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Resumen: La estimación precisa de la potencia de salida de inversores solares es esencial para 

optimizar la operación de sistemas de generación fotovoltaica. Sin embargo, los modelos 

tradicionales no consideran efectos operativos como el clipping (que ocurre cuando la potencia 

generada excede la capacidad nominal del inversor), lo que conduce a desviaciones en la 

estimación. Este estudio propone un enfoque de modelado que incorpora este efecto y emplea 

datos experimentales adquiridos cada 20 segundos de una instalación solar de 20 kW. Se utilizó 

un modelo de regresión lineal múltiple, considerando etapas de limpieza de datos y segmentación 

temporal. Los resultados muestran una mejora significativa en la precisión del modelo, 

especialmente al dividir los datos en periodos de mañana y tarde. Este trabajo sienta las bases 

para desarrollar aplicaciones futuras como el mantenimiento predictivo mediante la 

implementación de un gemelo digital de la instalación. 
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Abstract: Accurate estimation of the output power of solar inverters is essential to optimize the 

operation of photovoltaic generation systems. However, traditional models do not account for 

operational effects such as clipping—occurring when the generated power exceeds the inverter’s 

nominal capacity—nor the voltage constraints imposed by the MPPT algorithm, leading to 

deviations in estimation. This study proposes a modeling approach that incorporates both effects 

and uses experimental data acquired every 20 seconds from a 20 kW solar installation. A multiple 

linear regression model was employed, including data cleaning and temporal segmentation steps. 

The results show a significant improvement in model accuracy, particularly when splitting the 

data into morning and afternoon periods. This work lays the groundwork for future applications 

such as predictive maintenance through the implementation of a digital twin of the installation. 

Keywords: Photovoltaic systems, power estimation, clipping, MPPT, multiple linear 

regression, physical modeling, data cleaning, temporal segmentation, solar energy, operational 

efficiency. 

 

1. Introducción 

La generación de energía fotovoltaica ha experimentado un crecimiento significativo en las 

últimas décadas, consolidándose como una tecnología clave para sistemas energéticos sostenibles 

[1]. Este auge ha sido impulsado por la necesidad de reducir las emisiones de gases de efecto 

invernadero y la dependencia de combustibles fósiles. Además, los avances en materiales, 

eficiencia de conversión y reducción de costos han fortalecido su adopción global. En particular, 

se proyecta que la energía solar se convierta en la fuente de energía dominante en el futuro 



 

 

cercano, respaldada por políticas energéticas favorables y metas de descarbonización a nivel 

mundial [2]. 

A pesar de su rápida expansión, uno de los desafíos fundamentales en el desarrollo y operación 

de sistemas fotovoltaicos es la capacidad de estimar con precisión la potencia eléctrica generada 

bajo condiciones ambientales reales [3]. Esta estimación es esencial para la integración eficiente 

de estos sistemas en la red eléctrica y para la planificación de recursos energéticos. La falta de 

precisión puede conllevar pérdidas económicas, decisiones subóptimas de dimensionamiento o 

una mala evaluación del estado de funcionamiento del sistema. 

Esta estimación es crítica para la planificación energética y la maximización del rendimiento del 

sistema. Sin embargo, los modelos tradicionales a menudo simplifican o ignoran fenómenos 

operativos clave, como el clipping del inversor (cuando la potencia generada excede su capacidad 

nominal) y las dinámicas del algoritmo de seguimiento del punto de máxima potencia (MPPT) 

[4,5]. 

A lo largo de los años, los modelos fotovoltaicos han evolucionado desde representaciones 

simplificadas como el modelo de un solo diodo [6], hasta modelos más complejos como el de 

dos diodos, capaces de capturar con mayor fidelidad fenómenos como la recombinación interna, 

especialmente bajo condiciones de baja irradiancia y altas temperaturas [8]. También se han 

propuesto enfoques computacionalmente eficientes que permiten simular grandes sistemas, 

utilizando relaciones analíticas entre los parámetros eléctricos y ambientales [7,8]. En cuanto al 

modelado del inversor, se han desarrollado esquemas basados en regresión lineal y arquitecturas 

de conversión en dos etapas (DC/DC y DC/AC), que consideran funciones específicas de control 

[9]. No obstante, estos trabajos, aunque valiosos, no consideran restricciones operativas críticas 

como el clipping del inversor ni las dinámicas del MPPT, ambos determinantes para la eficiencia 

global del sistema. 

 



 

 

Estudios recientes han abordado por separado estos fenómenos. En [4], se cuantifican las 

pérdidas energéticas causadas por clipping, destacando su impacto en instalaciones con 

sobredimensionamiento del campo solar, y [5] muestra cómo el uso de datos de alta resolución 

mejora la estimación de estas pérdidas. Por otro lado, investigaciones como [10] han desarrollado 

algoritmos de MPPT basados en modelos físicos detallados para mejorar su precisión, y en [11] 

se proponen enfoques híbridos que combinan técnicas de control avanzado con modelado 

predictivo. Sin embargo, aún no se ha propuesto un modelo matemático unificado que integre de 

forma explícita tanto el efecto del clipping como las restricciones dinámicas del MPPT. Esta 

investigación propone precisamente ese enfoque, permitiendo una estimación más realista y 

precisa de la potencia entregada por el inversor bajo condiciones reales de operación. Esta 

integración representa el principal aporte y novedad de este trabajo. 

Este artículo se estructura de la siguiente manera: la sección 2 describe los materiales y métodos, 

incluyendo el preprocesamiento de datos y la metodología de modelado; la sección 3 presenta 

los resultados obtenidos y su análisis comparativo; la sección 4 discute los hallazgos y sus 

implicaciones; la sección 5 expone las conclusiones y propuestas para trabajo futuro. 

 

2. Materiales y Métodos 

El modelado del inversor tiene como variables de entrada la irradiancia, medida en 

vatios por metro cuadrado (W/m²) y la temperatura, registrada en grados Celsius (°C) y 

como salida, la potencia generada por el inversor, en (W). No obstante, es necesario considerar 

ciertas condiciones que pueden afectar la calidad de los datos, como la inclinación 

del sistema fotovoltaico, las limitaciones de potencia impuestas por el inversor, errores de 

captura, y eventos de desconexión momentánea provocados por el inversor para verificar 

el estado de los paneles solares. La forma de abordar el modelamiento de este sistema es 



 

 

utilizando regresiones lineales considerando los fenómenos físicos que presentan los inversores. 

El procedimiento que se realiza para el modelado se describe en seis etapas: 

• Visualización de datos para análisis del sistema. 

• Eliminación de datos por recorte de potencia. 

• Eliminación de datos por funcionamiento del inversor. 

• Eliminación de datos atípicos. 

• Segmentación de datos por tiempo. 

• Desarrollo del modelo por regresión lineal. 

 

2.1. Visualización de datos para análisis del sistema 

La visualización de datos es el primer paso para modelar usando regresión lineal. La literatura 

describe una relación entre potencia, irradiancia y temperatura, y el primer paso es ver 

visualmente el comportamiento entre las variables. 

Estos datos particulares se ilustran en la figura 1 dentro de los recuadros rojos, así entonces es 

posible identificar esas anomalías y patrones que justifican la necesidad de una depuración 

cuidadosa de los datos antes de su utilización en el proceso de modelado. 

 

 Figura 1. Muestreo de datos atípicos del día 14-04-2025. 

Fuente: Elaboración propia. 



 

 

Dado que estos fenómenos introducen sesgos en los registros, es esencial su identificación y 

eliminación para asegurar la integridad de los datos y optimizar el desempeño del modelo. 

 

2.2. Eliminación de datos por recorte de potencia 

Los inversores de sistemas solares fotovoltaicos están programados con una función de recorte 

de potencia para evitar que la potencia de salida exceda su capacidad nominal. Este fenómeno 

ocurre cuando la potencia del arreglo fotovoltaico ha sido sobredimensionada respecto a la 

potencia de salida del inversor. Esta práctica es común para optimizar el aprovechamiento del 

espacio y maximizar la generación energética durante las horas de mayor irradiancia [12]. En 

este trabajo se utiliza un inversor de una potencia máxima nominal de 10 kW, por lo que realiza 

clipping o recorte cuando la potencia disponible en paneles por irradiancia es mayor que la 

potencia que puede entregar le inversor. En la figura 2 se evidencia el efecto del clipping del 

inversor mostrando, dentro del recuadro rojo, que la potencia máxima es de 10 kW aunque la 

irradiancia siga aumentando. 

 

 

 Figura 2. Efecto del clipping en los datos del día 13-02-2025. 

Fuente: Elaboración propia. 

 



 

 

En los sistemas solares generalmente se sobredimensiona la potencia de entrada respecto a la 

salida para aprovechar más la energía irradiada por el sol, considerando que la potencia máxima 

entregada por el sol ocurre solamente una vez al día durante poco tiempo. Cuando se presenta 

este fenómeno, los datos de potencia dejan de mantener una correlación lineal con la irradiancia 

y temperatura, ya que interviene la limitación impuesta por el inversor. Por ello, al modelar la 

potencia estimada en función de la irradiancia, es necesario restringir el valor máximo a la 

potencia nominal del inversor (10 kW), de modo que el modelo no arroje estimaciones superiores 

a lo que realmente puede entregar el sistema. 

 

2.3. Eliminación de datos por pruebas automáticas de detección de arco en el inversor 

En sistemas fotovoltaicos conectados a inversores modernos, es común la incorporación de 

mecanismos de protección avanzados como el AFCI (Arc Fault Circuit Interrupter). Este sistema 

tiene como propósito identificar la presencia de fallas por arco eléctrico en el lado de corriente 

continua (DC), las cuales pueden representar un riesgo de incendio o deterioro del sistema. La 

detección se basa en el análisis de perturbaciones de alta frecuencia en las curvas de corriente y 

voltaje, mediante algoritmos electrónicos embebidos en el inversor [13]. 

En el caso específico del inversor Fronius Symo 10.0-3-M, cuando se detecta un posible arco 

voltaico, el equipo interrumpe automáticamente la entrega de potencia a la red, llevando el 

sistema a condiciones de potencia generada igual a cero, incluso si la irradiancia es suficiente 

para la generación. Este fenómeno puede durar varios minutos mientras se verifica el estado del 

sistema o se restablece automáticamente la operación. 



 

 

 

 Figura 3. Efecto de la función de protección AFCI del día 23-05-2025. 

Fuente: Elaboración propia. 

 

El mecanismo de protección AFCI al reflejarse en los registros como datos de generación nula 

sin causas meteorológicas o de sombreado justificables, fueron considerados como datos atípicos 

dentro del análisis. Por tanto, se eliminaron del conjunto de entrenamiento y validación del 

modelo predictivo para evitar distorsiones en el desempeño del modelo. 

 

2.4. Eliminación de datos atípicos 

Durante la adquisición de datos, además de los fenómenos físicos conocidos que pueden afectar 

las mediciones, pueden ocurrir fallos en el registro que generan datos atípicos evidentes. Estos 

valores anómalos pueden deberse a errores de medición, registros incompletos, condiciones 

climáticas inusuales como la presencia repentina de nubes, la medida errónea durante el recorte 

de potencia o respuestas no esperadas del sistema fotovoltaico. 

La presencia de estos datos altera los resultados del análisis y afecta el desempeño de los modelos 

predictivos, por lo que su identificación y eliminación es necesaria. Para este estudio, se aplicó 

el método del rango intercuartílico (IQR) sobre la relación Fronius/Irradiancia, con el objetivo 

de detectar valores atípicos. Se utilizó un factor de 1.5 para establecer los límites inferior y 



 

 

superior aceptables, eliminando aquellos datos que se encontraban fuera de este rango. Este 

enfoque estadístico permitió limpiar el conjunto de datos conservando únicamente las 

observaciones representativas del comportamiento real del sistema [14]. 

 

 Figura 4. Muestreo de datos atípicos del día 21-05-2025. 

Fuente: Elaboración propia. 

 

2.5. Segmentación temporal 

Los datos se dividieron en dos períodos para capturar las diferentes características de generación 

solar: período de mañana (06:00 a 12:00 horas) y período de tarde (12:01 a 18:00 horas). Esta 

segmentación permitió entrenar modelos específicos para cada período del día. Esta 

segmentación se realiza porque en el modelado realizado, se notaba una leve diferencia. 

 

2.6. Desarrollo del modelo 

El modelado del sistema potencia-irradiancia-temperatura se realiza utilizando regresión lineal 

múltiple. La metodología utilizada se muestra en la figura 5: 



 

 

 

Figura 5. Diagrama de flujo de la metodología. 

Fuente: Elaboración propia. 

3. Resultados 

3.1. Descripción de la instalación solar 

Los datos utilizados para este estudio fueron obtenidos de una instalación solar fotovoltaica real 

de 20 kW de potencia nominal instalada en una sede de la Universidad de Antioquia, ubicada en 

El Carmen de Viboral, Antioquia, Colombia. La instalación incluye un conjunto de 66 paneles 

solares, cada panel con una potencia pico de 315~W,  distribuidos entre diferentes tipos de 

inversores: 33 paneles están conectados a un inversor trifásico Fronius Symo Advanced de 

10~kW, tres inversores monofásicos Victron Quattro, cada uno de 5~kW, configurados en un 

banco trifásico este sistema cuenta con un banco de cuatro baterías Pylontech conectadas en serie 

con una capacidad conjunta de 14~kWh las cuales están conectadas a 3 paneles, lo que permite 

el almacenamiento y gestión energética local. Además, hay 27 microinversores Enphase iQ7+ y 

se usaron sensores de irradiancia y temperatura con muestreo cada 20 segundos. La instalación 



 

 

opera bajo condiciones reales, lo que permitió capturar comportamientos operativos relevantes 

como el clipping y eventos de desconexión. 

 

3.2. Evaluación del modelo con diferentes condiciones de preprocesamiento 

El modelo fue evaluado bajo tres condiciones distintas: 

3.2.1. Modelo sin preprocesamiento de datos 

Se utilizó la base completa sin eliminar datos atípicos ni recorte por clipping. El resultado se 

muestra en las figuras 1, 2, 3 y 4. Al aplicar una regresión lineal múltiple a todos los datos sin 

preprocesamiento, se obtuvo el siguiente modelo: 

𝑃 = 7,5676 ∙ 𝐺 + 9,6409 ∙ 𝑇 + 87,2590                    (1) 

El coeficiente de correlación promedio fue 𝑅2 = 0,649, reflejando una correlación moderada 

entre las variables irradiancia, temperatura y potencia. 

3.2.2. Modelo con preprocesamiento de datos 

Se eliminaron datos atípicos, registros con potencia igual a cero sin causa meteorológica 

aparente, y se aplicó el filtro por clipping. 

 

 Figura 6. Potencia real y estimada vs irradiancia del día 14-04-2025 con preprocesamiento. 

Fuente: Elaboración propia. 

 



 

 

 

 Figura 7. Potencia real y estimada vs irradiancia del día 13-02-2025 con preprocesamiento. 

Fuente: Elaboración propia. 

 

 Figura 8. Potencia real y estimada vs irradiancia del día 23-05-2025 con preprocesamiento. 

Fuente: Elaboración propia. 

 



 

 

 

 Figura 9. Potencia real y estimada vs irradiancia del día 21-05-2025 con preprocesamiento. 

Fuente: Elaboración propia. 

Tras eliminar registros atípicos, datos con potencia igual a cero sin causa meteorológica evidente 

y aplicar filtros por clipping, se obtuvo una mejora considerable en el ajuste del modelo. La 

regresión lineal múltiple dio como resultado el siguiente modelo: 

𝑃 = 8,6369 ∙ 𝐺 − 46,6232 ∙ 𝑇 + 1259,4422                    (2) 

Esta depuración condujo a un coeficiente de correlación superior, alcanzando un promedio de 

𝑅2 = 0,945, lo cual sugiere una relación más sólida y representativa entre las variables bajo 

condiciones más controladas. 

 

3.2.3. Modelo con preprocesamiento y segmentación temporal: 

Además de la limpieza, los datos fueron segmentados en periodo de mañana (06:00 a 12:00) y 

tarde (12:01 a 18:00), para evaluar mejoras en la correlación y precisión del modelo. Los 

resultados a continuación evidencian que la segmentación horaria del día en periodos de mañana 

y tarde mejora significativamente la capacidad del modelo para estimar la potencia, al adaptarse 

mejor a los patrones dinámicos de irradiancia y temperatura en cada intervalo. 



 

 

Con el objetivo de mejorar la precisión del modelo, se optó por dividir el día en dos periodos: 

mañana (06:00–12:00) y tarde (12:01–18:00). Esta segmentación permite capturar mejor los 

patrones horarios de la producción fotovoltaica, resultando en los siguientes modelos: 

En la franja horaria de la mañana: 

𝑃 = 8,2781 ∙ 𝐺 + 5,4797 ∙ 𝑇 + 340,9266                    (3) 

Con un coeficiente de correlación promedio de 𝑅2 = 0,990, lo que representa una mejora 

significativa en la capacidad predictiva del modelo. 

En la franja horaria de la tarde: 

𝑃 = 7,5433 ∙ 𝐺 + 50,2032 ∙ 𝑇 − 694,5408                    (4) 

Este modelo alcanzó un promedio de 𝑅2 = 0,986, confirmando también en la tarde una alta 

correlación entre las variables. 

La notable mejora en los valores de 𝑅2 tras la segmentación temporal evidencia que dividir el 

modelo en franjas horarias permite capturar mejor las dinámicas físicas del sistema, y por tanto, 

se justifica su implementación como estrategia de optimización del ajuste y la precisión del 

modelo.  

3.3. Desempeño del modelo 

La precisión del modelo fue evaluada utilizando el coeficiente de determinación 𝑅2 observando 

mejoras sustanciales en la estimación de la potencia a medida que se incorporaban técnicas de 

limpieza y segmentación. A continuación, se resumen los valores obtenidos: 

Fecha 
Sin 

preprocesamiento 

Con 

preprocesamiento 

Con segmentación y 

preprocesamiento 

06-06-2025 0,8899 0,9853 0,9907 

11-06-2025 0,9418 0,9851 0,9894 

12-06-2025 0,9779 0,9699 0,9755 

Tabla 1. Comparación del coeficiente de correlación 𝑹𝟐 para diferentes modelos de estimación de 

potencia. 

Fuente: Elaboración propia. 



 

 

Estas cifras muestran que la segmentación temporal mejora ligeramente la correlación entre las 

variables de entrada (irradiancia y temperatura) y la potencia estimada, lo cual respalda la validez 

de un modelo diferenciado por franjas horarias. 

 

3.4. Visualización de resultados 

A continuación, se presentan visualizaciones comparativas que ilustran el desempeño del modelo 

de regresión lineal múltiple bajo tres enfoques metodológicos: Sin preprocesamiento de datos, 

con limpieza de datos, y con segmentación horaria (mañana y tarde). Estas gráficas permiten 

observar de forma cualitativa cómo el preprocesamiento y la segmentación impactan la capacidad 

del modelo para estimar adecuadamente la potencia generada, a partir de las variables 

meteorológicas. El objetivo es evidenciar visualmente las mejoras progresivas en la correlación 

entre los valores estimados y los valores reales conforme se aplican técnicas adicionales de 

tratamiento de datos. 

 

a) 

 

b) 

 

c) 

Figura 10. Comparación entre la potencia estimada y real bajo del día 06-06-2025 diferentes 

condiciones: a) Sin preprocesamiento, b) con preprocesamiento y c) con modelo segmentado. 

Fuente: Elaboración propia. 
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a) 

 

b) 

 

c) 

Figura 11. Comparación entre la potencia estimada y real bajo del día 11-06-2025 diferentes 

condiciones: a) Sin preprocesamiento, b) con preprocesamiento y c) con modelo segmentado. 

Fuente: Elaboración propia. 

 

Como puede observarse en las figuras, la estimación de potencia mejora notablemente con la 

inclusión de estrategias de preprocesamiento, especialmente la eliminación de datos atípicos y el 

filtrado por clipping. Sin embargo, el mayor aumento en la precisión del modelo se obtiene al 

implementar la segmentación horaria, lo cual permite capturar dinámicas particulares del 

comportamiento fotovoltaico durante la mañana y la tarde. Esta segmentación facilita un ajuste 

más específico de los coeficientes del modelo, incrementando de forma significativa la capacidad 

predictiva del sistema. 

 

3.5. Síntesis de resultados 

Los resultados muestran que el proceso de limpieza de datos mejora notablemente la precisión 

del modelo, y que la segmentación en franjas horarias incrementa aún más la correlación. Esto 



 

 

sugiere que un enfoque de modelado adaptativo en función del horario puede ser una estrategia 

eficaz para aumentar la fidelidad en la estimación de la potencia solar. 

 

4. Discusión 

Los resultados obtenidos confirman que la incorporación explícita de las restricciones operativas 

del inversor —específicamente el clipping—, junto con una adecuada segmentación horaria y la 

limpieza estadística de datos, conduce a mejoras significativas en la estimación de potencia. 

Se observó que el modelo sin segmentación presenta una dispersión mayor en los errores, 

atribuible a la variabilidad térmica a lo largo del día. En cambio, al separar los datos por franjas 

horarias, se obtuvo un comportamiento más homogéneo, con mejor ajuste en ambos periodos. 

Adicionalmente, la eliminación de eventos no representativos —como pruebas automáticas del 

inversor o datos nulos causados por desconexiones breves— demostró ser clave para evitar 

distorsiones en la regresión. Esto sugiere que, para modelos de estimación basados en variables 

ambientales, el tratamiento riguroso de datos es tan importante como el algoritmo matemático. 

 

5. Conclusiones 

Este estudio propuso un modelo de estimación de potencia para sistemas fotovoltaicos que 

incorpora restricciones físicas derivadas del comportamiento real del inversor. Al integrar los 

efectos del clipping y las limitaciones dinámicas impuestas por el MPPT, el modelo alcanza un 

nivel de realismo superior a los enfoques tradicionales. 

El uso de regresión lineal múltiple, acompañado de técnicas de limpieza de datos, eliminación 

de atípicos y segmentación temporal, permitió obtener un alto coeficiente de correlación entre la 

potencia estimada y la medida, validando la eficacia del enfoque propuesto. 

 

6. Abreviaturas 



 

 

En este artículo se utilizaron las siguientes abreviaturas: 

PV: Fotovoltaico (Photovoltaic) 

DC: Corriente continua (Direct Current) 

AC: Corriente alterna (Alternating Current) 

IQR: Rango intercuartílico (Interquartile Range) 

AFCI: Interruptor de falla por arco eléctrico (Arc Fault Circuit Interrupter) 

R²: Coeficiente de determinación (Coeficiente R cuadrado) 

kW: Kilovatio 

W: Vatio 

W/m²: Vatios por metro cuadrado 
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