
Tekhnê
January - June 2022, Vol. 19, No. 1, pp. 13 – 22

© Universidad Distrital Francisco José de Caldas
ISSN 1692-8407

Docker: A tool for creating images and launching multiple containers
with ROS OS

Docker: Una herramienta para crear imágenes y lanzar múltiples contenedores con ROS OS

Fredy H. Martínez S.
Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia

fhmartinezs@udistrital.edu.co

Docker is a tool that allows to create containers with everything needed to run an application.
This feature makes it key to the process of transferring software products in different
environments, allowing code to be ported faster, with better use of resources, and more
reliably. ROS 2 (Robot Operating System 2) is an open source SDK for robotics applications
that provides hardware abstraction for control, which can benefit from the use of containers.
This article presents an introduction to Docker, creating images, launching multiple containers,
and most importantly, how it can be used in conjunction with ROS OS for robotics applications.

Keywords: Container, docker, image, robotics, ROS

Docker es una herramienta que permite crear contenedores con todo lo necesario para
ejecutar una aplicación. Esta característica la convierte en clave para los procesos de
transferencia de productos software en diferentes entornos, al permitir transferir código con
mayor rapidez, mejor uso de recursos, y de forma más confiable. ROS 2 (Robot Operating
System 2) es un SDK de código libre para aplicaciones en robótica que proporciona abstracción
del hardware para el control, que puede verse beneficiado por el uso de contenedores. En este
artículo se presenta una introducción a Docker, la creación de imágenes, el lanzamiento de
múltiples contenedores, y sobre todo, cómo se puede utilizar en conjunto con ROS OS para
aplicaciones de robótica.

Palabras clave: Contenedor, docker, imágen, robótica, ROS

Article typology: Research

Received: March 25, 2022
Accepted: May 27, 2022

Research funded by: Universidad Distrital Francisco José de Caldas (Colombia).

How to cite: Martínez, F. (2022). Docker: A tool for creating images and launching multiple containers with
ROS OS. Tekhnê, 19(1), 13 -22.

14 MARTÍNEZ

Introduction

In robotics and software development in general, you
normally need different applications to interact among them
(Baltes & Diehl, 2018). This is necessary to ensure the
smooth flow of data and information between different
systems so that they can work in tandem with one another
(Martínez, 2021). However, in many cases, certain software
requires specific conditions in the operating system and
library versions that make it complex to run on any other
machine (Martínez et al., 2018). As a result, it is
often difficult to maintain compatibility between different
applications and software programs.

The only thing that never changes in the software
development sector is change (Immaculate et al., 2019).
This implies that software is constantly changing to meet
changing demands. If automated testing does not adequately
cover a change when it occurs, something is likely to break.
As such, software developers must keep up with the changing
landscape, constantly updating and refining the software they
develop to remain competitive. To ensure this happens,
software developers must have a robust automated testing
process in place to quickly identify any changes in the
software that could cause an unexpected break.

In a computing context, "permissions" refer to the ability
of a user or system process to access and make changes to
certain files or folders on a computer (Feng et al., 2019).
When you change the permissions on a file, you are altering
what actions other users or processes can perform on that
file (Han et al., 2020). For example, you might give a
group of users read-only access to a file, meaning they can
view the contents of the file but cannot make any changes
to it. Sometimes, it is necessary to change permissions
on a file to allow certain processes to run or to restrict
access to sensitive information. However, making changes
to permissions can also have unintended consequences. If
you change the permissions on a file that is essential to
the operation of your system, it may cause problems or
errors to occur. Similarly, deleting a folder or changing a
configuration file can also cause problems. Configuration
files contain important settings and instructions that tell your
system how to operate. If you delete a configuration file or
alter it in a way that is incompatible with your system, it
could cause your system to malfunction. It is important to
be careful when making changes to the permissions, files, or
folders on your system. If you do need to make changes, it
is a good idea to test the changes in a controlled environment
before implementing them on your production system. This
will allow you to identify any potential problems and fix
them before they cause issues for your users. If something
does go wrong after you have made changes to your system,
it can be difficult to diagnose the problem. If you have only
changed a single file, it may be easier to track down the cause
of the problem. However, if you have installed, deleted, or

updated software, or changed folder permissions recursively
(meaning that the changes were applied to all subfolders and
files within a folder), it may be more challenging to identify
the root cause of the issue. In these cases, it may be necessary
to perform a thorough analysis of your system to determine
what has caused the problem and how it can be fixed.

Docker is a tool that allows developers to package
applications in containers, which are lightweight and
portable software packages that include all of the necessary
dependencies and libraries needed to run an application (Pan
et al., 2019). Using Docker can help to solve many of
the problems that can occur when running and deploying
applications. One major benefit of Docker is that it allows
you to create a consistent environment for your application to
run in. When you create a Docker image, it is a snapshot of
your application and all of its dependencies at a specific point
in time. This means that once you have created a Docker
image, it will never change. This is in contrast to traditional
application deployment methods, where it is common for
applications to be updated and modified over time. With
Docker, you can be confident that your application will
always run in the same way, regardless of any changes that
may have been made to the host operating system or other
software on the system.

Another advantage of Docker is that it makes it easy to
share applications with others (Diekmann et al., 2019). Once
you have created a Docker image, you can share it with
anyone else, and they should be able to run the application in
the same way that you do. This is because the Docker image
includes all of the necessary dependencies and libraries
needed to run the application, and these are bundled together
in a single package. This means that there is no need to worry
about configuring the environment or installing additional
software to run the application. Overall, Docker provides
a reliable and consistent way to run and deploy applications,
and it can help to avoid many of the problems that can occur
when running applications in traditional environments. By
using Docker, you can be confident that your application will
always run in the same way, no matter how many times you
try.

When you create a Docker image, you are taking a
snapshot of your application and all of its dependencies at
a specific point in time. This image serves as a template for
creating containers, which are essentially running instances
of the image. If you want to run your application in a Docker
container, you simply create a new container from the image
and start it up.

One of the key advantages of this approach is that it
allows you to be sure that you can always replicate the
same environment for your application (Moreno et al.,
2022). Because the image contains all of the necessary
dependencies and libraries, you can be confident that your
application will run in the same way every time you create

DOCKER CONTAINERS WITH ROS OS 15

a new container from the image. This means that you can
be sure that you can always replicate the same results when
you run your application, regardless of the environment or
platform you are using.

It is possible to install or update different applications
within a Docker container, but these changes will not affect
the original image. Instead, they will only be applied to
the running container (Akhilesh et al., 2021). If you want
to make changes to the original image, you will need to
create a new image with the same label as the original image,
replacing it. This allows you to easily create new versions of
your application while still preserving the original image as
a reference point.

In the software industry, it is common for companies
to use applications developed by other parties. These
applications may be off-the-shelf software products that are
widely available, or they may be custom-built applications
that have been developed specifically for the company. While
most software is developed with good intentions and is
generally reliable, there are instances where problems can
occur.

One potential problem with using software developed by
others is the risk of critical bugs or vulnerabilities. A bug is a
mistake or error in the code of an application, and it can cause
the application to behave unexpectedly or fail to function
properly. A critical bug is a bug that has the potential to
cause serious problems or disruptions. For example, a critical
bug might allow an attacker to gain unauthorized access to a
system or steal sensitive information.

Another risk of using software developed by others is the
potential for malicious or maliciously-crafted applications.
In some cases, software may be developed with the intention
of causing harm or exploiting vulnerabilities in systems. For
example, an attacker might develop a malicious application
that appears to be legitimate software, but which contains
hidden code that allows the attacker to gain access to a
system and steal sensitive information.

When you create a Docker container, you can specify
which resources on your computer the container has access
to. For example, you can specify how much memory and
CPU a container can use, as well as which files or folders
the container has access to. This allows you to control the
impact that the container has on your system, and to ensure
that it does not consume more resources than you are willing
to allocate to it.

You can also specify the permissions that a container has
when accessing resources on your system. For example,
you can make a file or folder read-only, meaning that
the container can view the contents of the file but cannot
make any changes to it. This helps to prevent accidental
or malicious modification of important resources on your
system.

Using Docker allows you to have full control over your
computer, as you can specify exactly which resources
containers have access to and what permissions they have
when accessing those resources. This can help to protect
your system from potential problems or vulnerabilities that
may arise when running containers.

Literature review

In ROS OS, the files are in XML format and are difficult
to write and understand for nontechnical users. To address
this problem (Narayanamoorthy et al., 2015) propose a visual
programming software tool that helps in the creation and
visualization of these ROS launch files. (Naik, 2016a)
present the simulation of building a virtual system of systems
(SoS) for the distributed software development process on
multiple clouds. (Naik, 2016b) present the simulation
and evaluation of the development of a distributed system
using virtualization and dockerization. (Kelley et al., 2016)
propose a quantum network security framework for the
cloud. They also decrease the overall security, as each
included component-necessary or not-may bring in security
issues of its own, and there is no isolation between multiple
applications packaged within the same container image.
(Rastogi et al., 2017) propose algorithms and a tool called
Cimplifier, which address these concerns: given a container
and simple user-defined constraints, the tool partitions it
into simpler containers, which (i) are isolated from each
other, only communicating as necessary, and (ii) only include
enough resources to perform their functionality. Recent
massive data projects have revealed several bottlenecks
for projects with >100,000 assessors (i.e., data processing
pipelines in XNAT). In order to address these concerns
(Damon et al., 2017) develop a new API, which exposes a
direct connection to the database rather than REST API calls
to accomplish the generation of assessors. The live migration
may cause significant delays when the applications running
inside a container modify large amounts of memory faster
than a container can be transferred over the network to a
remote host. (Stoyanov & Kollingbaum, 2018) propose a
novel approach for live migration of containers to address
this issue by utilizing a recently published CRIU feature,
the so-called “image cache/proxy”. To reduce the barrier
for newcomers and to prevent deprecation of aging software
(East et al., 2019) create the NMRdock container. Other
influential work includes (Chouhan et al., 2021; Trapti Gupta
and Abhishek Dwivedi, 2017).

Docker Images

Docker is a software tool that simplifies software’s
building, running, managing, and distributing. It works by
virtualizing a computer’s operating system, on which the
software is installed and executed. In this sense, Docker
works as a box in which it can install an application under

16 MARTÍNEZ

specific operating system conditions and keep it running
in isolation from the rest of the existing software on the
machine. In principle, each software is isolated in its box
or container and therefore does not interfere with other
existing software, which generally happens on a personal
computer. This occurs easily when working in an application
development environment and when desired to guarantee that
the application under development will run the same way in
any other machine (everything always works the same inside
the box, which can be inside a robot).

The first step is to install Docker on the local machine
or host. For Linux Mint, Ubuntu, MX Linux and other
Debian derivatives, in a terminal window run one by one the
following commands:

sudo apt update
sudo apt install docker.io docker-compose

And then the Docker service is started:

sudo service docker start

At this point it is possible to use Docker commands. To be
able to use the docker command from any user and without
the need of the sudo command, it is necessary to add it to the
docker group:

sudo usermod -aG docker $USER
newgrp docker

Docker can also be installed natively on Windows 10
onwards (for Windows 7 and 8 it is necessary to use
Virtualbox). In the case of not having virtualization enabled,
Docker will detect this feature in the installation process and
will ask to install it automatically. To check it, you can use
the Task Manager. Docker Desktop for Windows can be
downloaded from this link:

https://docs.docker.com/desktop/install/windows-install/
Download and double click on the file to install. When

finished Docker runs automatically.
The next step will always be to ensure that there is no ROS

publisher or subscriber running by previous jobs. These can
be stopped with the key combination CTRL + C on each
of the terminals. The box where the software is isolated for
execution is called Docker Image. Pulling a Docker image
means downloading a Docker image to a local location (our
computer, for example) from some repository. For example,
let’s pull a Docker image that contains ROS Foxy, in a
terminal type:

docker pull ros:foxy-ros-base

This command produces in the terminal a response similar
to the one shown in Fig. 1, which indicates that the image
is pulling a Docker image that contains Docker ROS Foxy

installed (note the Status line at the end). The docker pull
command is used to pull an image from a registry. Now,
what if we want to work with ROS Noetic? In this case, to
work with this other Distro, we simply download the desired
image, which can be done with the following command:

docker pull ros:noetic-ros-core

Note that both are done with a simple command, and in
neither case was it necessary to install them on the computer.
To determine which Docker images are available, check with
the following command:

docker images

Additional help for the docker pull command can be
obtained as follows:

docker pull --help

This help provides the general structure for the command
(as for any other). Therefore, the commands used before
referenced an image named ros that has a tag named
foxy-ros-base (or noetic-ros-core). Because of our
approach ros was used, but in general any Linux distro can
be used, for example Ubuntu 20.04:

docker pull ubuntu:20.04

Thus, a third image is now available. Images downloaded
and available on the local machine can be run with the
docker run command, which must be fed with the image
name. When a ROS image is executed, it becomes available
for use.

docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

As an example, let’s run one of the downloaded and
available images:

docker run -it --name my_ros ros:foxy-ros-base bash

This command uses some run options, -it indicates to
run on an interactive terminal inside the container, –name
assigns a name to the container where the image will be
executed, and the bash option indicates to run on a terminal.

The container with the image can be seen as a normal
computer as well as the local machine where it runs. There
it can run pretty much all the commands you run on our
own computer (host), but everything is still isolated from
the host. It should be able to create own ros2 workspaces,
and put code there, and that would not affect the files on the
host. You should be able to create your ros2 workspaces and
put code there, which would not affect your files. For this,

https://docs.docker.com/desktop/install/windows-install/

DOCKER CONTAINERS WITH ROS OS 17

Figure 1

Pulling a Docker image.

inside the container we will create the folder /home/user,
with a folder inside it called ros2_test that will become
our workspace. At the end we compile. The following
commands do these tasks.

mkdir -pv /home/user/ros2_test/src
cd /home/user/ros2_test
source /opt/ros/foxy/setup.bash
colcon build

As it is obvious, it is possible to run multiple containers on
the same local machine, the running containers can be listed
as follows in the terminal (from outside of them, of course,
for example on another terminal):

docker ps

If the containers have not been stopped, the container
information will be displayed detailing the image used, the
total execution time, its status, and the name assigned when
it was executed (my_ros in our case). To exit a container,
use the key combination CTRL+D. When a container is
terminated, its activity will no longer be logged with the
docker ps command. However, an error will appear if
you try to rerun it with the same name, indicating that it
already exists and is in use. This is because the container was
stopped, but the process still exists, so it would be necessary
to kill it. To see all the containers independent of their status,
the following command is used:

docker ps -a

The following command is used to remove a container
from memory:

docker rm my_ros

For a complete list of available commands use the
command:

docker --help

The docker images we pulled previously came from
https://hub.docker.com/. Docker Hub is a service provided
by Docker for finding and sharing container images
(cloud-based registry). If there is a popular software you
like, it is very likely that you will find its docker image on
Docker Hub. How to create your own Docker image, and
how to make it publicly available, will be detailed later.

Docker Network and Docker Compose

One important aspect of running applications in
containers is networking. Docker provides several options
for connecting containers and to the outside world. In this
article, we’ll explain the basics of Docker networking and
how to use Docker Compose to easily launch multi-container
applications.

Docker networking basics

In Docker, a network is a group of interconnected
containers. By default, each container in Docker is given
its own network stack, with its own IP address. This allows
containers to communicate with each other and the outside
world, as long as they are on the same network. Several
different types of networks can be created in Docker:

• bridge: This is the default network type in Docker.
It creates a private network for containers, which is
isolated from the host and other networks. Containers
on the same bridge network can communicate with
each other using their IP addresses.

• host: This network type bypasses the network
isolation provided by the Docker daemon, and instead
uses the host’s networking stack. Containers on the
host network can communicate with each other and the
host using their IP addresses.

• none: This network type disables networking for a
container.

https://hub.docker.com/

18 MARTÍNEZ

• overlay: This network type enables containers
to communicate across multiple Docker daemons,
allowing containers to span multiple hosts.

In addition to these network types, Docker also provides
some additional networking features, such as aliases,
links, and networks.

Launching multi-Container applications with Docker
Compose

While it’s possible to launch multi-container applications
using the docker run command, it can be cumbersome to
specify all of the necessary configuration in the command
line. That’s where Docker Compose comes in.

Docker Compose is a tool for defining and running
multi-container Docker applications. It allows you to use
a YAML file to specify the details of your application’s
containers, networks, and volumes. Then, with a single
command, you can create and start all of the containers
specified in the Compose file.

A simple example of a Docker Compose file is as follows:

version: ’3’
services:
web:
build: .
ports:
- "8000:8000"

volumes:
- .:/code

redis:
image: redis:alpine

This Compose file defines a single service, web, which
is built from the current directory and exposes port 8000.
It also defines a redis service, which is run from the
redis:alpine image.

To launch the containers defined in this Compose file,
you can use the docker-compose up command. This will
build the web service if necessary, and start both the web and
redis containers.

You can also use Compose to run commands in your
containers. For example, to run a command in the
web container, you can use the docker-compose run
command:

docker-compose run web python manage.py migrate

This will start the web container if it’s not already running,
and then run the python manage.py migrate command
inside the container.

Understanding Docker Compose

To understand Docker Compose, it’s important to
understand the key concepts it uses:

• Services: A service is a container that is running as
part of a multi-container application. Each service
is defined in the Compose file with a unique name
and can be configured with various options, such as
the image to use, port mappings, and environment
variables.

• Networks: In Docker Compose, you can create custom
networks for your services to connect to. This allows
you to specify which services can communicate with
each other, and how they can communicate.

• Volumes: Volumes are persistent storage for your
containers. You can use volumes to share data between
containers, or to persist data outside of a single
container’s lifecycle.

• Compose file: The Compose file is a YAML file that
defines the details of your multi-container application,
including the services, networks, and volumes.

With these concepts in mind, let’s take a closer look at
the structure of a Docker Compose file. The top-level keys
in a Compose file are version, services, networks, and
volumes.

• version specifies the version of the Compose file
format. This is used to ensure that the file is
compatible with the version of Docker Compose you
are using.

• services defines the containers that make up your
application. Each service is given a unique name
and can be configured with various options, such as
the image to use, port mappings, and environment
variables.

• networks allows you to create custom networks for
your services to connect to. You can specify which
services should be connected to which networks, and
configure the network’s driver and other options.

• volumes allows you to define named volumes that can
be shared between containers, or used to persist data
outside of a single container’s lifecycle.

Here’s an example of a more complete Docker Compose
file that includes all of these top-level keys:

version: ’3’
services:
web:
build: .
ports:
- "8000:8000"

volumes:
- .:/code
- logvolume:/var/log

redis:
image: redis:alpine

DOCKER CONTAINERS WITH ROS OS 19

volumes:
- redis-data:/data

networks:
default:
driver: bridge

volumes:
logvolume:
redis-data:

This Compose file defines a web service that is built from
the current directory and exposes port 8000, and a redis
service that is run from the redis:alpine image. It also
defines two named volumes, logvolume and redis-data,
which are used to persist data for the web and redis services
respectively. Finally, it creates a default network using the
bridge driver and connects the web and redis services to
it.

With this Compose file, you can use the docker-compose
up command to launch all of the containers in your
multi-container application. You can also use the
docker-compose run command to execute commands in
your containers, or the docker-compose down command
to stop and remove the containers. Docker Compose is a
powerful tool for developing and deploying multi-container
applications. By using a Compose file, you can easily launch
and manage your containers with a single command.

Docker with ROS

Now let’s look at a demonstration of how to use ROS with
Docker. In a terminal (we’ll call it terminal window 1) we
first download and run ROS Noetic:

docker pull ros:noetic-ros-core

Then we execute, in the same terminal 1, roscore (Fig. 2):

docker run -it ros:noetic-ros-core roscore

In the previous command we did not specify a name for
the container, so Docker will assign one to it. And now, let’s
try to access from another terminal (new terminal window,
which we will call terminal 2) to the bash of the container,
and run the rostopic list command there:

docker run -it ros:noetic-ros-core bash

And then the command:

rostopic list

However this produces an error, indicating that
communication is impossible, this indicates that each
terminal is running in a different container (you can verify
in another terminal that each container has a different name,
but both use the same image), and it is not possible for them
to communicate with each other. They could communicate

if the containers share the same network as the host. To do
this, let’s start again by exiting the two containers loaded
with ROS Noetic (press CTRL+C in terminal 1, and CTRL+D
in the terminal 2 window), and then run the following in
terminal 1:

docker run -it --net=host ros:noetic-ros-core roscore

And similarly in terminal 2:

docker run -it --net=host ros:noetic-ros-core bash

And then the command:

rostopic list

This time it does produce the expected response (see the
topics, Fig. 3).

Now, let’s start a publisher node in ROS2. In terminal 1
we press the CTRL+C keys and then type:

docker run -it ros:foxy-ros-base bash

And then, in the same terminal 1, we will publish a topic:

ros2 topic pub /test std_msgs/msg/String "data: Hello there!"

This makes that in the terminal this publication is seen
in a cyclical way. Now in the terminal 2 we press the keys
CTRL+D and we access in a new container:

docker run -it ros:foxy-ros-base bash

And there we listen with the following command (Fig. 4):

ros2 topic list

In fact, in terminal 2 we can subscribe to the topic that is
being published, and listen to it cyclically:

ros2 topic echo /test

To stop and terminate the two containers, press the key
combination CTRL+C and CTRL+D on terminals 1 and 2. The
containers can be removed with the docker rm command.

Project Example

This is an example of how to use Docker with the Robot
Operating System (ROS). This example assumes that Docker
is already installed on the system.

1. Create a directory for your ROS application. This will
be the base directory for your Docker project.

20 MARTÍNEZ

Figure 2

Roscore launching.

Figure 3

Topics listened through the host network.

Figure 4

Topics listened in ROS2.

2. Create a file called Dockerfile in the base directory.
This file will contain the instructions for building your
Docker image.

3. In the Dockerfile, specify the base image that you
want to use for your ROS application. There are
several official ROS images available on Docker Hub,
including ros, ros-core, and ros-base. For this
example, we will use the ros-core image, which
includes ROS, the rosconsole and rospy libraries, and
other core ROS packages.

4. In the Dockerfile, copy the necessary files for your
ROS application into the image. For example, you
might copy your ROS nodes and launch files into the
/ros_ws/src directory in the image.

5. In the Dockerfile, install any additional
dependencies that your ROS application requires.
For example, you might install additional ROS
packages using the ROS_PACKAGE_PATH environment
variable.

6. In the Dockerfile, specify the command to run when
the container is launched. For example, you might
specify a command to run a launch file for your ROS
application.

7. Build the Docker image using the docker build
command. For example:

docker build -t my_ros_app .

8. Run the Docker container using the docker run
command. For example:

docker run --rm -it my_ros_app

This will launch the container and run the command
specified in the Dockerfile.

Alternatively, you can use Docker Compose to launch
multiple containers for a single ROS application. To do this,

DOCKER CONTAINERS WITH ROS OS 21

you will need to create a docker-compose.yml file in the
base directory of your project. This file will specify the
different containers and their configurations, as well as any
networks and volumes that they should be connected to.

Here is an example docker-compose.yml file for a ROS
application:

version: ’3’
services:
ros_master:
image: ros:melodic-ros-core
hostname: ros_master
networks:
- ros_network

ros_node:
image: my_ros_app
hostname: ros_node
networks:
- ros_network

environment:
- ROS_MASTER_URI=http://ros_master:11311
- ROS_HOSTNAME=ros_node

networks:
ros_network:
driver: bridge

This Compose file defines two services, ros_master and
ros_node, which are connected to a custom ros_network
using the bridge driver. The ros_master service is based
on the ros:melodic-ros-core image and is given the
hostname ros_master. The ros_node service is based
on the my_ros_app image that we built earlier and is
given the hostname ros_node. The ros_node service
also specifies the ROS_MASTER_URI and ROS_HOSTNAME
environment variables, which are used to configure the
ROS network. The ROS_MASTER_URI variable specifies
the URL of the ROS master node, which is running on
the ros_master container. The ROS_HOSTNAME variable
specifies the hostname of the ros_node container.

To launch the containers defined in this Compose file, you
can use the docker-compose up command:

docker-compose up

This will start the ros_master and ros_node containers
and connect them to the ros_network. The ros_master
container will function as the ROS master node, and the
ros_node container will function as a ROS node that is
connected to the master node.

You can also use the docker-compose run command to
execute commands in the ros_node container. For example,
to run a ROS node in the ros_node container, you can use
the following command:

docker-compose run ros_node rosrun my_ros_package my_ros_node

This will start the ros_node container if it’s not already
running, and then run the rosrun my_ros_package
my_ros_node command inside the container.

Conclusion

Docker is a powerful tool for running and managing
applications in containers. Containers allow developers to
package up an application with all of its dependencies and
ship it as a single package, making it easier to deploy and
manage applications in different environments.

One important aspect of running applications in
containers is networking. Docker provides several options
for connecting containers and to the outside world, including
bridge, host, and overlay networks.

Docker Compose is a tool for defining and running
multi-container Docker applications. It allows developers to
use a YAML file to specify the details of their application’s
containers, networks, and volumes, and then launch all of the
containers with a single command.

In the field of robotics, Docker and Docker Compose
can be especially useful for developing and deploying
applications on the Robot Operating System (ROS). ROS
is a powerful open-source framework for building robot
applications, but it can be challenging to install and manage
all of the necessary dependencies. By using Docker and
Docker Compose, developers can package up their ROS
applications and all of their dependencies into a single
container, making it easier to deploy and manage their
applications on different platforms.

Additionally, Docker Compose can be used to launch
multiple containers for a single ROS application, making it
easier to manage the different components of the application.
For example, a ROS application might consist of a main
control node, a sensor node, and a visualization node, each of
which can be run in its container. By using Docker Compose,
these containers can be launched and managed with a single
command.

Overall, Docker and Docker Compose are powerful tools
for developing and deploying applications, including those
built with ROS. By using these tools, developers can package
up their applications and dependencies into containers,
making it easier to deploy and manage their applications on
different platforms.

References

Akhilesh, N. S., Aniruddha, M. N., Ghosh, A., & Sindhu, K.
(2021). A system to create automated development
environments using docker. In Innovations in
computer science and engineering (pp. 555–563).
Springer Singapore. https://doi.org/10.1007/978-
981-33-4543-0_59

Baltes, S., & Diehl, S. (2018). Towards a theory of software
development expertise. arXiv, 1–14. https://doi.org/
10.1145/3236024.3236061

https://doi.org/10.1007/978-981-33-4543-0_59
https://doi.org/10.1007/978-981-33-4543-0_59
https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1145/3236024.3236061

22 MARTÍNEZ

Chouhan, D., Gautam, N., Purohit, G., & Bhdada, R.
(2021). Implementation of docker for mobile
edge computing embedded platform. WEENTECH
Proceedings in Energy, 440–454. https : / /doi .org /
10.32438/wpe.402021

Damon, S. M., Boyd, B. D., Plassard, A. J., Taylor, W., &
Landman, B. A. (2017). DAX - the next generation:
Towards one million processes on commodity
hardware. In T. S. Cook & J. Zhang (Eds.), Medical
imaging 2017: Imaging informatics for healthcare,
research, and applications. SPIE. https: / /doi.org /
10.1117/12.2254371

Diekmann, C., Naab, J., Korsten, A., & Carle, G. (2019).
Agile network access control in the container
age. IEEE Transactions on Network and Service
Management (2018), 1–14. https://doi.org/10.1109/
TNSM.2018.2889009

East, K. W., Leith, A., Ragavendran, A., Delaglio, F., & Lisi,
G. P. (2019). NMRdock: Lightweight and modular
NMR processing. Biorxiv. https://doi.org/10.1101/
679688

Feng, Y., Chen, L., Zheng, A., Gao, C., & Zheng, Z. (2019).
AC-net: Assessing the consistency of description
and permission in android apps. IEEE Access,
7(2019), 57829–57842. https : / /doi .org /10.1109 /
access.2019.2912210

Han, Z., Li, X., Xu, G., Xiong, N., Merlo, E., & Stroulia, E.
(2020). An effective evolutionary analysis scheme
for industrial software access control models.
IEEE Transactions on Industrial Informatics, 16(2),
1024–1034. https : / / doi . org / 10 . 1109 / tii . 2019 .
2925422

Immaculate, S., Begam, M., & Floramary, M. (2019).
Software bug prediction using supervised machine
learning algorithms. 2019 International Conference
on Data Science and Communication (IconDSC).
https://doi.org/10.1109/icondsc.2019.8816965

Kelley, B., Prevost, J. J., Rad, P., & Fatima, A.
(2016). Securing cloud containers using quantum
networking channels. 2016 IEEE International
Conference on Smart Cloud (SmartCloud). https :
//doi.org/10.1109/smartcloud.2016.58

Martínez, F. (2021). Turtlebot3 robot operation for
navigation applications using ROS. Tekhnê, 18(2),
19–24.

Martínez, F., Rendón, A., & Arbulú, M. (2018). An algorithm
based on the bacterial swarm and its application
in autonomous navigation problems. In Lecture

notes in computer science (pp. 304–313). Springer
International Publishing. https://doi.org/10.1007/
978-3-319-93815-8_30

Moreno, A., Páez, D., & Martínez, F. (2022). An
E2ED-based approach to custom robot navigation
and localization. International Journal of Advanced
Computer Science and Applications (IJACSA),
13(6), 910–916.

Naik, N. (2016a). Building a virtual system of systems
using docker swarm in multiple clouds. 2016 IEEE
International Symposium on Systems Engineering
(ISSE). https : / / doi . org / 10 . 1109 / syseng . 2016 .
7753148

Naik, N. (2016b). Migrating from virtualization to
dockerization in the cloud: Simulation and
evaluation of distributed systems. 2016 IEEE 10th
International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based
Environments (MESOCA). https://doi.org/10.1109/
mesoca.2016.9

Narayanamoorthy, A., Li, R., & Huang, Z. (2015). Creating
ROS launch files using a visual programming
interface. 2015 IEEE 7th International Conference
on Cybernetics and Intelligent Systems (CIS) and
IEEE Conference on Robotics, Automation and
Mechatronics (RAM). https://doi.org/10.1109/iccis.
2015.7274563

Pan, Y., Chen, I., Brasileiro, F., Jayaputera, G., &
Sinnott, R. (2019). A performance comparison
of cloud-based container orchestration tools. 2019
IEEE International Conference on Big Knowledge
(ICBK). https://doi.org/10.1109/icbk.2019.00033

Rastogi, V., Davidson, D., Carli, L. D., Jha, S., & McDaniel,
P. (2017). Cimplifier: Automatically debloating
containers. Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering.
https://doi.org/10.1145/3106237.3106271

Stoyanov, R., & Kollingbaum, M. J. (2018). Efficient
live migration of linux containers. In Lecture
notes in computer science (pp. 184–193). Springer
International Publishing. https://doi.org/10.1007/
978-3-030-02465-9_13

Trapti Gupta and Abhishek Dwivedi. (2017). Data storage
& load balancing in cloud computing using
container clustering. International Journal Of
Engineering Sciences And Research Technology,
6(9), 656–666. https://doi.org/10.5281/ZENODO.
996046

22

https://doi.org/10.32438/wpe.402021
https://doi.org/10.32438/wpe.402021
https://doi.org/10.1117/12.2254371
https://doi.org/10.1117/12.2254371
https://doi.org/10.1109/TNSM.2018.2889009
https://doi.org/10.1109/TNSM.2018.2889009
https://doi.org/10.1101/679688
https://doi.org/10.1101/679688
https://doi.org/10.1109/access.2019.2912210
https://doi.org/10.1109/access.2019.2912210
https://doi.org/10.1109/tii.2019.2925422
https://doi.org/10.1109/tii.2019.2925422
https://doi.org/10.1109/icondsc.2019.8816965
https://doi.org/10.1109/smartcloud.2016.58
https://doi.org/10.1109/smartcloud.2016.58
https://doi.org/10.1007/978-3-319-93815-8_30
https://doi.org/10.1007/978-3-319-93815-8_30
https://doi.org/10.1109/syseng.2016.7753148
https://doi.org/10.1109/syseng.2016.7753148
https://doi.org/10.1109/mesoca.2016.9
https://doi.org/10.1109/mesoca.2016.9
https://doi.org/10.1109/iccis.2015.7274563
https://doi.org/10.1109/iccis.2015.7274563
https://doi.org/10.1109/icbk.2019.00033
https://doi.org/10.1145/3106237.3106271
https://doi.org/10.1007/978-3-030-02465-9_13
https://doi.org/10.1007/978-3-030-02465-9_13
https://doi.org/10.5281/ZENODO.996046
https://doi.org/10.5281/ZENODO.996046

	Introduction
	Literature review
	Docker Images
	Docker Network and Docker Compose
	Docker networking basics
	Launching multi-Container applications with Docker Compose
	Understanding Docker Compose

	Docker with ROS
	Project Example
	Conclusion

