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TurtleBot3 robot operation for navigation applications using ROS

Manejo del robot TurtleBot3 para aplicaciones de navegación mediante ROS
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Logo is a programming language that was born in 1967 as a tool for learning programming. Its
concept was simple, assign commands to a virtual turtle to trigger its movement. TurtleBot is
a robotics research platform with development based on this concept. However, this platform
is both hardware and software oriented and is widely accepted internationally, particularly in
SLAM (Simultaneous Localization And Mapping), navigation, and manipulation applications.
In fact, it is the standard ROS (Robot Operating System) platform. This paper aims to show
the handling and programming of this robot for navigation applications using ROS and Python.
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Logo es un lenguaje de programación que nació en 1967 como herramienta para de
aprendizaje en programación. Su concepto era simple, asignar órdenes a una tortuga virtual
a fin de provocar su movimiento. TurtleBot es una plataforma de investigación robótica con
desarrollo basado en este concepto. Sin embargo, esta plataforma está orientada tanto al
hardware como al software, y posee gran aceptación a nivel internacional, particularmente
en aplicaciones de SLAM (Simultaneous Localization And Mapping), navegación y
manipulación. De hecho, es la plataforma estándar de ROS (Robot Operating System). Este
documento pretende mostrar el manejo y programación de este robot para aplicaciones de
navegación con el uso de ROS y Python.
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Introduction

ROS (Robot Operating System) is a framework for study
and research in robotics (Lentin, 2018; Moreno & Páez,
2017). The tool was developed in 2007 by the Stanford
Artificial Intelligence Lab and is currently being developed
and maintained by the Willow Garage with support from
a broad group of institutions (Koubaa, 2020). As its
name suggests, ROS provides standard services, just as
an operating system does, related to hardware abstraction,
low-level device control, implementation of commonly-used
functionality, inter-process message passing, and package
maintenance (Quigley et al., 2009). It is designed for UNIX
systems, under BSD licensing terms, so it is widely used
in Linux distributions such as Ubuntu, Fedora, and Arch,
but it is also used in Mac OS X. The current version is
called Melodic Morenia, which was released in 2018 and is
supported until May 30, 2023.

TurtleBot is the standard ROS platform, and is the
most popular hardware in research, particularly in motion
planning strategies. The first prototype, TurtleBot1, was
developed in 2010 from the development version of iRobot’s
Roomba. The second generation, TurtleBot2, was born two
years later, in 2012 from the iClebo Kobuki platform (Hou
et al., 2020; Poza-Lujan et al., 2019). In 2017 appears the
current version, TurtleBot3, which solves the shortcomings
of the previous versions and, like the previous versions,
maintain full support with ROS (Groß, 2021).

The TurtleBot3 robot has great advantages for use
in robotics, both in specific training and research
(Al-Mashhadani et al., 2020; Fernandes et al., 2019). It
is an affordable platform, widely used in research centers
around the world, small and easy to adapt to specific needs,
programmable in MatLab and Python, and as mentioned,
fully compatible with ROS. Its small size does not sacrifice
capability and performance but allows a highly competitive
platform to be obtained with a small investment. Thanks
to its 360-degree LiDAR (Light Detection And Ranging)
sensor, this robot is a perfect choice for traditional SLAM
applications in motion planning (Aslan et al., 2021; Ratul
et al., 2021).

Work environment

Hardware overview

There are currently two versions of TurtleBot robots,
which although quite similar, have some key differences
between them. These are the Burger and Waffle models, the
differences can be summarized in Table 1.

The Waffle model is slightly faster in forwarding motion
and has a higher load capacity. However, it is much slower
in turning, much larger has an additional camera, and is also
considerably more expensive. For this reason, the research
group opted for the Burger platform from which it acquired a

couple of robots. The camera may be useful in our research,
but it can be integrated into the Burger platform at a later
date.

The most important hardware components of the
TurtleBot3 Burger robot are:

• LiDAR sensor: The robot uses a 360-degree LDS-01
LiDAR sensor. It is a laser scanner capable of
collecting distance data around the robot with a range
of 120 mm to 3,500 mm, an angular resolution of
1 degree, with a sampling rate of 1.8 kHz; and
allows USB connection for computer and UART for
embedded systems. It is located on the top of the robot.

• Raspberry Pi development board: The robot uses a
Raspberry Pi 3 Model B development board that is
located one level below the LiDAR sensor. Although
it does not have large processing power, it is key to
implement autonomous algorithms in the robot related
to machine learning and digital image processing
taking advantage of the ability to connect directly with
sensors and actuators.

• OpenCR (Open-source Control Module for ROS)
hardware control board: This board was developed
to support ROS embedded systems, and is located
one level below the Raspberry Pi board. It is
implemented around the STM32F7 microcontroller
from STMicroelectronics which has an ARM
Cortex-M7 core with floating point unit. Development
can be done with Arduino IDE and Scratch as well
as traditionally with firmware. The board contains
an inertial measurement unit (IMU) with a three-axis
accelerometer, a gyroscope and a magnetometer, and
allows connecting the Raspberry Pi to motors and
sensors.

• Additional elements. Other important elements to
consider in the robot include the motors and the
11.1 V lithium-polymer (LiPo) battery. It is a
differential platform with two independent Dynamixel
XL430-W250 motors on each wheel.

Robot Operating System (ROS)

ROS is really a meta-operating system, that is, although it
is an operating system for robotics, it runs on top of another
operating system (a UNIX system). The advantage of being
an operating system for robots is that it allows supervising
different parts of the robot (control boards, sensors, and
actuators) regardless of the programming language that each
of them uses in its implementation.

The structure of ROS is characterized by a file system in
which an executable file makes up a node. One node can
instruct a sensor to watch for a specific event, while another
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Table 1

Differences between TurtleBot robot models
Burger Waffle

Maximum translational velocity 0.22 m/s 0.26 m/s
Maximum rotational velocity 2.84 rad/s (162.72 deg/s) 1.82 rad/s (104.27 deg/s)

Maximum payload 15 kg 30 kg
Size (L ×W × H) 138 mm × 178 mm × 192 mm 281 mm × 306 mm × 141 mm

Weight 1.0 kg 1.8 kg

node can specify the movement of an actuator in response to
this specific event. The two nodes in this case communicate
with each other via message files. A message file can be
of different types: topics, services, and actions, and they
are grouped with the nodes to work together in a package
folder. When this group of nodes is executed, the ROS master
server takes on the task of messenger between the nodes,
i.e., the node first sends the message to the master, which
communicates the message to the receiving node.

Software overview

The Raspberry Pi board requires an operating system
adapted to its processor. Normally a Linux distribution is
selected because of its development advantages and low cost.
In the laboratory experiments carried out in this research,
we used Ubuntu MATE 16.04 because of the extensive
documentation, libraries, and repositories. As usual, this
distribution was modified by the research group to suit the
needs of the project.

The Raspberry Pi of each robot (and the computers
of the research group) is connected to a central wireless
access point (AP). This scheme facilitates the configuration
of the algorithm, as well as the conceptualization of the
algorithm architecture in multi-agent schemes. However,
it is not the recommended working strategy when working
with more than five robots since it presents a large latency
in the communication that hinders the behavior of the
algorithms. A change to the proposed working scheme
for future implementations of swarm algorithms is to
configure the Raspberry Pi board of each robot as an AP.
During the tests with the multi-agent algorithms, there
were connection problems due to the number of devices
connected to the router, even though only two robots were
used as maximum in the tests. Allowing the robots to have
their own AP with fixed IP decreases the network load,
avoiding communication problems. This also changes the
implementation strategy of the algorithms, which is why it
was not done at this stage of the project but is raised as a
necessity for future work.

Figure 1

Software architecture.

To reduce the processing and memory requirements of the
Raspberry Pi we removed unnecessary software included by
default in the Linux distribution (office software and some
system tools). Also, the graphical interface and libraries
for handling peripherals such as printers were removed.
ROS was installed in this tweaked version of Linux as well
as important development tools in our algorithms such as
Python and OpenCV. Although the master computer used
in this research is also a Linux machine (MX Linux 21
Wildflower 64 bits with Kernel 5.10), it is also possible to
use Windows OS servers (Fig. 1).

TurtleBot3 Burger control

The control code presented here was developed in Python
for the kinematics of the TurtleBot3 Burger robot and
assumes that ROS is installed on both the server computer
and the robot’s Raspberry Pi. Detailed information can be
found on the website of ROBOTIS, the robot’s manufacturer.

https://emanual.robotis.com/docs/en/platform/turtlebot3/

overview/

The detailed model of this robot can be found in this paper
(Lee et al., 2000).
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Figure 2

Libraries.

# ! / u s r / b i n / env p y t ho n
import r o s p y
from geometry_msgs . msg import Twis t
from nav_msgs . msg import Odometry
from math import pow , a t an2 , s q r t , s i n , cos
from t f . t r a n s f o r m a t i o n s import

e u l e r _ f r o m _ q u a t e r n i o n
import numpy as np

Code breaking down

The first block of code corresponds to the libraries used in
the node. Each node in ROS carries the

#!/usr/bin/env python

declaration at the top, this ensures that the code is executed
as a Python script. ROS messages must be imported for use
as any Python library. The first library imported is Twist
from geometry_msgs.msg, which allows controlling the
movement of the robot, for which a message is published
with two variables, the amount of rotational (angular)
movement and the amount of linear movement. The third
library corresponds to Odometry from nav_msgs.msg, this
allows to inform the position and velocity of the robot. A
set of libraries is also imported for mathematical calculations
and to convert a quaternion rotation (robot orientation) to the
corresponding Euler angles. Finally, NumPy is included for
vector and matrix handling (Fig. 2).

The next section of the code is the block corresponding to
the initialization of the ROS connections. In this block, the
nodes are asked to subscribe and to publish messages under
the corresponding topics, in our case-specific velocity and
odometry topics. Also in this section, the pose values are
reported (Fig. 3).

The next block of code defines the use of the sensor
values in the robot model to estimate the position in the
navigation environment, and then produce the movement of
the robot if it is not yet within the tolerance range of the
target point. This is the general control code of the robot, this
code can be modified so that the target point corresponds to
the estimation made by the robot itself from the location of
neighboring robots, which can be detected from the LiDAR,
as advanced in our research, or from a more complex sensor
such as a digital camera, which is proposed as the future
development of our work.

Two gains, K1 and K2 are used to adjust the robot
velocity (linear and rotational), these values can be adjusted
according to the laboratory behavior of the robot. The first
task of this section of the code is to estimate the values of

rho (distance between the robot and the target position) and
phi (error between the direction of the robot and the direction
from the origin to the target position) from the robot model.
This can be done concerning a global reference, or a local
one set with respect to the robot readings. After defining its
location, control signals are sent to the robot to reduce the
error to the target position. Finally, a message is sent when
the robot is within the tolerance region of the target point
(Fig. 4).

At the end is the Main section of the code. The objective
is to keep the robot moving until the task is completed. Here
you can include conditions or events that force the robot to
leave the target point, for example, if the grouping criterion
by QS (activation of behaviors by population size) has not
been met or if you want to activate a new behavior (Fig. 5).

Gazebo is a 3D simulator that can show the behavior
of robots according to the ROS code. To implement this
simulation with the above code can be run on the terminal:

$ roslaunch turtlebot3_gazebo
turtlebot3_empty_world.launch

The code shown is only the structure that allows to read
the sensors, estimate the position of the robot, and send the
motion signals. However, it is a complete code that can be
modified to implement the motion algorithms according to
the navigation strategy to be evaluated in the robot.

Conclusion

This article presents the most important implementation
details when developing motion planning schemes on the
TurtleBot3 Burger platform using ROS. Both the basic
information about this platform and some useful Python code
structures for its management are presented. This work was
developed during the implementation of flocking schemes
with the robot, for which the performance of algorithms
was evaluated on one or two robots, and then scaling the
behavior to dozens of agents. During these tests, several
difficulties were encountered, such as synchronization
problems, and message sending between robots and control
computer (network latency), which although not explicitly
detailed because they do not affect the performance of the
algorithm, they do raise the need to continue working on
the implementation on the platform. Leaving these elements
aside, the flocking behavior, about the strategy proposed
for its implementation in our research, is feasible from the
results, particularly with this robot, and formulates new
lines of work that include the possibility of new sensors in
the agents (digital cameras), new customized agents with
similar functionality (agents built in our laboratory), and
even study of the interaction between different populations,
with different objectives.
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Figure 3

ROS connection.

c l a s s t u r t l e b o t ( ) :
def _ _ i n i t _ _ ( s e l f ) :

# C re a t e node , p u b l i s h e r and s u b s c r i b e r
r o s p y . i n i t _ n o d e ( ’ t u r t l e b o t _ c o n t r o l l e r ’ , anonymous=True )
s e l f . v e l o c i t y _ p u b l i s h e r = r o s p y . P u b l i s h e r ( ’ / cmd_vel ’ , Twist , q u e u e _ s i z e =10)
s e l f . p o s e _ s u b s c r i b e r = r o s p y . S u b s c r i b e r ( ’ / odom ’ , Odometry , s e l f . c a l l b a c k )
s e l f . pose = Odometry ( )
s e l f . r a t e = r o s p y . Ra te ( 1 0 )

# Response v a l u e o f pose r e c e i v e d
def c a l l b a c k ( s e l f , d a t a ) :

s e l f . pose = d a t a . pose . pose . p o s i t i o n
s e l f . o r i e n t = d a t a . pose . pose . o r i e n t a t i o n
s e l f . pose . x = round ( s e l f . pose . x , 4 )
s e l f . pose . y = round ( s e l f . pose . y , 4 )
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Figure 4

Sensing, position estimation and motion.

def move2goal ( s e l f ) :
K1=0.5
K2=0.5
g o a l _ p o s e _ = Odometry ( )
g o a l _ p o s e = g o a l _ p o s e _ . pose . pose . p o s i t i o n
g o a l _ p o s e . x = input ( " S e t �x� g o a l : " )
g o a l _ p o s e . y = input ( " S e t �y� g o a l : " )
d i s t a n c e _ t o l e r a n c e = input ( " T o l e r a n c e : " )
vel_msg = Twis t ( )
r = s q r t ( pow ( ( g o a l _ p o s e . x − s e l f . pose . x ) , 2 ) +

pow ( ( g o a l _ p o s e . y − s e l f . pose . y ) , 2 ) )
whi le r >= d i s t a n c e _ t o l e r a n c e :

r = s q r t ( pow ( ( g o a l _ p o s e . x − s e l f . pose . x ) , 2 ) +

pow ( ( g o a l _ p o s e . y − s e l f . pose . y ) , 2 ) )
p s i = a t a n 2 ( g o a l _ p o s e . y − s e l f . pose . y , g o a l _ p o s e . x − s e l f . pose . x )
o r i e n t a t i o n _ l i s t = [ s e l f . o r i e n t . x , s e l f . o r i e n t . y , s e l f . o r i e n t . z ,

s e l f . o r i e n t .w]

# A d j u s t a c c o r d i n g t o n a v i g a t i o n a l g o r i t h m
( r o l l , p i t c h , yaw ) = e u l e r _ f r o m _ q u a t e r n i o n ( o r i e n t a t i o n _ l i s t )
t h e t a = yaw
p h i = t h e t a − p s i
i f p h i > np . p i :
p h i = p h i − 2* np . p i
i f p h i < −np . p i :
p h i = p h i + 2* np . p i

vel_msg . l i n e a r . x = K1* r * cos ( p h i )
vel_msg . a n g u l a r . z = −K1* s i n ( p h i )* cos ( p h i ) −(K2* p h i )

# P u b l i s h i n g i n p u t
s e l f . v e l o c i t y _ p u b l i s h e r . p u b l i s h ( vel_msg )
s e l f . r a t e . s l e e p ( )

# S t o p p i n g t h e r o b o t a f t e r t h e movement i s ove r
vel_msg . l i n e a r . x = 0
vel_msg . a n g u l a r . z =0
s e l f . v e l o c i t y _ p u b l i s h e r . p u b l i s h ( vel_msg )

Figure 5

Continuous robot navigation.

i f __name__ == ’ __main__ ’ :
x = t u r t l e b o t ( )
whi le 1 :

t r y :
x . move2goal ( )

e xc ep t :
pass
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