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Mathematical modeling of a DC motor with separate excitation

Modelo matemático de un motor de corriente continua con excitación separada
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This article proposes a model for a direct current motor with separate excitation using speed

control by armature current. Based on an understanding of its electromechanical functioning

and an adequate conceptualization of both the laws of physics and mathematical structure, this

model is constructed as a fundamental exercise for the development of control and simulation

schemes. To evaluate the performance of the model, performance curves are presented for a

test machine.
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Este articulo propone un modelo para un motor de corriente continua con excitación

separada que utiliza control de velocidad por corriente de armadura. A partir de la

comprensión de su funcionamiento electromecánico y una adecuada conceptualización tanto

de leyes de la física como de la estructura matemática, se construye dicho modelo como

ejercicio fundamental para el desarrollo de esquemas de control y simulación. Para evaluación

del desempeño del modelo se presentan curvas de comportamiento para una máquina de

prueba.
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Introduction

The DC motor is, in short, a torque transducer that

transforms electrical energy into mechanical energy (Kuo,

2002). It is an important source of driving energy in today’s

industrial and technological world, and it also outperforms

alternating current motors due to its high controllability of

speed and torque (Gordillo & Martínez, 2018).

The superior performance of the DC motor means that

it makes it possible to more easily perform some functions

that the AC motor does not achieve (Martínez & Galvis,

2006). Two examples of this are the DC motor’s ability to

develop torque several times greater in magnitude than an

AC motor of a similar size and the ability to operate at speeds

unreachable by an AC motor.

This document proposes an approximate mathematical

model of the DC motor for this purpose of great utility in

both education and research (Martínez, Montiel, & Jacinto,

2016). We construct an equivalent circuit of the device, and

then we define the set of mathematical expressions that allow

linking the physical variables that constitute the proposed

model. The constant values of the model were taken from

articles with models evaluated for the same type of electric

machine in order to compare the result obtained (Alvarez,

2012).

Once the differential expression that relates the variables

of interest has been developed, they are taken to the

frequency domain through the application of the Laplace

transform. Then the expression for the angular velocity ω

is solved, the constants are replaced by the reference values,

and finally, the inverse Laplace transform is applied to return

to the time domain.

The resulting expression will then be the solution of the

proposed model, and will, therefore, describe the behavior of

the angular velocity of the motor as a function of time.

In the second part of the article, graphical information

on the behavior of angular velocity as a function of time

is obtained using the SIMULINK simulator, which offers a

graphical user interface (GUI) useful enough to build models

and to examine how successful the model developed has

been. The final part of the article shares the results and builds

conclusions.

Background and current status of the DC motor

The Nikola Tesla Alternating Current (AC) induction

motor can be considered as the cornerstone of the triumph

of alternating current over the direct current system (Brittain,

2005). However, there is one aspect where the contest does

not seem to have shifted to alternating current, and that is

what has allowed direct current motors to be so important

today. Observability and controllability are two essential

factors in the analysis of dynamic systems, the latter being

the most important advantage of the DC motor over the AC

motor, as it allows a greater range and degree of control over

speed and torque.

In fact, the development of DC motors continues to

advance, as evidenced, for example, by the work of electrical

engineer and renowned inventor Frank Julian Sprague,

who was recently honored in The History column in the

November-December 2015 issue of IEEE Power & Energy

journal (Sprague, 2015). Sprague’s work pioneered the

invention and development of constant speed DC motors,

which, in addition to being non-slip, are completely

self-regulating, even under variable loads (Kuo, 2002). This

certainly expands the frontier of possibilities for the DC

motor, and also justifies the objective of this paper.

One of the critical points of the DC motor has been

the brushes collector system since the wear of the brushes

due to friction, maintenance and the associated cost

have reduced the efficiency of the machine. Currently,

however, not only are new prototypes of brushless

DC motors (BLDC motors) being worked on, but

the effectiveness of automatic adjustment with PID

controllers (Pongfai & Assawinchaichote, 2017) has

even been increased by applying artificial intelligence

(AI) algorithms (García, Osuna, & Martínez, 2018;

Montiel, Martínez, & Jacinto, 2017).

Description and principle of operation of the DC motor

In the following, we present a schematic description of the

engine and a synthesis of its basic operating principle.

As can be seen in Fig. 1, the direct current motor is a

machine composed of two parts, rotor A which is a sweet

steel cylinder mounted on a shaft that can rotate on its axis,

and stator or casing M where the permanent magnets or

electromagnets are located if there are field coils F and F’. In

any case, the stator or inductor guarantees a magnetic field

between P and P’ as indicated by the dotted lines.

It should be pointed out that these field lines describe

the trajectories indicated as long as the rotor turns

counterclockwise as a result of the interaction between the

magnetic field of the inductor and the electric field of the

armature. This dynamic happens because a current enters

through the brushes or carbons to the brush collector and

circulates through the C conductors.

Fig. 2 shows the front and side views of rotor A in Fig. 1.

Note that Fig. 1 does not show either the brush collector or

the brushes for simplicity. The magnetic flux φ comes from

the stator.

The first step in modeling a system, in this case, the DC

motor, is to understand its operating principle, so below we

make a brief description of it.

By means of an excitation source va, an electric charge is

circulated through the conductor of the armature, generating

an ia current. This current gives rise to an electric field

that gives rise to a magnetic field, this phenomenon is
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Figure 1. Schematic diagram of the operation of a DC motor

(Kuo, 2002).

Figure 2. Schematic diagram of a DC motor.

described by Maxwell’s equations (Kuo, 2002). When the

rotor field interacts with the magnetic field provided by the

permanent magnet, the rotation of the armature is generated,

a movement called torque. This phenomenon is described

by the Lorentz force equation which says that a conductor

carrying current experiences a force that tends to move it

when placed in a magnetic field (Kuo, 2002) and by Lenz’s

Law which states that the direction of an induced current is

such that it opposes the cause that produces it (Kuo, 2002).

It is interesting that according to the above it is possible to

infer that the DC motor operates under electromechanical

principles and that the torque that is a mechanical variable

can be controlled from electrical variables.

Once the principle of operation is understood the next step

is to elaborate the approximate equivalent circuit taking into

account that:

• The armature winding can be modeled as a series RL

circuit.

• In the rotor, a fem or force counter electromotive vb is

induced according to the Faraday induction law (Kuo, 2002).

• A direct voltage source va is applied to the armature

terminals.

The Kirchhoff tension law can then be applied to construct

the first expression that relates the variables va, Ra, La, and

vb, to the equivalent circuit shown in Fig. 3.

Figure 3. Equivalent circuit of the motor system in direct

current, separately excited.

Where:

• Ra represents the natural resistance of the conductor

forming the armature winding in ohms.

• La is the value of the armature winding inductance in

henrys.

• va is the DC voltage applied to the armature circuit in

volts.

• ia denotes the current flowing through the armature

conductor in amperes.

• vb represents the counter-electromotive force in volts.

• φ represents the stator’s fixed magnetic field.

• θ represents the angular displacement of the rotor in

radians.

• ω is the rotor angular velocity in rad/s.

• Ja denotes the equivalent rotational inertia of the rotor

shaft in kilograms.

• β is the coefficient of viscous friction in N·m·s.

• τ f is the friction force or viscous damping in Newtons.

• τe is the electromagnetic torque in Newtons.

• τc is the resulting torque in Newtons.

• kp is the electromagnetic torque constant in N·m/A.

• kb is the counter electromotive force constant.

Analysis for choice of variables and construction of the

mathematical model

Making use of Kirchhoff’s voltage law in the equivalent

circuit shown in Fig. 3 relating to va, Ra, La and vb can be

obtained:
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va (t) = vRa (t) + vLa (t) + vb (t) (1)

Expressing Eq. 1 in terms of the current:

va (t) = Raia (t) + La

dia (t)

dt
+ vb (t) (2)

The value of the counter electromotive force vb is defined

as shown in Eq. 3. Replacing this expression in Eq. 2 results

in Eq. 4:

vb (t) = kbω (t) (3)

va (t) = Raia (t) + La

dia (t)

dt
+ kbω (t) (4)

Then Eq. 4 is the first differential equation of the model

and describes the electrical part of the system.

For the description of the mechanical part, it is necessary

to find the second differential expression. As it is a linear

system, it is assumed that the torque developed by the motor

is proportional to the flow between the iron and the armature

current. In other words, it is possible to conceptualize an

equation of torques that relates the applied force or resultant

torque τc, the inertia of the armature τe and the friction force

τ f which, said to be a step, depends on the angular velocity

ω, and opposes the movement. So:

τc (t) = τe (t) − τ f (t) (5)

In addition τc is described by the expression:

τc (t) = Ja ·
dω (t)

dt
(6)

The resulting torque τc is generated by the

electromagnetic torque τe, which in turn depends on

the armature current ia and is defined as:

τe (t) = kp · ia (t) (7)

Where kp is the electromagnetic torque constant. The

viscous damping τ f , or viscous friction force, is defined as:

τ f (t) = β · ω (t) (8)

Now, replacing Eqs. 6, 7 and 8 in Eq. 5 gives:

Ja ·
dω (t)

dt
= kp · ia (t) − β · ω (t) (9)

Solving for ia(t) in Eq. 9, results:

ia (t) =
Ja ·

dω(t)

dt
+ β · ω (t)

kp

(10)

Then, deriving the Eq. 10 is obtained:

dia (t)

dt
=

Ja ·
d2ω(t)

dt
+ β ·

dω(t)

dt

kp

(11)

Which is the second differential equation of the system,

and describes the mechanical part of it. Finally, to obtain

the differential equation that integrates the electrical and

mechanical parts, Eqs. 10 and 11 are substituted in Eq. 4,

from where it results:

va (t) = Ra




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
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

Ja
dω(t)

dt
+ β · ω (t)

kp
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









+La










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



Ja
d2ω(t)

dt
+ β ·

dω(t)

dt

kp


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




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



+kbω (t)

(12)

It is important to note that this expression relates

to electrical variables such as current and voltage with

mechanical variables such as torque and friction force, which

is consistent because it is an electromechanical system in

itself.

Eq. 12 describes the mathematical model of the separately

excited DC motor. Before proceeding with the solution of

the mathematical model it must be considered that Eq. 12 is

a second order differential equation, but it must also be taken

into account that the value of L approaches zero in direct

current motors with independent excitation, so Eq. 12 can

be simplified to a first-order homogeneous, linear differential

equation of constant coefficients.

va (t) = Ra















Ja
dω(t)

dt
+ β · ω (t)

kp















+ kb · ω (t) (13)

Mathematical model solution

In order to be able to apply the transform of Laplace, it

is necessary to establish that ω(0) = 0. Then Eq. 13 is

transformed as follows:

L [va (t)] =
JaRa

kp

·L

[

dω (t)

dt

]

+Ra·L

[

β · ω (t)

kp

]

+L [Kb · ω (t)]

(14)

Va (s)

s
=

Ja · Ra

kp

· s ·W (s) +
Ra · β

kp

W (s) + kb ·W (s) (15)

Factoring W(s):

Va (s)

s
= W (s) ·

[

Ja · Ra

kp

· s +
Ra · β

kp

+ kb

]

(16)

By doing:

Ja · Ra

kp

= λ and
Ra · β

kp

+ kb = δ (17)

And rewriting Eq. 16 comes out:
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Va (s)

s
= W (s) · (λs + δ) (18)

Solving for W(s):

W (s) =
Va (s)

s (λs + δ)
(19)

The partial fraction method is now applied to Eq. 19.

W (s) = Va (s) ·

[

A

s
+

B

(λs + δ)

]

(20)

Va (s) ·

[

1

s (λs + δ)

]

= Va (s) ·

[

A

s
+

B

(λs + δ)

]

(21)

(

1

s (λs + δ)

)

=

(

A

s
+

B

(λs + δ)

)

(22)

1 = A (λs + δ) + B · s (23)

1 = Aλs + Aδ + B · s (24)

s · (0) + 1 = s (Aλ + B) + Aδ (25)

Then we get that:

1 = Aδ =⇒ A =
1

δ
(26)

0 = Aλ + B =⇒ B = −Aλ =⇒ B = −
λ

δ
(27)

And Eq. 20 becomes:

W (s) = Va (s) ·
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(28)

Dividing between λ numerator and denominator of the

second term of the bracket, and factoring 1/δ to bring the

expression to a known form we obtain:
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Now Laplace inverse transform is applied to return to the

time domain and obtain the Eq. 31 which is the solution of

the model in the time domain.
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va (t)

δ
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[

1
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ω (t) =
va (t)

δ

[

1 − e−
δ
λ

t
]

(31)

Table 1

Experimental data of the DC motor.

Finally, we return the replacement of δ and λ and replace

the values of Ja, Ra, kb, β, and kp supplied by the reference

article (table 1).

ω (t) =
va (t)

Ra·β

kp
+ kb
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Finally Eq. 33 is obtained, after replacing the parametric

values given in the reference article.

ω (t) = 111.99 ·
[

1 − e−1.4287t
]

(33)

Simulations

Below are graphs of torque, angular velocity, armature

current, and counter-electromotive force obtained with the

Simulink simulator. The construction was done using block

diagrams (Figs. 4, 5 and 6, Fig. 4 shows the block diagram

used in the simulation, Fig. 5 shows the block diagram for

angular velocity, and Fig. 6 shows the block diagram for

armature current) from the differential relationships obtained

by solving di(t)/dt in Eq. 4 and dω(t)/dt in Eq. 9.

Fig. 7 shows the behaviour of the angular velocity as a

function of time.

Fig. 8 shows the behavior of the armature current as a

function of time.

Fig. 9 shows the torque as a function of time.

Fig. 10 shows the counter-electromotive force as a

function of time.

Conclusions

The mathematical model of the DC motor with

independent excitation can be described by the expression:
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va (t)

Ra·β

kp
+ kb
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t
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

(34)

This equation can be easily implemented in simulation

software such as Simulink for specific values of machine
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Figure 4. Diagram of blocks and subsystems used in the simulation.

Figure 5. Angular velocity subsystem diagram.

Figure 6. Block diagram for armature current.

parameters, and derive with respect to time the behavior of

both the angular velocity and the armature current and torque

developed. It is even possible to consider more complex

situations, for example, to vary the value of the armature

resistance over time as if it were a variable resistance in

the machine, or to vary the armature voltage to analyze

the behavior of a speed control scheme. The test curves

developed for the machine matched those reported in articles

for the same machine parameters, validating the behavior of

the model.
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