
Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Performance evaluation of ROS on the Raspberry Pi platform as OS for

small robots

Evaluación del desempeño de ROS sobre la plataforma Raspberry Pi como OS para pequeños robots

Andrés Moreno N.
Universidad Distrital Francisco José de Caldas

amorenon@correo.udistrital.edu.co

Daniel F. Páez C.
Universidad Distrital Francisco José de Caldas

dfpaezc@correo.udistrital.edu.co

This article presents the configuration and programming of the SERB robot for use in

navigation applications, using as hardware support the Raspberry Pi Model B card, and as

software the ROS OS Grovvy Galapagos. The designed robotic application uses different

elements such as actuators (servomotors), sensors (proximity sensor), and an external control

card (Arduino). We show the OS configuration on the platform and its performance with some

basic navigation tasks.

Keywords: Path planning, ROS OS, Raspberry Pi, SERB robot

Este artículo presenta la configuración y programación del robot SERB para su uso en

aplicaciones de navegación, utilizando como hardware soporte la tarjeta Raspberry Pi Modelo

B, y como software el ROS OS Grovvy Galapagos. La aplicación robótica diseñada utiliza

diferentes elementos como actuadores (servomotores), sensores (sensor de proximidad), y una

tarjeta externa de control (Arduino). Se muestra la configuracion del OS sobre la plataforma y

su desempeño con algunas tareas básicas de navegación.

Palabras clave: Planeación de rutas, ROS OS, Raspberry Pi, robot SERB

Article typology: Research

Date manuscript received: May 26, 2017

Date manuscript acceptance: June 30, 2017

Research funded by: Universidad Distrital Francisco José de Caldas.

Digital edition: http://revistas.udistrital.edu.co/ojs/index.php/tekhne/issue/view/798

How to cite: Moreno, A., Paez, D. (2017). Performance evaluation of ROS on the Raspberry Pi platform as OS for

small robots. Tekhnê, 14(1), 61 -72.

61

http://revistas.udistrital.edu.co/ojs/index.php/tekhne/issue/view/798

Introduction

The present project was developed within the mobile

robotics line of the ARMOS research group of the

Universidad Distrital Francisco José de Caldas - Facultad

Tecnológica. It corresponds to an evaluation of the feasibility

of using ROS OS on the Raspberry Pi platform. This

article, product of this study, specifies the different tools that

were taken into account for the navigation, exploration, and

displacement of the SERB Robot on a designed platform

(Castiblanco & Martínez, 2014; Jacinto, Giral, & Martínez,

2016).

For the development of this application, we implemented

as hardware support the Raspberry Pi card that for its low

cost has become very popular in schools in England and

some research centers worldwide. That is why studies have

been conducted to take full advantage of the capacity of this

card in various areas (Jacinto, Montiel, & Martínez, 2016).

To mention some relevant examples, we can talk about a

study at the University of North Carolina, United States, in

which data from the Raspberry Pi card was transmitted via

Bluetooth to a touch screen. The Raspberry Pi was controlled

by a modified version of the free software Debian Linux,

which was optimized for ARM architectures. The screen

had a graphical interface that could be controlled by users

who could send data via a keyboard attached to the screen

(Sundaram et al., 2013).

Another interesting case is the one of the University of

Sao Paulo, where an open and low-cost code was presented

for users who consume electronics. This study validated a

generic middleware platform, to be tested on a Raspberry Pi

model B card, where the results obtained show the study as

an option or alternative for use as open source and low-cost

(Calixto, Hira, Costa, & Deus, 2013).

A navigation system with 3-D audio systems for the

visually impaired was developed at the University of

New York City, USA. This consists of a special headset

and microphone that are synchronized with a compass,

gyroscope, and GPS system. Blind users can interact

with this system, telling them the route and direction they

want to go through the microphone. These commands

are then processed by the Raspberry Pi card, which

finally transmits to the user the correct route to follow

(Jizhong, Ramdath, Iosilevish, Sigh, & Tsakas, 2013). This

is a case of great interest in stand-alone navigation

applications.

Also at the Institute for Real-Time Learning Systems

of the University of Siegen, Germany, an architecture

was designed to link the programming language BML

(Programming Language used in the systematization of

robots in the military field) with the operating system

ROS. It was demonstrated that it was possible to execute

orders by means of BML that were processed by ROS and

thus be able to assign specific tasks to a group of robots

(Remmersmann, Tiderko, Langerwisch, Thamke, & Ax,

2012).

The emergence of the ROS operating system made

possible a new low-cost navigation and programming

technique on various standard robot platforms. Thanks to

this, several studies and researches have been carried out on

new methods of application of the ROS operating system in

a variety of devices with innovative programming languages.

Some of these studies are presented below:

• In the Trinity University, United States, a study

in sixteen varieties of ROS OS was carried out in

order to determine the most suitable in basic tasks of

robotic movements, in order to be used in future robotic

investigations for the same students of the Trinity University.

The results obtained showed that the best ROS OS

for robotic movements or displacements was the ROS

Player/Stage, which is also easy to manipulate and navigate

(Kerr & Nickels, 2012). The ARMOS research group has

adopted Player/Stage as a simulation platform in its research

projects.

• An architecture in BML Behavior Markup Language,

which was based on Petri networks (useful in the design

of hardware and software systems, for the specification,

simulation and design of various engineering problems), was

carried out at the Worcester Polytechnic Institute, United

States, in order to ensure that errors are not generated that

may appear in the robot control systems when synchronized

with the operating system ROS (Holroyd & Rich, 2012).

• At Laval University, Canada, an open source library

was created for academic use that is simple and flexible

for communication between ROS and Matlab. This

library allows easy integration between sensors and

actuators of a robot with Matlab code. This library was

also designed for a quick connection between a robot

being run by ROS and users who handle Matlab code

(Hold-Geoffroy, Gardner, Gagne, Latulippe, & Giguere,

2013).

• The University of Wisconsin-Madison presented

the programming language Robot Behavior Toolkit,

implemented in open source as an ROS module, which

focused on an analysis of the behaviors of people in the

community environment, so that later this type of behaviors

or expressions can be reflected and simulated, in some

movements of the robots, where they especially worked on

the expressions of the gaze (Chien-Ming & Mutlu, 2012).

All this research points to the versatility of both hardware

and software for professional training tasks in engineering

and research. There are many more documented cases,

however, those cited here are considered as fundamental

concepts for the development of this project.

62

Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Problem formulation

For applications in navigation of small robots with limited

hardware/software resources, it is normal to use hardware

platforms such as Raspberry Pi, Arduino, BeagleBoard,

Mbed boards, etc. It is also common the low-level

programming of these systems, which is perfect to perform

tasks of medium complexity. However, when the task

becomes complex, you want to evaluate many different

strategies or you work with swarms of robots, the solution

at this level becomes complicated.

In this sense, considering the limitations of the hardware,

but at the same time the advantages provided by a

development interface with ROS OS, the concerns arise, can

you program an interface between the Raspberry Pi card

model B and ROS OS? If there is an interface between the

hardware (Raspberry Pi) and software (ROS OS), can you

design a robotic application with acceptable performance?

Does the robotic application between the two tools meet

aspects such as the decrease in resources, the performance of

the robot to perform the task (navigation), and compatibility?

Methodology

Setup of Raspberry PI platform

In the development of the robotic application in

navigation, several elements were used. The first step

consists of the initial configuration of the Raspberry Pi board,

where an operating system compatible with Raspberry Pi is

installed.

To download the operating system image an 8 Gb Micro

SD is used, which will perform the ROM memory task on

the board. The image that is downloaded and executed can

be found at www.raspberrypi.org, where the NOOBS

option is chosen. The main characteristic is the affinity with

Archlinux, OpenELEC, Pidora, RISC OS, RaspBMC and

Raspbian. To implement the operating system or image on

the board it is necessary to choose the option shown in Fig. 1.

Figure 1. Image selection.

Raspbian image

The next step is to insert the memory into the Raspberry

Pi, where they also connect the different peripherals that

are: mouse, keyboard (which are connected by multiple USB

inputs), screen that is connected through HDMI cable, where

the card is powered through a cell phone charger of 5 V and

0.7 A, as shown in Fig. 2.

Figure 2. Development board connection.

Raspbian setup

Once the installation script is executed, the initial

Raspbian menu will be accessed, where nine different

characteristics or specifications for the correct functioning of

the image on the card are observed. The menu is shown in

Fig. 3.

Figure 3. Configuration tool.

• The first option is to expand the memory of the Micro

SD. And for the case of the running project is not necessary,

because the NOOBS image is already predetermined to fully

occupy the memory space.

• In the second option, it is possible to change the

password to enter the system.

• The third option determines if it is required to access the

graphic mode of the system or directly to the command line,

in this case, it was determined to access the graphic mode

which is done through the command startx (Xserver).

63

• The fourth option consists of specifying the time zone,

language, and keyboard layout. I1 specifies the language,

where it is recommended to select UTF-8 which corresponds

to Colombia (coding that allows ñ and accents). Option

I2 specifies the Colombia - Bogota zone, the keyboard

configuration is the standard so option A3 "PC indicates

generic keyboard with 105 keys (intl)".

• The fifth option is to activate Ctrl + Alt +

Backspace to close the graphics mode, where the default

setting is chosen.

The above specifications are sufficient to enter the

Raspbian graphics mode. The last request to enter the system

is to type the username and password, codes specified below:

U s u a r i o : p i

C o n t r a s e n a : r a s p b e r r y

s t a r t x

Wi-Fi connectivity

For easy control of the Raspberry Pi board, it must be

connected to the Internet, and for this, there are two ways

to connect it by UTP cable or Wi-Fi antenna. For the

present project, the Internet configuration is done through

Wi-Fi antenna. Below is a description of the necessary

specifications for its configuration.

• Before starting Raspbian, the Wi-Fi antenna is

connected to the Raspberry Pi board.

• When accessing the graphical interface, the Wi-Fi

Config icon is accessed. The Wi-Fi device is recognized by

the active USB option.

• When clicking on the scan option, whose function is to

identify the different available networks (the Wi-Fi network

in which the configuration is going to be made must be active

or with the option visible), we verify the options and choose

the appropriate network, in which the key is entered.

• The following window shows the data of USB port,

Wi-Fi network and the IP address handled by our Modem

or cell phone. This information is necessary for connection

and control of the Raspberry Pi board remotely, as shown in

Fig. 4.

Remote connection using SSH

As its name indicates is the option to operate remotely

the Raspberry Pi board, this means that the connection of

the different peripherals are not necessary. Because the

programming will be carried out by means of a computer

connected to the same Wi-Fi network with which the card

works, this configuration is shown below:

• The following command is entered in the terminal

window:

sudo ap t −g e t i n s t a l l s s h

Figure 4. Configuration of Wifi on Raspberry Pi.

• The service is started with the following command:

sudo / e t c / i n i t . d / s s h s t a r t

• And in order for the execution of the previous command

to be carried out immediately when starting to work with the

board, the following command is executed:

sudo u p d a te− r c . d s s h d e f a u l t s

The following will be the installation of the SSH client

in Windows, for this, you must download and install the

PuTTY program that is used to enter the command terminal

remotely. PuTTY is a free licensed SSH, Telnet, rlogin, and

TCP raw client. The download is located in the following

link http://cplus.about.com/, where different options

are found, but due to its ease of work, the installer version is

the best option. This can work in a way compatible with the

Raspberry Pi board because it contains an even higher level

of security for the proper management of programming.

Once downloaded and installed on Windows, you can

access the Putty program to establish the connection with the

Raspberry Pi board and then enter the Host Name option,

where you specify the IP address to which the Raspberry

Pi board is connected, Port 22 is specified, you assign a

name to the connection in the Saved Sessions field and click

on Saved, this way you will not have to specify the IP

address and name when you start working with Raspberry Pi

remotely. Thus, when the board is turned on, the previously

established specifications are loaded by selecting the name of

our IP and loading the option by clicking on load and clicking

on open as shown in Fig. 5.

By means of the remote connection with VNC, it is

possible to access the desktop or graphic mode of the board

remotely. The procedure is as follows:

• Enter to the terminal window the following command,

which consists of the installation of the VCN server on the

Raspberry Pi board. This will load the remote desktop.

64

Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Figure 5. Putty Wifi network specifications.

This command can be executed using the PuTTY application

(Fig. 6).

sudo ap t −g e t i n s t a l l t i g h t v n c s e r v e r

Figure 6. VNC server.

• When the installation of the VNC server is completed,

the board is restarted, so that it works correctly, when it is

restarted, the following command is executed:

v n c s e r v e r : 1

• The above command specifies different aspects of

VNC, as the number 1 indicates the remote desktop we are

going to use. The first time we make use of Raspberry Pi

through VNC requests that a key is created (this is entered

by the user, this is due to security protocols).

• The next step is the installation of VNC through

Chrome, which was chosen because any programmer can

make use of Google Chrome, which has the option VNC

Viewer for Google Chrome, which allows access to the

Raspberry Pi desktop, where it identifies that the images and

colors used in the program are of very good quality adjusting

to the request for the development of applications in robotics.

• In this window you enter the IP address used by the

Raspberry Pi board and the desktop number used, to finally

connect to the Internet as shown in Fig. 7.

Figure 7. Google Chrome VNC Viewer Application.

• The following window can be omitted because it does

not affect the configuration of the program, therefore the

option not to display again is selected.

• The last step is to enter the previously created key.

In this way, we enter the graphic or desktop mode of the

Raspberry Pi board.

Before starting the installation of Arduino on the

Raspberry Pi board, it is necessary to specify why the

use of this development system. First of all is due

to its microprocessor, which has the power and ease of

programming for the execution of the project. Additionally,

it allows the operation of servomotors (power) and sensors

isolated from the control unit.

• To install Arduino correctly, update the database of

Raspbian Linux packages by running the command:

sudo ap t −g e t u p d a t e

• When the upgrade is complete, proceed to install the

Arduino package from the Linux server with the command

shown below, where you will get the Electronic icon on the

Raspbian start bar, which leads to the Arduino IDE shortcut.

The Arduino installation is shown in Fig. 8.

sudo ap t −g e t i n s t a l l a r d u i n o

• This step verifies that the Raspberry Pi normally detects

the serial ports of Arduino, that the communication or

interface between the microcontroller and the board is correct

and executes the programmed application, this is done

through the following command:

sudo usermod −a −G t t y p i

65

Figure 8. Updating packages.

sudo usermod −a −G d i a l o u t p i

l s / dev / t t y ∗

Port verification is shown in Fig. 9. The image

identifies that the board is working with Arduino via the

/dev/ttyACM0 port.

Figure 9. Arduino serial ports.

• It is now possible to verify the installed program by

entering the Arduino IDE icon. This icon is located in the

Start menu, Electronics - Arduino IDE as shown in Fig. 10.

• The next step is to configure the communication port

between the Raspberry Pi board and the Arduino. This is

done by accessing the tools icon, Serial Port and selecting

the option /dev/ttyACM0. The configuration is shown in

Fig. 11.

• The next configuration is to specify which type of

Arduino board is available, in this case, the board is Arduino

Uno, and the specification in the Raspbian system is shown

in Fig. 12.

Installation of ROS OS Groovy Galapagos on Raspberry

Pi

Installing ROS on the Raspbian operating system can be

done in two ways (ROS.org, 2016), which are described

below:

Figure 10. Location of the Arduino IDE Program.

Figure 11. Serial port configuration.

Figure 12. Arduino board specification on Raspbian.

Installation from source code. This process can take a

long time to install due to the number of packages

it contains. It is not recommended because the

installation has compatibility problems.

Installation by binary packages. This installation method

is much simpler and faster, although it lacks several

packages for different applications, but has the right

requirements for the development and execution of the

robotic application in navigation. Its installation is

done in the following way:

• ROS repositories are installed on the Raspbian system.

It consists of adding the ROS OS repositories from command

mode, entering a terminal and typing the following code:

66

Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

$ sudo sh −c ’ echo \ \ " deb h t t p : / / p ack ag es

. r o s . o rg / r o s / u b u n tu wheezy main " >/ e t c /

a p t / s o u r c e s . l i s t . d / ro s− l a t e s t . l i s t ’

$ wget h t t p s : / / raw . g i t h u b u s e r c o n t e n t . com /

r o s / r o s d i s t r o / m a s t e r / r o s . key −O − | sudo

ap t −key add −

• Update packages (again given the new repository

entered into the system):

$ sudo ap t −g e t u p d a t e

$ sudo ap t −g e t u p g rad e

• Installation of ROS OS packages:

$ sudo ap t −g e t i n s t a l l r o s −groovy−ro s −com

m

• Installation of ROSDEP. These are dependencies of the

ROS OS system that the system requires to run basic ROS

OS components, not installed by default:

$ sudo r o s d e p i n i t

$ r o s d e p u p d a t e

• Completion of installation. The last step is to tell

Raspbian the location of ROS, the next command should be

executed whenever programming is done on ROS OS:

$ echo " s o u r c e / o p t / r o s / groovy / s e t u p . bash

" >> ~ / . b a s h r c

$. ~ / . b a s h r c

• Installation of rqt plot. This tool allows visualizing

numerical values in a Cartesian plane using traces of the

infrared sensor reading. This application is used to verify

on screen the distance at which the IR sensor is located from

the different objects that are close to its path. The command

is shown below:

$ sudo ap t −g e t i n s t a l l r o s −groovy− r q t

$ sudo ap t −g e t i n s t a l l r o s −groovy− r q t −com

mon−p l u g i n s

• The second way to install this application is through the

command:

$ r o s d e p i n s t a l l r q t _ p l o t

• To start or verify the plan with the rqt plot package,

enter the command:

$ r q t _ p l o t

• Creation of the workspace. It consists of creating

an exclusive workspace for ROS and the programs to be

developed. This workspace is basic and essential for the

non-affectation of the Raspbian system.

$ mkdir −p ~ / c a t k i n _ w s / s r c

$ cd ~ / c a t k i n _ w s / s r c

$ c a t k i n _ i n i t _ w o r k s p a c e

• In the second command, the acronym src is empty

inside the folder catkin_ws or workspace. The workspace

is opened using the command:

$ cd ~ / c a t k i n _ w s /

$ ca tk in _ m ak e

• When the workspace creation process is finished, the

catkin_ws folder will get two subfolders: build and devel

where the relevant devel folder is because the .sh files or

packages are stored in this folder.

• To finish with the installation, go to Raspbian with the

ROS system and the new packages or workspaces by means

of the following command:

$ so urce d e v e l / s e t u p . bash

This completes the installation of ROS on Raspbian

and the right conditions for the development of navigation

applications.

Integration between Arduino IDE and ROS OS

The procedure for installing the Arduino IDE was

mentioned earlier, which specifies that the program

is compatible with the Raspbian system, but lacks

compatibility with ROS OS. Thus, the integration of the

two systems is done through the Rosserial protocol or

package (A., 2014). The Rosserial installation takes place

in the scr subfolder of the catkin_ws workspace folder by

executing the following commands:

$ cd ~ / c a t k i n _ w s / s r c

$ g i t c l o n e h t t p s : / / g i t h u b . com / ro s− d r i v e r

s / r o s s e r i a l . g i t

$ cd ~ / c a t k i n _ w s

$ ca tk in _ m ak e

67

$ ca tk in _ m ak e i n s t a l l

$ so urce ~ / c a t k i n _ w s / i n s t a l l / s e t u p . bash

At the end of the Rosserial installation, the ROS lib

folder is created containing the libraries for communication

between Arduino and ROS.

This package must be moved to be recognized in both

ROS (workspace) and the Arduino IDE. It is taken to the

sketchbook/libraries folder, which is located in the

Arduino IDE folder in Raspbian. This step is done by

executing the following commands:

$ cd ~ / s k e t c h b o o k / l i b r a r i e s

$ rm − r f r o s _ l i b

$ r o s r u n r o s s e r i a l _ a r d u i n o m a k e _ l i b r a r i e s

. py

Robotic platform

For the system performance evaluation, the SERB robot

was selected for the execution of navigation tasks (Oomlout,

2013). It is a differential robot of design open source moved

by two servomotors. The original design was modified in

order to mount the Raspberry Pi board, distance sensors and

a rechargeable battery for power supply. Taking into account

the characteristics of the movement of this robot, the tasks of

navigation and avoidance of obstacles are designed. The final

structure of the robotic platform is composed as follows:

• Two wheels of 13 cm of diameter connected to each

side of the robot in order to offer stability and independence

of mobility, in addition, they are connected each one to a

servomotor that is responsible for realizing the rotation in

the axes for the displacement, these are fed by means of a

portable battery charger that delivers 5 Vdc

• A third wheel of three cm diameter totally independent.

It will not be linked to any other element, serving only to

support the fixed horizontal base.

• In the horizontal plate is the different peripherals

such as the Arduino Uno board, the IR GP2Y0A41SK0F

infrared sensor, two portable chargers, two servomotors, a

protoboard, the Raspberry Pi board, and Wi-Fi antenna, as

shown in Fig. 13 and Fig. 14.

• The navigation task was designed for the robot to

move independently, so the power will be supplied by two

portable chargers. The first charger is feeding the two servo

motors and the IR infrared sensor. The second charger will

exclusively feed the Raspberry Pi board. The Arduino Uno is

connected to the Raspberry Pi, so its power supply is received

via the board. Fig. 15 shows the electrical connection of the

Figure 13. Platform horizontal view 1.

first portable charger. Fig. 16 shows the electrical connection

of the second portable charger.

Robotic task

The execution of the robotic task is performed through the

following procedure:

• When we turn on the Raspberry Pi board, which is

connected by Wi-Fi and previously synchronized with the

computer that performs the monitoring task, we access the

command line to start ROS, through the code:

$ $ r o s c o r e

Fig. 17 shows the starting of ROS OS on the Raspberry

Pi.

• The next step is to synchronize ROS OS with Arduino

via command line in a new window or terminal. This is to

locate the working space or folder. The next command is

entered:

$ cd ~ / c a t k i n _ w s / && so urce d e v e l / s e t u p .

bash

$ cd

Fig. 18 shows the output that is displayed on the terminal.

The communication between ROS OS and Arduino starts

with the code:

r o s r u n r o s s e r i a l _ s e r v e r s e r i a l _ n o d e _ p o r t

:= / dev / ttyACM0

• The control of the servomotors is carried out in a

new terminal, where the task of speed and direction can be

changed by means of the code:

$ r o s t o p i c pub s e r v o 1 s td _ m sg s / UInt16 −

−once 180

The characteristics of the servomotors are specified in

Fig. 19.

68

Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Figure 14. Platform horizontal view 2.

Figure 15. Electrical connection, portable charger 1.

Figure 16. Electrical connection, portable charger 2.

• The servomotor to which speed and direction are

assigned is indicated, this characteristic is modified through

Figure 17. Beginning ROS OS on Raspberry Pi.

the angle. For this case, the maximum speed and direction

of advance are assigned with an angle of 180 degrees. This

speed can also be reached with an angle of 0 degrees but

will be displaced in reverse. When the angle is equal to 90

degrees the speed of the servomotors is zero.

The above command shows control over the servo motor

called servo1. The control of the two servomotors (servo1

and servo2) is done by means of a terminal, and the command

to be entered is:

$ r o s t o p i c pub s e r v o 1 s td _ m sg s / UInt16 −−

once 180 && r o s t o p i c pub s e r v o 2 s td _ m sg s /

UInt16 −−once 0

69

Figure 18. Opening the workspace.

Figure 19. Control of the direction and speed of the

servomotors.

The above command indicates that both servomotors,

servo1 and servo2, move in the opposite direction at

maximum speed.

Rqt_plot Application: The rqt_plot tool works with

two-dimensional graphics, where a sample of the

signal taken by the infrared sensor when it detects a

near object within a radius of five cm is displayed.

To enter this tool the following code is written in a

separate terminal:

$ r q t _ p l o t r a n g e _ d a t a / r a n g e

Fig. 20 shows the graph showing the infrared sensor by

means of the Rqt_Plot function.

Navigation task

We implement a basic navigation task in unknown,

static and observable environments. The SERB robot is

programmed to perform displacement by means of two

servomotors, which are monitored by means of a computer

and the operating system ROS OS. When it is close to an

obstacle, it will be detected by the robot by means of the

infrared sensor, which sends the signal to ROS OS, which

indicates to stop the robot, to turn one of its wheels in the

opposite sense to the direction to which it moves. This causes

a turn in the robot which after a second is put back into gear,

advancing again with their wheels driven by servomotors 1

and 2.

Figure 20. Sample plot of function Rqt_Plot.

Results and performance on SERB robot

The first result obtained is the interface achieved through

Raspberry Pi with Raspbian and ROS OS with the version

ROS Groovy Galapagos, for which to perform the steps

exposed the synchronization can be given in a time of

8 s. However, the different times of execution of the

programming of the robot are expressed below:

• Starting time of the Raspberry PI: 62 s (time needed to

start communicating our pc and the Raspberry Pi through the

Putty program).

• Starting Roscore 8 s (time required to open ROS in a

Raspbian terminal).

• Communication ROS and Arduino 15 s (time required

to link the communication of the Arduino board with ROS

through a Raspbian terminal).

• Servo control 4.9 s (time required by a ROS command

to control the direction or speed of a Servo).

• Control of a second servo 13 s (time taken by the second

servomotor in the same order sent by ROS).

• Time opening Rqt-plot 58 s (time spent by the Rqt-Plot

application to open and show the signal of an obstacle).

With this, it can be observed that the response times of

the robot to sent orders are not immediate due to processing

tasks of the Raspberry Pi that can become saturated with this

type of applications.

The independence level of the SERB robot is reached

thanks to the independence in the power supply and the

control exercised remotely, for this reason, the power supply

is through 2 chargers of 5 V and 0.5 to 0.7 A, which

independently feed the Raspberry Pi board, the Arduino Uno

board and the infrared sensor, as well as the second charger,

70

Tekhnê
January - June 2017, Vol. 14, No. 1, pp. 61 – 72

c© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

is in charge of supplying the motion energy for servomotor 1

and servomotor 2, this means of feeding provides the degree

of freedom for the robot to move autonomously over the

entire navigation platform.

The level of control implemented in this robotic

application exceeds the performance and specifications

previously studied since the robot does not simply avoid

obstacles but it can provide a desired or specific trajectory,

this is achieved through remote control with the Putty

program, so the observation or detection of objects is done

in an average time of 58 s.

Extensions and issues

ROS OS is an operating system with little time on the

market when compared to systems like Ubuntu, Windows

and Linux nevertheless presents variety in its product so

the versions to work are characterized by its tools and

specific depending on the requirement of the programmer,

for such reason the version used for the execution of the

robotic application must comply with the interface between

Raspberry Pi and ROS OS, reason for which tests were

made of installation of ROS OS Indigo Igloo developed in

2014 and ROS OS Hydro Medusa designed in 2013 on the

board, obtaining erroneous results at the time of verifying its

compatibility, where the main reason is that these updates or

versions of the program are developed by fans of the ROS

community, so one of its main shortcomings are the outdated

repositories which have the execution error on the Raspbian

platform.

The navigation task is based on the detection of objects

in order to avoid and take a new direction of movement, for

this was taken into account the ultrasound sensor of Arduino

HC-SR04, which is used in different robotic applications

based on Arduino, but when this sensor is implemented

with the card and the ROS OS system we identify that

the operating system ROS OS Groovy Galapagos is not

compatible with the sensor, we conclude that the sensor

does not meet the interface characteristics necessary for

the harmony of the system in general, for this reason we

implement the infrared sensor IR GP2Y0A41SK0F which is

recommended on the official website www.ros.org, where

the adequate sampling or data collection is obtained for the

performance of the robot.

The Raspberry Pi board model B, presents better capacity

and resources than the model A, however in the design of the

robotic application the idea considered the use of 2 sensors

for better navigation and that the robot will perform in a

more versatile way to more complex platforms, but when we

observe the performance of the sensor and its tool rqt-plot on

the plate we find that the resources needed for the robotic

application are 100 percent. This optimizes resources by

centrally locating the infrared sensor IR GP2Y0A41SK0F in

the robot.

Conclusions

The robotic application designed is based on the interface

developed between the Raspberry Pi board and the operating

system ROS OS, this innovation is achieved through constant

research in projects and robotic applications having as

support any of these tools or linking them to verify their

performance. The interface is based on an old version of

ROS OS as it is ROS OS Groovy Galapagos designed in

2012, but as already specified the most current versions

have repository problems or lines of code, additionally the

working model of ROS is through spaces or folders generated

from specific codes for its proper functioning, but it is

necessary to add the communication between these two

valuable programs which are: Raspbian and ROS OS, for this

reason, to take the first steps with the different peripherals

was complex because of the reduced ports provided by

the board but at the same time a challenge to find and

synchronize the best way of working of the board taking

advantage of the benefits described above.

During the investigation the monitoring, control or

command through a personal computer was one of the key

points to find the connection between different equipment

such as modem, cell phones and personal computers, reason

why the VNC server, Putty and other features were basic and

essential for progress and not dependent on the peripherals

when executing the task in navigation. The next step

consisted in obtaining compatibility of the Arduino board

being one of the factors with greater facility to be able to

carry out the programming of the robot through angles that

in turn controls the servomotors that carry out the task of

force, it is necessary to add that the Arduino works basically

like actuator and was used by its easy or simple grammar of

programming.

In the course of the project, there are many unknown

factors such as the control of the SERB robot during the

execution of the navigation application. Therefore, the

independence achieved through 2 portable chargers, which

have specific tasks or specific feeding elements, is achieved

through the constant control of the infrared sensor, The idea

was to work with an ultrasound sensor and not infrared,

although the results were better than expected because with

this new component is possible to obtain data in 2D which

indicates the proximity of objects in front of the robot in a

total range of 10 cm something that is suitable and sufficient

for robotic displacement. The limits of the Raspberry Pi are

found when we want to program the robot with two infrared

sensors to obtain greater coverage at the time of moving on

a given surface, which indicates that the resources are not

being used in the right way or these are limitations of the

board.

Finally, the aesthetics of the robot is not adequate but

if functional so the robot has a degree of freedom wide

enough to perform the task of navigation on a flat surface

71

with obstacles of specific characteristics as their measures,

those if the sensor fails to recognize the obstacle the task of

navigation will be quite difficult.

The development of this application is a small step for the

functionality and take advantage of both the Raspberry Pi

board and the operating system ROS OS, with the Arduino

board one of the most popular boards in the area of robotics.

Acknowledgements

This work was supported by the Universidad Distrital

Francisco José de Caldas, partly through the CIDC, and

partly by the Facultad Tecnológica. The opinions expressed

in this article are not necessarily shared by the Universidad

Distrital. The authors thank the ARMOS research group for

the discussion of ideas and strategies.

References

A., R. (2014). Integración de ros (robot operating

system) con arduino y raspberry pi. Escuela Técnica

Superior de Ingeniería, Universidad de Sevilla, Sevilla

, España.

Calixto, G., Hira, C., Costa, L., & Deus, R. (2013).

An open source and low cost solution for consumer

electronics middleware validation. In Ieee 17th

international symposium on consumer electronics

(isce 2013) (p. 159-160).

Castiblanco, M., & Martínez, F. (2014). Exploración de un

modelo comportamental basado en el quorum sensing

bacterial para describir la interacción entre individuos.

Tekhnê, 11(1), 21-26.

Chien-Ming, H., & Mutlu, B. (2012). Robot behavior toolkit:

Generating effective social behaviors for robots. In

7th acm/ieee international conference on human-robot

interaction (hri 2012) (p. 25-32).

Hold-Geoffroy, Y., Gardner, M., Gagne, C., Latulippe, M., &

Giguere, P. (2013). ros4mat: A matlab programming

interface for remote operations of ros-based robotic

devices in an educational context. In International

conference on computer and robot vision (crv 2013)

(p. 242-248).

Holroyd, A., & Rich, C. (2012). Using the behavior markup

language for human-robot interaction. In 7th acm/ieee

international conference on human-robot interaction

(hri 2012) (p. 147-148).

Jacinto, E., Giral, M., & Martínez, F. (2016). Collective

multi-agent navigation model based on bacterial

quorum sensing. Tecnura, 20(47), 29-38.

Jacinto, E., Montiel, H., & Martínez, F. (2016).

Implementation of lightweight encryption algorithm

based on 32-bit embedded systems. International

Journal of Applied Engineering Research, 11(23),

11409-11413.
Jizhong, X., Ramdath, K., Iosilevish, M., Sigh, D., & Tsakas,

A. (2013). A low cost outdoor assistive navigation

system for blind people. In 8th ieee conference on

industrial electronics and applications (iciea 2013).

828-833.

Kerr, J., & Nickels, K. (2012). Robot operating systems:

Bridging the gap between human and robot. In 44th

southeastern symposium on system theory (ssst 2012)

(p. 99-104).

Oomlout. (2013, March 1). Arduino controlled servo robot.

On line. Vancouver, British Columbia. Retrieved from

http://oomlout.com/a/products/serb/

Remmersmann, T., Tiderko, A., Langerwisch, M., Thamke,

S., & Ax, M. (2012). Commanding multi-robot

systems with robot operating system using battle

management language. In Military communications

and information systems conference (mcc 2012). 1-6.

ROS.org. (2016, Enero 11 de). Ros tutorials.

http://wiki.ros.org/ROS/Tutorials. Retrieved from

http://wiki.ros.org/ROS/Tutorials

Sundaram, G., Patibandala, B., Santhanam, H., Gaddam,

S., Alla, V., Prakash, G., et al. (2013). Bluetooth

communication using a touchscreen interface with the

raspberry pi. In Ieee southeastcon (p. 1-4).

72

http://oomlout.com/a/products/serb/
http://wiki.ros.org/ROS/Tutorials

	Introduction
	Problem formulation
	Methodology
	Setup of Raspberry PI platform
	Raspbian image
	Raspbian setup
	Wi-Fi connectivity
	Remote connection using SSH
	Installation of ROS OS Groovy Galapagos on Raspberry Pi
	Integration between Arduino IDE and ROS OS
	Robotic platform
	Robotic task
	Navigation task

	Results and performance on SERB robot
	Extensions and issues
	Conclusions
	References

