
9696

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

i + d

* Universidad Distrital Francisco José de Caldas Bogotá, Colombia. Correo electrónico: haflorezf@udistrital.edu.co

Adapting Models in Metamodels
Composition Processes
Adaptación de modelos de procesos de composición
a partir de metamodelos

Héctor Flórez*

Fecha de recepción: 11 de marzo de 2013

Fecha de aprobación: 30 de abril de 2013

Abstract

In Model Driven Engineering (MDE) approaches, metamodels can change after
the creation of conformant models. Moreover, changes applied
on one metamodel can be result of a composition process. When
metamodels change, model conformity can be broken. Once
the conformity is broken, the model is unuseful and it is not
possible to regain the conformity with the composite metamo-
del. This paper presents a proposal to solve models adaptation
through a Domain Speci c Language (DSL). This DSL is used
by metamodelers who are the people that know the domains
abstracted by several metamodels, and know how to combine
those meta-models in order to generate the composite metamo-
del. In addition, the DSL allows metamodelers to include the
solu-tion for conformant models adaptation.

Keywords

Model adaptation, metamodel composition, model driven en-
gineering.

VINCULOS 010813.indd 96 26/08/2013 04:15:14 p.m.

9797

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

1. Introduction

Modeling has an important role in develo-
ping software systems because it provides
means to concepts abstracted in a specific
domain [15]. One model is a simplification
of a system with an intended goal [2, 24]. In
addition, in MDE approaches metamodels
are used to abstract the concepts of a specific
domain of information, and it is usually built
by one metamodeler, who is the person that
knows the do-main [8], and models, which
represent a specific case in the domain [7],
must conform to the correspondent meta-
model [2].

Continually, domains changes and those
changes can be the result of a composition
process because this kind of process allows
to reuse several concepts from several me-
tamodels [5, 19]. However, if one metamo-
del changes, the conformant models lose the
conformity. Consequently, it is necessary to
modify the model in order to regain the con-
formity with the composite metamodel.

Nevertheless, it is not possible to modify the
conformant models automatically in order
to regain the conformity, be-cause the com-
posite metamodel could have new elements
that require additional information or the
composition process could delete some ele-
ments from the original metamodel [8].

This proposal presents a solution strate-
gy for models adaptation after a composi-
tion process. This solution is based on one
Domain Specific Language (DSL) that has
instructions to compose metamodels and
to adapt conformant models. The metamo-
deler, who knows the domain, defines the
changes on the metamodel and for each one
of them, he/she also defines the changes to
be applied for each instance related with the
change on the metamodel.

The rest of the paper is structured as follows.
Section 2 describes the metamodel compo-
sition problem. Section 3 presents the mo-
del adaptation problem. Section 4 presents
the solution strategy. Section 5 presents the

proposed languages for metamodels com-
position and models adaptation. Section
6 presents the proposal engine focusing in
the com-position engine and the adaptation
engine. Finally, section 7 presents the con-
clusions.

2. Metamodels composition

In MDE, metamodels composition is ne-
cessary for several reasons such us reu-
sability, scalability, e ectiveness, among
others [22, 26]. When a new domain is
needed to be abstracted by a metamodel
using an MDE approach, several pre-
viously constructed domains could abs-
tract some elements that the new domain
needs to be included [6]. Consequently,
the e ort in the construction process of the
new metamodel can be reduced as much
as possible getting advantage of the e orts
invested in the domains taken through the
correspondent metamodels.

A metamodel composition strategy aims
to support the construction of complex
metamodels using atomic transforma-
tions [26]. There are some processes for
metamodel com-position: 1) matching ele-
ments, 2) metamodel merge, and 3) class
refinement. Matching models is a process
used to identify diferent views of the same
concept, in order to unify those several
equivalent concepts in one composite con-
cept [9]. Metamodel merge combines se-
veral concepts creating a new one in order
to avoid collisions between the elements
described in two diferent metamodels
used for the metamodel composition pro-
cess [5]. Class refinement is used to add
de-tails in one single element that has not
been composed with other elements [6].

3. Model adaptation

The evolution is a common event in the
life cycle of a meta-model. This pheno-
menon happens when the models of the
information are created by humans [2].
Metamodels evolution can be performed

VINCULOS 010813.indd 97 26/08/2013 04:15:14 p.m.

9898

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

by metamodels composition. The main
reason why metamodels evolve is that the
metamodel may be incomplete. In this case
the evolution of a metamodel is driven by
the need of fixing it to become more com-
plete [14, 20]. This means that although all
the elements of the information domain
are supposed to be represented in the me-
tamodel some concepts may be missing.
In this case the evolution of a metamodel
is driven by the need of fixing it to beco-
me more complete. Usually, when dealing
with more than one information domain,
there is the need to expand one metamodel
through composition processes in order to
be able to add information from other do-
mains.

Changes on one metamodel impact all con-
formant models. The problem is presented
when an element from the meta-model
changes, and the model does not change
breaking the conformity of the dependent
model [8].

There are two main consequences when
the conformity is lost in models created
using Eclipse Modeling Framework (EMF)
[4, 29]. First, in almost all cases, the model
is not visible with some EMF graphic tool
anymore. Second, although the model can
be draw by a tool, the model is not valid
because it does not satisfy the definition
specified in the correspondent metamodel.

The process of adaptation is not always
automatic or deductible. Sometimes, an
input from the user is needed when there
are changes that require creating new ele-
ments or redefining existing elements. In
those cases, the model has to change in di-
fferent ways keeping conformity with the
evolved metamodel.

Figure 1, illustrates the metamodel evo-
lution and models adaptation problem.
After evolution of a metamodel MM into
MM’, the goal is to adapt the model m that
conforms to MM, to m’ that conforms to
MM’, by creating an appropriate adapting
migration M [8, 23].

There are some approaches that solve the
models adaptation problem focusing in two
main aspects: 1) identifying the differences
between the original and the evolved meta-
model using a declarative evolution specifi-
cation to de ne a difference metamodel which
can be calculated from identified changes in
the metamodel [3], and 2) making the modi-
fications on the model in order to regain the
conformity with the updated metamodel [3]
by a sequence of atomic operations where
each operation is applied on metamodel and
model level [1, 11, 17, 18].

Possible changes in metamodels can be clas-
sified as 1) non-breaking (NB), which are
changes that have no impact on the model
(e.g. increase the upper bound of one exis-
ting attribute); 2) breaking and automatica-
lly resolvable (BAR), which are the changes
that have impact on the model, yet can be
resolved automatically (e.g. rename an exis-
ting at-tribute); and 3) breaking and not au-
tomatically resolvable (BNAR), which are
the changes that cannot be inferred, so need
additional information that is provided by
the modeler in order to be fulfilled (e.g. crea-
te a new attribute) [1, 10, 23, 25, 27, 28]. Ha-
ving identified the changes each approach
re-solves the first two categories of changes
automatically using different frameworks
for model transformation. To address the
last category, some approaches take advan-
tage of the user assistance to coevolve the
models [1]. Some approaches for models
adaptation are the following:

Figure 1. The metamodel evolution
 and model adap-tation illustrated

Reference: investigation.

VINCULOS 010813.indd 98 26/08/2013 04:15:14 p.m.

9999

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

1. Becker et al. [1] propose an approach to
address BNAR changes through a fra-
mework for assisting the user in the defi-
nition of model coevolution when a chan-
ge of this category is found.

2. Cicchetti et al. [3] propose to classify the
changes in atomic changes and de ne the
process of adaptation. Then, create a di-
fferential metamodel with the identified
changes, and it is classified in two new
metamodels. If there are relations bet-
ween the two metamodels, the adapta-
tion is done using user intervention.

3. Herrmannsdoerfer et al. [16] approach
the coevolution through the proposal
called COPE that is a language to satisfy
two requirements: 1) reuse of recurring
migration knowledge and 2) expressive-
ness to support domain specific migra-
tions.

4. Garces et al. [10] approach the coevolu-
tion through ATG (Adaptation Transfor-
mation Generation) that is a semiauto-
matic approach to generate an executable
model adaptation transformation genera-
ting the adaptation transformation.

5. Florez et al. [8] approach the coevolution
through ASI-MOV that is an approach to
solve metamodel evolution and models
coevolution through two DSLs. The first
DSL allows to specify the changes on the
metamodel and the second DSL allows to
de ne assistance blocks for BNAR chan-
ges in order to present to modelers the
way in which the model can be change
based on the BNAR changes done in the
metamodel.

6. Gruschko et al. [13] propose to coevolve
the model using a set of automatic trans-
formations defined previously solving
the problems in one of the next three
categories: addition, delete or rename.
When a BNAR change is found, the user
should specify the way that the elements
are going to change.

4. Solution strategy

This proposal consists of a strategy where
the domain experts that compose metamo-
dels specify the unique solution for BNAR
changes in one specific model that conforms
to metamodel to be composed. Then, meta-
modelers write the composition and adapta-
tion in one script in which he/she specifies
the original metamodel, additional metamo-
dels for composition, and the model to be
adapted. The script must be written in one
DSL created for this proposal.

The proposal achieves the metamodels com-
position and models adaptation based on
independent migration transformations,
where each one of them is related with one
composition instruction applied on the me-
tamodel. Each composition instruction can
be based on the several metamodels. Each
migration transformation affects just the ins-
tances related with the element changed in
the metamodel. As a result, each indepen-
dent migration transformation generates an
intermediate metamodel and conformant in-
termediate model. Figure 2 shows the com-
position and adaptation strategy.

In this approach, the metamodel MM is com-
posed to the metamodel MM’ through that
is a set of transformations i that create inter-
mediate composite metamodels MMi. Each
metamodel MMi is the result of the com-
position based on supporting metamodels
MMsup-1, MMsup-2, . . . , MMsup-n. In addition,
each supporting metamodel changes when
the transformation i is applied generating in-
termediate sup-porting metamodels MMsup-

1i , MMsup-2i , . . . , MMsup-ni . More-over, the
model m that conforms to MM, is migrated
to m’ that conforms to MM’, through the mi-
gration transforma-tion M that is a set of mi-
grations i that creates interme-diate models
mi. Each intermediate model mi conforms to
the intermediate metamodel MMi. The mo-
del migration is perform only in the cases
that i is BNAR change i.e. the composition
applied on the metamodel breaks the model
conformity.

VINCULOS 010813.indd 99 26/08/2013 04:15:14 p.m.

100100

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

The metamodels composition and models
adaptation algorithm is presented in Algo-
rithm 1.

5. Proposal languages

This approach resolves the metamodels
composition and models adaptation by de-
fining two languages. The first one, called
metamodel composition language is used to
describe the metamodel composition , and
the second one, called model adaptation
language is used to de ne how to adapt the
conformant model m in order to guarantee
conformity with the conformant metamo-
del in case of those changes are BNAR. To
address these cases, the model adaptation
language is include d in the corresponding
instructions of the metamodel composition
language.

5.1 Metamodel Composition
 Language

This DSL includes an instructions catalog of
the possible operations that can be applied
over several input metamodels in order to
generate a unique output composite meta-
model. The structure of the DSL consists in
the next three operations: 1) Operation im-
port; this operation allows specifying seve-
ral input metamodels. 2) Operation export;
this operation allows specifying the output
composite metamodel. 3) Instructions; each
instruction specifies a change in the compo-
site metamodel. The DSL has a set of ope-
rations that allow metamodelers to define

possible changes over the input metamodels
in order to construct the composite meta-
model, which are defined in the instruction
catalog.

This proposal is completeness from the prin-
ciple that each instruction has high granula-
rity, which implies that the operation cannot
be decomposed into smaller operations [17],
to ensure unitary changes on the metamo-
del in the composition process. As a result,
the DSL has a catalog made up of 17 instruc-
tions. With these instructions metamodelers
can make the necessary changes on classes,
attributes and references from the input me-
tamodels. Also, metamodelers can include
new classes, attributes and references that
are not defined in any input metamodel.
This kind of operation allows the metamo-
deler not only make composition, but make
changes on the origin metamodel in order
to evolve it. Table 1 presents the instruction
catalog created for the meta-models compo-
sition language. When any instruction make
reference to a class, it is necessary to indicate
the name of the input metamodel in which
the class is placed. In the case that the ins-
truction does not have the name of the input
metamodel, the engine will search the class
between the classes created before in the
composition process.

With this instructions catalog, the metamo-
dels composition language offers a language
that supports a great variety of metamodel
composition cases. In order to explain how
the operations can be used, the next two me-
tamodels presented in Figure 3 will be used.

Based on metamodels presented in Figure 3,
the script presented in the Listing 1 makes
performs a composition process. In this
script, lines 1 and 2 imports the metamo-
dels presented in Figure 3; line 3 export the
composite metamodel; lines 4 and 6 creates
the classes N and M; lines 5, 7, and 8 crea-
tes attributes in specified classes; line 9 sets
the class V as abstract class; line 10 joins the
classes E and N creating a new class named
EN; lines 12 and 13 creates new references
in the specified classes; and line 13 divides

VINCULOS 010813.indd 100 26/08/2013 04:15:14 p.m.

101101

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

Table 1. Instruction Catalog for Metamodel Com-position Language

Instruction Parameters

newClass Class Name

deleteClass Class Name

renameClass Class Name, New ClassName

setAbstractClass Class Name

setNonAbstractClass Class Name

joinClasses New Class Name, Class Name 1, Class Name 2

divideClasses Class Name, Divided Classes [Divided class name, Divided class
attributes, Divided class references]

newAttribute Class Name, Attribute Name, Type

deleteAttribute Class Name, Attribute Name

renameAttribute Class Name, Attribute Name, New Attribute Name

updateAttribute Class Name, Attribute Name, Type

newReference Reference Name, Source Class Name, Target Class Name, Con-
tainment, Min Cardinality, Max Cardinality

renameReference Reference Name, New Reference Name

deleteReference Class Name, Reference Name

updateReference Class Name, Containment, Min Cardinality, Max Cardinality

newInheritance Reference Sub Class Name, Super Class Name

deleteInheritance Reference Sub Class Name

Reference: investigation.

Figure 2. Composition and Adaptation Strategy

Reference: investigation

VINCULOS 010813.indd 101 26/08/2013 04:15:15 p.m.

102102

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

the class X creating the classes X1 and X2. As
a result the composite metamodel is presen-
ted in the Figure 4.

Listing 1: Composition example

5.2 Model Adaptation Language

The model adaptation language is used to
solve the BNAR changes on models that
conforms with the composite meta-model.
Table 2 presents the classification in NB,
BAR, and BNAR instructions of the compo-
sition language.

This language consists of a set of instruc-
tions that allow metamodelers to specify the
changes to be applied to one specific confor-
mant model for the BNAR changes in the
metamodel. Due to the granularity level of
the metamodel composition language, it is
possible to include the related source code
of the model adaptation language for each
BNAR change creating a block using braces
after one BNAR instruction. In addition, the
process is sequential, so the order of the ins-
tructions guarantee the model’s semantics.

The Language grammar is based on Java
grammar whose it is possible to allow re-

Figure 3. Imported Metamodels Example

Reference: investigation

a) Metamodel 1

b) Metamodel 2

Table 2. Instruction Catalog Clasification

Change Type Instruction

Non-breaking
(NB)

newClass
setNonAbstractClass
newReference

Breaking and
a u t o m a t i c a -
lly resolvable
(BAR)

renameClass
renameAtribute
renameReference

Breaking and
not automati-
cally resolva-
ble (BNAR)

deleteClass
setAbstractClass
joinClasses
divideClasses
newAttribute
deleteAttribute
updateAttribute
deleteReference
updateReference
newInheritanceReference
deleteInheritanceReference

Reference: investigation.

VINCULOS 010813.indd 102 26/08/2013 04:15:15 p.m.

103103

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

solving: variables declarations, arithme-
tic operations, compare operations, con-
catenate operations, logical operations,
iteration functions, condition functions,
input functions, and output functions. As
a result, this language offers the following
advantages: 1) the grammar is well known
by metamodelers with some experience in
Java, and 2) metamodelers can create libra-
ries with reusable scripts to solve adaptation
patterns.

In order to explain how the language can
be used, the meta-models presented in Fi-
gure 7 and the model presented in Figure 6
will be used. Bases on this metamodels, the
scrpt presented in Listing 2 is applied. In this
script, lines 1 and 2 imports the metamodels
presented in Figure 7; line 3 export the com-
posite metamodel; lines 4 and 5 imports the
models presented in Figure 6; lines 6, 7, 8, 13,
16, 17, 18, 19 and 20 make changes over the
composite metamodel; lines 9, 10, 11, and 12
makes an model adaptation process migra-
ting the instances of the relation customers;
and line 14 does not make any change due
the class do not have instances with additio-

nal information. As a result the composite
metamodel and the adapted model are pre-
sented in the Figure 4.

Figure 4. Composite Metamodel Example

Reference: investigation.

Figure 5. Metamodels for Adaptation Example

Reference: investigation.

b) Example ERP Metamodel

a) Example CRM Metamodel

VINCULOS 010813.indd 103 26/08/2013 04:15:16 p.m.

104104

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

6. Engine
6.1 Composition Engine

The composition engine of this proposal exe-
cutes the com-position script sequentially.
Once, the engine executes the import opera-
tions, it creates in dynamically memory the
objects of each metamodel inside the corres-
pondent package. Using the metamodels
shown in Figure 3, and the script presented
in Listing 1, for each source code line the en-
gine makes the following changes:

1. For lines 1, 2, and 3, the engine loads the
element in the correspondent package.
The distribution of the elements in dyna-
mic memory is presented in Figure 8a.

2. For lines 4 and 6, the engine creates the
classes N and M inside the package out-
putMM. The distribution of the elements
in dynamic memory is presented in Figu-
re 8b.

3. For line 10, the class EN is created in the
generic pack-age outputMM. However,
the classes involved in this operation that
are E and N will be deleted from the co-
rrespondent packages. The distribution
of the elements in dynamic is presented
in Figure 8c.

Figure 6: Model for Adaptation Example Figure 7: Composite metamodel
 and adapted model.

Reference: investigation.

b) Example ERP model

a) Example CRM model

b) Adapted model

Listing 2: Adaptation example a) Composite Metamodel

VINCULOS 010813.indd 104 26/08/2013 04:15:17 p.m.

105105

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

4. For line 13, the classes X1 and X2 are crea-
ted in the generic package outputMM.
However, the class X will be deleted from
the correspondent package. The distribu-
tion of the elements in dynamic memory
is presented in Figure 8d.

Once the composition engine executes the
script, the classes from the import metamo-
dels that have not been affected will be trans-
lated to the generic package outputMM.
Also the packages of the import metamodels
will be deleted. As a result, all elements in
the composite metamodel will bellow to the
generic package.

In the case that the engine finds that one ope-
ration can-not be executed the engine will

report the mistake and the process will not
continue. The reasons in which the process
can fail are the follows: 1) the import meta-
model does not exist; 2) the class, attribute,
or reference required does not exist; 3) in the
case of creation of new elements; the class,
attribute, or reference related already exist;
and 4) after ex-ecuting the script, there are
duplicated classes.

6.2 Adaptation Engine

One metamodel can provide an ontological
and a linguistic support for model creation.
The ontological support allows metamodels
to describe what elements of the reality are
represented by model elements, and what
are the valid ways to relate them. The lin-
guistic support allows metamodels to de ne
the primitives to describe the models, their
elements, and their relationships [21]. Then,
model elements are onto-logical instances of
the types described in the metamodels; but
model elements are linguistic instances of
the types described in the metamodels [12].

The model adaptation engine makes a dy-
namic transformation on the model in or-
der to ensure a linguistic conformity with
a simplifed version of ECORE metamodel
named eMM. Given this transformation, al
changes on the model are applied on a tem-
poral model that conform with eMM named
MeMM. Figure 9 illustrates the transformation
process. In this process, when a BNAR chan-
ge i is applied on MMi due to a composition
process, one model transformation dynami-

Figure 8. Distribution of elements
 in dynamic memory

Figure 9. Temporal Model Transformation

Reference: investigation. Reference: investigation.

VINCULOS 010813.indd 105 26/08/2013 04:15:18 p.m.

106106

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

cally creates the meMM that conforms with the
eMM. Immediately, the adaptation process i
is performed on the meMM ensuring linguistic
conformity. Finally, an-other transformation
dynamically generates mi+1 than con-forms
with Mi+1. Figure 10 show the simpli ed
ECORE metamodel eMM.

7. Conclusion

A metamodel composition process, where
metamodelers can adapt concepts abstrac-
ted in several existing metamodels, is pos-
sible. In this approach one DSL allows me-
tamodelers de-ne metamodel composition
process. One advantage of this approach is
that metamodelers cannot perform illogical
com-position operations. Another advanta-
ge of this approach is based on the execu-
tion of the composition as a set of atomic
operations over the input metamodels, each
transition uses the modifications done in the
previous operations. One more advantage
is the creation of metamodels reducing the

e ort for metamodelers by getting the ele-
ments abstracted in existing metamodels.

The presented approach is simple, comple-
teness and has high granularity, for each
composition operation can be done indepen-
dently and all of them cannot be decompose
in smaller operations; as a result, the propo-
sal is adequate to be used by metamodelers
in order to create new abstractions through
a metamodel based on existing metamodels.

In addition, models adaptation allows trans-
forming models avoiding conformity break
out for BNAR changes done in the metamo-
del due to a composition process. In this ap-
proach, one DSL that allows to specify the
way in which the model can be transformed
in order to regain the conformity with the
composite metamodel.

8. References
[1] S. Becker, B. Gruschko, T. Goldschmidt,

and H. Koziolek. A process model and
classi cation scheme for semiautomatic
metamodel evolution. In 1st Workshop
MDD, SOA und IT-Management (MSI),
GI, GiTO-Verlag, pages 35-46, 2007.

[2] J. Bezivin. On the uni cation power of
models. Software and Systems Modeling,
vol. 4, num. 2: 171-188, 2005.

[3] A. Cicchetti, D. Di Ruscio, R. Eramo,
and A. Pierantonio. Automating coevo-
lution in model-driven engineering. In
Enterprise Distributed Object Computing
Conference, 2008. EDOC’08. 12th Interna-
tional IEEE, pages 222/231. IEEE, 2008.

[4] Eclipse Foundation. Eclipse Mode-
ling Framework Project Dec 16th, 2008
- EMF: Eclipse Modeling Framework, 2nd
Edition. (EMF).

[5] M. Emerson and J. Sztipanovits. Tech-
niques for metamodel composition. In
OOPSLA. 6th Workshop on Domain
Speci c Modeling, pages 123/139, 2006.

[6] H. Flórez. Domain Speci c Language
for Metamodel Composition. In The

Figure 10. Simplifed ECORE metamodel eMM

Reference: investigation.

VINCULOS 010813.indd 106 26/08/2013 04:15:18 p.m.

107107

v Í n c u l o sHector Florez

reVIStA VÍNcUloS Vol. 10 Número 1 EnEro - Junio De 2013

E N E R O - J U N I O D E 2 0 1 3
v O l u M E N 1 0 N ú M E r O 1

2012 International Conference on Soft-
ware Engineering Research and Practice
(SERP’12), 2012.

[7] H. Flórez. Model Transformation
Chains as Strategy for Software Develo-
pment Projects. In The 3rd International
Multi-Conference on Complexity, Infor-
matics and Cybernetics (IMCIC 2012),
Orlando, 2012.

[8] H. Flórez, M. Sanchez, J. Villalobos, and
G. Vega. Coevolution Assistance for En-
terprise Architecture Models. In Models
And Evolution (ME 2012) Workshop
at The ACM/IEEE 15th International
Conference on Model Driven Enginee-
ring Languages And Systems (MoDELS
2012), Innsbruck, 2012.

[9] R. France, F. Fleurey, R. Reddy, B. Bau-
dry, and S. Ghosh. Providing support
for model composition in metamodels.
In Enterprise Distributed Object Com-
puting Conference, 2007. EDOC 2007.
11th IEEE International, page 253. IEEE,
2007.

[10] K. Garces, F. Jouault, P. Cointe, and J.
Bezivin. Adaptation of Models to Evol-
ving Metamodels. Research Report RR-
6723, INRIA, 2008.

[11] K. Garces, F. Jouault, P. Cointe, and J.
Bezivin. Managing Model Adaptation
by Precise Detection of Metamodel
Changes. In Proceedings of the 5th Eu-
ropean Conference on Model Driven
Architecture-Foundations and Appli-
cations, pages 34{49. Springer-Verlag,
2009.

[12] P. Gomez, M. Sanchez, H. Florez, and J.
Villalobos. Co-Creation of Models and
Metamodels for Enterprise Architectu-
re Projects. In Extreme Modeling (XM
2012) Workshop at ACM/IEEE 15th
International Conference on Model Dri-
ven Engineering Languages & Systems
(MoDELS 2012), Innsbruck, 2012.

[13] B. Gruschko, D. Kolovos, and R. Paige.
Towards synchronizing models with
evolving metamodels. In Proceedings of

the International Workshop on Model-
Driven Software Evolution, 2007.

[14] K. Hassam, S. Sadou, V. Gloahec, and R.
Fleurquin. Assistance System for OCL
Constraints Adaptation During Meta-
model Evolution. In Software Mainte-
nance and Reengineering (CSMR), 2011
15th European Conference on, pages
151-160. IEEE, 2011.

S. J. Henriksson, F. Heidenreich, J. Johan-
nes, S. Zschaler, and U. A mann. Ex-
tending grammars and metamodels for
reuse: the Reuseware approach. Soft-
ware, IET, vol. 2, num. 3: 165-184, 2008.

[15] M. Herrmannsdoerfer, S. Benz, and E.
Juergens. COPE-automating coupled
evolution of metamodels and models.
ECOOP 2009{Object-Oriented Program-
ming, pages 52-76, 2009.

[16] M. Herrmannsdoerfer, D. Ratiu, and
G. Wachsmuth. Language evolution in
practice: The history of GMF. Software
Language Engineering, pages 3-22,
2010.

[17] M. Herrmannsdoerfer, S. Vermolen, and
G. Wachsmuth. An extensive catalog of
operators for the coupled evolution of
metamodels and models. Software Lan-
guage Engineering, pages 163-182, 2011.

[19] G. Karsai, M. Maroti, A. Ledeczi, J. Gray,
and J. Sztipanovits. Composition and
cloning in modeling and meta-mode-
ling. Control Systems Technology, IEEE
Transactions on, 12(2):263{278, 2004.

[20] D. Kolovos, R. Paige, and F. Polack. The
epsilon object language (eol). In Model
Driven Architecture{Foundations and
Applications, pages 128{142. Springer,
2006.

[21] T. Kuhne. Matters of (meta-) modeling.
Software and Systems Modeling, vol. 5,
num. 4: 369-385, 2006.

[22] A. Ledeczi, G. Nordstrom, G. Karsai,
P. Volgyesi, and M. Maroti. On meta-
model composition. In Control Appli-
cations, 2001. (CCA’01). Proceedings of

VINCULOS 010813.indd 107 26/08/2013 04:15:19 p.m.

108108

Adapt ing Models in Metamodels Composi t ion Processesi + d

REVISTA VÍNCULOS VOL. 10 NúmERO 1 EnEro - Junio DE 2013

the 2001 IEEE International Conference
on, pages 756-760. IEEE, 2001.

[23] B. Meyers, M. Wimmer, A. Cicchetti,
and J. Sprinkle. A generic in-place trans-
formation-based approach to structured
model co-evolution. In 4th Int. Work-
shop on Multi-Paradigm Modeling,
2010.

[24] P.-A. Muller, F. Fondement, and B. Bau-
dry. Modeling Modeling. In ACM/IEEE
12th International Conference on Model
Driven Engineering Languages & Sys-
tems MODELS 2009, pages 2-16, 2009.

[25] A. Occello, A. Dery-Pinna, M. Riveill,
and G. Kniesel. Managing Model Evolu-
tion Using the CCBM Approach. In En-
gineering of Computer Based Systems,
2008. ECBS 2008. 15th Annual IEEE In-
ternational Conference and Workshop
on the, pages 453-462. IEEE, 2008.

[26] J. Oldevik. Transformation composition
modelling framework. In Distributed
Applications and Interoperable Sys-
tems, pages 1135-1136. Springer, 2005.

[27] L. Rose, D. Kolovos, R. Paige, and F.
Polack. Enhanced automation for mana-
ging model and metamodel inconsisten-
cy. In Automated Software Engineering,
2009. ASE’09. 24th IEEE/ACM Interna-
tional Conference on, pages 545-549.
IEEE, 2009.

[28] L. Rose, D. Kolovos, R. Paige, and F. Po-
lack. Model migration with epsilon ock.
Theory and Practice of Model Transfor-
mations, pages 184-198, 2010.

[29] D. Steinberg, F. Budinsky, E. Merks, and
M. Paternostro. EMF: eclipse modeling
framework. Addison-Wesley Professio-
nal, 2008.

VINCULOS 010813.indd 108 26/08/2013 04:15:19 p.m.

