, so the analyst has no
any guarantee that their results are the best possible or even good, they are just solutions of
the IT2FLP.

Next section is dedicated on explain how to compute the membership degree that any ran-
dom solution has, and how to understand its meaning.

4. Extension principle for IT2FS

A first approach to find an appropriate way for modeling fuzzy functions is given by the
Zadeh’s Extension principle (see Bellman & Zadeh [1], Klir & Yuan [10], and Mendel [12]).
Let f be a function such as f : X1, X2, · · · , Xn → z, and Ai is a fuzzy set in Xi, i =
1, 2, · · · , n with xi ∈ Xi, then we have

f(A1, A2, · · · , An)(z) = sup
z=f(x1,x2,··· ,xn)

mı́n
i

[A1(x1), A2(x2), · · · , An(xn)] (3)

The fuzzy extension principle projects any function e.g z = f(x1, x2, · · · , xn) to a fuzzy set
by using their memberships A1(x1), A2(x2), · · · , An(xn). Its extended version is as follows.

Definition 1 Let Ax ∈ supp(Ã) be a matrix of crisp technological coefficients, Ax ∈ Rm,n,
and z∗x = c′x∗ be the optimal solution of the LP for Ax. Then we have

f(Ax)(z∗x) = mı́n
i′∈k
{[µ

Ã1′
, µÃ1′

], · · · , [µ
Ãi′
, µÃi′

], · · · , [µAk′
, µAk′

]}, (4)

µ
Ãi′

= mı́n
j
{µ

Ãi′1
, · · · , µ

Ãi′j
, · · · , µ

Ãi′n
}, (5)

µÃi′
= mı́n

j
{µÃi′1

, · · · , µÃi′j
, · · · , µÃi′n

}. (6)

where i′ ∈ k is the set of all binding constraints of the optimal program.

This Definition computes the membership degree of any random solution z∗x regarding the
set z̃. Basically it is computed using the membership degree that Ax has regarding the sets
Ãij , that is µÃij

and µ
Ãij

which finally lead to f(Ax)(z∗x).
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5. Application example

To illustrate how an IT2FLP works, we present the following example. Suppose that a com-
pany has to plan the production quantity (in thousands) of two products x1 and x2, where
every sold product returns c1 = 2 and c2 = 3 thousand US dollars (profits) per unit, and its
production requires two materials which are available by b1 = 12 and b2 = 15 tons, respec-
tively. The material consumption aij per product x1, x2 is uncertain since historical data is
absent, so the analyst is encouraged to find a way to plan the best production quantities that
maximize profits.

Given hypothetical normal operation conditions, it is supposed that the material consum-
ption per product should be a11 = 1, a12 = 4, a21 = 3 and a22 = 2, but it is a hard suppo-
sition since we do not have historical information about the material consumption in order to
verify the performance of the company. To have a better idea about the system, we have to ask
the people involved into production planning, so we enquire to five experts (people on ma-
nufacturing, engineering, mechanical processes, etc) about their perception around material
consumption of every product.

Now, both uncertain parameters and information that comes from multiple experts (percep-
tions and opinions) leads us to deal with Type-2 fuzzy uncertainty, so aij turns into Ãij . This
way, the experts are encouraged to provide its opinions about “ Normal material consum-
ption” of every Ãij using two boundaries: pessimistic and optimistic. The description of the
IT2FLP is given next:

Max
xj

z = 2x1 + 3x2

s.t.

1̃11x1 + 4̃12x2 - 12 (7)

3̃21x1 + 2̃22x2 - 15 (8)
xj > 0

The analyst has to use the information provided by the experts, which usually is described
using sentences such as “I think that the parameter (i, j) should be between a and c”, or “I
think that the most possible value of the parameter (i, j) should be b”. Now, the five experts
namely E1, · · · , E5 were asked for the parameters aij using the above sentences having the
same idea about its most possible value (provided as starting information in the model), but
they are not agree about their perceptions around its boundaries.

In this paper, the UMF and LMF of every aij are triangular membership functions. A trian-
gular membership function T (a, b, c) is defined by an optimistic boundary a, an expected
value b, and a pessimistic boundary c, as follows:
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T (a, b, c) =



0, x 6 a
x− a
b− a

, a 6 x 6 b

1, x = b
c− x
c− b

, b 6 x 6 c

0, x > c

(9)

The complete description of aij is shown next:

µ̄Ã11
= T (0, 1, 3) µ

Ã11
= T (0.5, 1, 1.5)

µ̄Ã12
= T (2, 4, 7) µ

Ã12
= T (3, 4, 5.5)

µ̄Ã21
= T (1, 3, 5) µ

Ã21
= T (2, 3, 4)

µ̄Ã12
= T (0, 2, 5) µ

Ã12
= T (0.5, 2, 3.5)

First, we solve the IT2FLP using the method proposed by Figueroa-Garcı́a [4] which com-
putes a predetermined amount of α-cuts (in this case 10), and then solve the 4α crisp problems
using 1. This leads to solve a crisp LP for αÃL(+),αÃL(−),αÃR(−) and αÃR(+) (see Figure
2). Finally the set of optimal solutions z̃ is done by using the representation theorem and the
extension principle for fuzzy sets (see Klir & Yuan [11]), this is f(Ã)(z∗). The set of optimal
solutions z̃ is shown in Figure 3

Figura 3. Set of optimal solutions z̃

Figure 3 show the whole set of optimal solutions of the IT2FLP as a function of α. In
practice there is no any certainty that the values of A corresponding to αÃ occur. Nay, what
we can see in practical applications are random realizations of Ã namely Ax, which indeed
lead to an optimal solution z∗x having a membership degree that can be computed by using
Definition 1.
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Figueroa-Garcı́a [4] did not consider random realizations Ax of Ã since that method maps
uncertainty using α-cuts while this paper is focused to compute the membership of Ax re-
garding the set z̃ of optimal solutions proposed by Figueroa-Garcı́a [4]. The current proposal
complements the results of Figueroa-Garcı́a [4] in the sense that he maps all uncertainty of Ã
while in this paper the membership of a random value Ax is computed and enclosed into z̃.

Now, suppose that the following values Ax → a11 = 0.7, a12 = 6.2, a21 = 3.1 and
a22 = 1.4 are observed, leading to z∗x = 12.7467. The question is, how satisfactory is this
solution to the experts?. This can be computed using Definition 1 as follows:

µÃ11′
= 0.7, µ

Ã12′
= 0.2667, µ

Ã21′
= 0.95, µ

Ã22′
= 0.3

µ
Ã11′

= 0.4, µ
Ã12′

= 0, µ
Ã21′

= 0.9, µ
Ã22′

= 0.4

Now, the membership value of f(Ax)(z∗x = 12.7467) is computed as follows

µÃ1′
mı́n
1
{0.7, 0.2667} = 0.2667, µÃ2′

= mı́n
2
{0.95, 0.3} = 0.3

µ
Ã1′

mı́n
1
{0.4, 0} = 0, µ

Ã2′
mı́n
2
{0.9, 0.4} = 0.4

f(Ax)(z∗x) = mı́n
1,2
{[0, 0.2667], [0.4, 0.3]} = [0, 0.2667]

This means that the optimal z∗x = 12.7467 is satisfactory to all experts in the range [0, 0.2667].
On the other hand, this interval of satisfaction degrees is not as large as the corresponding α-
cut is, which means that arbitrary choices of Ax ∈ Ã are not always the most satisfactory
solutions of the problem.

A fully satisfactory crisp solution of this example is z∗ = 13.5 coming from x∗1 = 3.6, x2 =
2.1. It can be compared to the solution provided by Ax which is z∗x = 12.7467 coming from
x∗1 = 4.18, x∗2 = 1.46 in the sense that Ax is a random realization of Ã while the crisp
solution needs more materials than the random problem except from first material for second
product. Other issue is that the crisp problem is the expected value of the problem which is a
less possible combination of parameters. The random problem prefers to produce more units
of x1 than the crisp one and reduces the quantities of x2 to have a better usage of materials.

Both examples provide different solutions for different operation points of the system, so
every optimal solution provides a different way to operate the system.

6. Concluding remarks

We have clarified the meaning of the extension principle applied to IT2FLPs when using
random choices of aij which are enclosed into Ãij . This kind of solutions are enclosed into the
set of optimal solutions z̃, but their membership degrees are smaller than the α-cuts solutions
which in practice means that random selections of aij are less satisfactory to the experts of
the system even when they are feasible and optimal.
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A practical example that shows the applicability of our results is presented to illustrate how
a random choice can be optimal in a crisp sense, but less satisfactory to experts expectations
about the system’s performance.

Based on the IT2FLP model proposed by Figueroa-Garcı́a [4], [2], and some definitions
about fuzzy constraints provided by Figueroa-Garcı́a, Chalco-Cano & Román-Flores [5] we
have extended the applicability of IT2FLPs in presence of random parameters aij which is
a common issue seen on practical applications. Now, the analyst can see how satisfactory an
optimal solution is, given any combination of parameters aij .

Next steps lead to general modeling for FLPs with fuzzy costs, technological coefficients,
and constraints which are more complex problems. Also the use of generalized Type-2 fuzzy
sets comes as a new way to represent uncertainty, so its potential use in optimization arises as
a new field to explore.
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