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Abstract: The Mesoamerican Information Highway (MIH) is a dialogue and 
coordination mechanism that articulates cooperation, development and inte-
gration efforts among the Central American countries with the purpose of 
improving the quality of life of the inhabitants of the region. This research 
paper was made with the purpose of giving the reader a state of art about 
the Mesoamerican Project (MP) in order to review the past, present and 
future situation of these kinds of technological developments in the region 
and their impact on the Colombian case. It shows a map in order to lead the 
implementation of future projects of the Information and Communications 
Technology (ICT) and its implementation through those alternatives.

Keywords: Local Tomography, Daubechies bases, filtered back projection, va-
nishment moments, Hilbert transform, Calderón-Zygmund operator.

Resumen: Este artículo explica que las bases Daubechies puede ser usadas 
para diseñar algoritmos de reconstrucción localizada de imágenes tomográficas 
desde las proyecciones almacenadas en matrices de datos dispersos. Los desa-
rrollos de tales algoritmos reducen significativamente la cantidad de exposición 
a los rayos X trasmitidos en la tomografía, evitando daños colaterales a largo 
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plazo en pacientes, en órganos como pulmones, corazón, y también en lesiones 
de la médula.

Palabras clave: Tomografía local, bases Daubechies, retroproyección filtrada, 
momentos de desvanecimiento, transformada de Hilbert, Operador Calderón-
Zygmund.

1. Introduction
Is it possible to reconstruct a tomographic image 
using only integrals passing through a certain 
region of interest of the patient? Answering this 
question is to solve the problem of local to-
mography. A classic method implemented to-
day to reconstruct a tomographic image is the 
filtered back-projection algorithm (filtered 
back-projection) [1], [2], [3]. However, this 
presents a number of problems when trying 
to reconstruct localized data because it re-
quires all line integrals projection matrix im-
ages. The wavelet bases are special functions 
by which its nature and properties neutralize 
the effects of the filtered back-projection al-
gorithm. Localization, smoothness, compact 
support, and vanishing moments of these 
bases are preserved during implementation 
[4]. The Daubechies wavelets bases are bas-
es that have as much time to fade compact 
support [5]. The proposed solutions, in two 
dimensions, for the problem of local tomog-
raphy have allowed advances in disciplines 
such as medicine, where in certain situations 
studies are performed on a region of interest, 
so there is no need to expose the patient with 
large amounts of radiation, preventing long-
term side traversed by X-rays to the heart, 
lungs and in spinal injuries or organ damage. 
Furthermore, it is possible to reconstruct im-
ages with scarce data obtained from non-de-
structive testing of the object, as is the case 
with anthropological studies, in investigations 
of forensic sciences, archeology, and paleon-
tology. This paper is organized as follows: in 
section 2, the reconstruction of a tomograph-

ic image recalling the concepts of projec-
tions, Radon transform, sinogram and filtered 
back-projection algorithm is reviewed. In sec-
tion 3, the interior problem or region of inter-
est emphasizing the benefits of the solutions 
analyzed in different disciplines. In section 
4, Hilbert operators and Calderón-Zygmund 
(OCZ), acting on the projections are analyzed. 
In section 5, the Daubechies bases are char-
acterized. Concrete examples of the behavior 
of the Hilbert transform and the Calderón-Zy-
gmund operator some Daubechies are pre-
sented in Section 6. Finally, conclusions are 
presented.

2. Tomographic Image Reconstruction
The tomographic image reconstruction is a 
process that involves the concepts of project-
ed Radon transform, sonogram, and inversion 
algorithms, such as filtered back-projection. 
Recall that a digital image is a two-dimension-
al light intensity function f(x,y), where x  and 
y represent the spatial coordinates, and f  
represents the gray level at that point. In our 
case, f  represents attenuation coefficients 
of the intensity of X-rays within a selected 
section of the patient.

2.1 The projections
A projection at a given angle is defined as a 
set of line integrals in said direction. Projec-
tion is denoted by )(

1
spθ , where θ is the an-

gle indicating the direction of the integral, and 
s is the variable that marks the position of the 
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detector for photon counting X-rays. Figure 1 
illustrates two projections or as they are also 
known, attenuation profiles )(

1
spθ  y )(

2
spθ  

[6], [7].

Figure 1. Projections or attenuation profiles )(
1

spθ  

and )(
2

spθ . Slice an abdomen. Source own

With a sample of n parallel projections measures 
image )}(),...(),(),({

321
spspspsp

nθθθθ  is 
possible to reconstruct the image.

2.2 Radon’s Transform

In two dimensions, it is a transformation 
that maps a function RRf →2:  on the 
set of projections pθ(s) entre parentesis 

sysenx =+ θθcos  . The parallel lines 
generated by X-rays of the tissue, from the 
source to the detector through the selected 
section of the patient, can be configured with 
the formula sysenx =+ θθcos . Here, s is 
the minimum distance from the line to the 
origin and θ is the angle between the X-axis 
with the position vector of the point closest to 
the origin line, as indicated in Figure 2.

In Figure 2, two coordinate systems are also 
identified: the coordinate system of the pa-
tient at rest ),( yx  and the sample coordinate 
system image )(sfθℜ , the scanner. The Radon 
transform denoted )(sfθℜ  can be written in 
terms of the distribution -δ (delta Dirac dis-
tribution).

       (1)

Figure 2. Lines sysenx =+ θθcos through 
a section of the abdomen. Source: own

To reconstruct the image ),( yxf  from the 
projections, it is necessary to calculate the 
inverse Radon transform. There are various 
algorithms in the inverse Radon transform are 
computationally efficient for the two dimen-
sional case. The problem in practice is that it 
is not possible to define the complete set of 
all integrals. Mathematically, the image is only 
determined by an infinite set of projections, 
not by any finite set of projections [8], [9].

2.3 The Sinogram
To manipulate and process the tomographic 
data, these are arranged in matrix form. As 
illustrated in Figure 3 b) where the rows indi-
cate the actual values   of line integrals and the 
columns indicate the angles of each projection: 
a sonogram (the graphical representation of 
the matrix) is then obtained. The discrete val-
ues of the projections represent the Radon’s 
object space. The data is only acquired from 
0° to 180 °, because according to the physical 
symmetry, the X-ray paths behind the patient 
being examined do not provide different in-
formation to trajectories and steps [7]. Figure 
3 illustrates the arrangement of values of the 
projections in the Radon space.

∫ ∫
∞

∞−

∞

∞−

−+==ℜ dxdysysenxyxfspsf )cos(),()()( θθδθθ
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Figure 3. a) Measured values of the projections 
of the object in space (x, y) b) Arrangement of 
the values of the projections in the Radon spa-

ce (θ, s). Slice of abdomen. Source: own

2.4 Filtered back-projection algorithm
An inverse algorithm Radon transform, com-
putationally efficient for the two-dimension-
al case is filtered back-projection (filtered 
back-projection) [1], [3], [10], [11]. This algo-
rithm appears naturally when the coordinates 
are changed. For the image ),( vuF  from the 
projections, the inverse Fourier transform is 
applied ),( vuF .

∫ ∫
∞

∞−

∞

∞−

+= dudvevuFyxf yvxui )(2),(),( π       (2)

We change to polar coordinates,

θω cos=u    

                                                                                                      (3)
θωsenv =        

∫ ∫
∞

+=
π

ωωπ
2

0 0

)(2),(),( dudvevuFyxf vyuxi        (4)

Using the symmetry properties of the Fourier 
transform, with the absolute value notation to 
redefine the limits of integration:

∫ ∫
∞

∞−

+=
π

θθωπ θωωθωθω
0

)cos(2),cos(),( ddesenFyxf ysenxi (5)

The court Fourier theorem allows the follow-
ing change:

)(),cos( ωθωθω θ

∧

= Psenf         (6)

Here, )(spθ  is the Fourier transform in one 
dimension of )(spθ .                      

∫ ∫
∞

∞−

+
∧

=
π

θθωπ
θ θωωω

0

)cos(2)(),( ddePyxf ysenxi
      (7)

Finally, denoted with )(spF
θ  is the inner in-

tegral in (7). Then the image is reconstructed 
with the filtered back-projection algorithm:

∫=
π

θ θ
0

)(),( dspyxf F
       (8)

This algorithm is implemented in the pres-
ent, both first-generation CT scanners, as a 
hybrid generation in some [1], [2].

3. Singular integral operators
When you invert the Radon transform through 
the filtered back-projection algorithm, the 
projections can be filtered in the frequency 
domain or in the domain of Radon space. It 
is during this stage that appear acting on pro-
jections, the Hilbert transform operator and 
Calderón – Zygmund.

3.1 Hilbert Transform
The Hilbert transform of the projections 

)(spθ  is given as:

           (9)

To avoid the problem of singularity, the inte-
gral is calculated symmetrically [35], [36] ac-
cording to the equation:









−
+

−
=

− ∫∫∫
∞

+

−

∞−
→

∞

∞−

ττ
τ

ττ
τ

ττ
τπ θ

ε
θ

ε

εθ dp
s

dp
s

dp
s t

t

)(1)(1lim)(11
0

      (10)
Figure 4 illustrates the Hilbert transform of 
the projections, )(0 sp °  and 45

( )p s°  of 90
( )p s°  

^
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Radon space ghost Shepp-Logan head. i.e. 

0
( )Hp s° , 45

( )Hp s° , y 90
( )Hp s° .

Figure 4.  a) Proyection )(0 sp °  (Red) y 0
( )Hp s°  

(Blue) b) Proyection 45
( )p s°  (Red) y 45

( )Hp s°  (Blue) c) 
Proyection 90

( )p s°  (Red) y 90
( )Hp s°  (Blue). Source: own

The expression (9) describes a convolution of 
the projection )(spθ   with the function 

1
sπ .  

i. e.:
1( ) ( )Hp s p s
sθ θ π

= ∗
                                         (11)

Figure 5 illustrates the convolution kernel sπ
1 . 

This convolution kernel has a singularity at the 
origin and has a cross that slowly decays [4].

Figure 5. Convolution Kernel sπ
1

. Source: own
The Fourier transform of the Hilbert transform of the 

projections )(spθ  is,

             (12)

where )(ωθP   is the one dimentional Fouri-

er transform of )(spθ  and )(ωsign  is the sign 
function defined as:

                   (13)

3.2. The Calderon-Zygmund operator

The Calderón-Zygmund operator of a projec-
tion )(spθ  it can be defined in terms of the 
Fourier transform [13], [14], as follows:

)()( ωωω θθ PPT =
∧

          (14)

Is rewritten as follows:

            (15)

The multiplication by )( ωi  in the Fourier do-
main corresponds to differentiation in the Ra-
don domain and multiplication by )(ωisign−  
corresponds to the Hilbert transform [14]. In 
the domain of Radon operator Calderón - Zy-
gmund denoted T   applied to the projections 

)(spθ  corresponds to:

              (16)

The expression (16) describes the convolu-
tion, 

            (17)

Figure 6 illustrates the operator Calderon - 
Zygmund applied to the projections )(0 sp °

,  and  Radon space ghost 
Shepp-Logan head. i.e.,  ,  y 

.

The convolution integral projections )(spθ  
with compact support, should be taken as a 
Cauchy principal value at a point within the 
support.

       (18)
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Figure 6.  a) Projection 0
( )p s°  (Red) y 0

( )Tp s° ( Blue) 
b) Projection 45

( )p s°  (Red) y 45
( )Tp s°  (Blue) c) Pro-

jection 
90

( )p s°  (Red) y 
90

( )Tp s°  (Blue). Source: own

For values   outside the support of )(spθ  , the 
convolution integrals are ordinary integrals:

       (19)

If 0
( )p s°  has compact support, 

0
( )Tp s°  will 

not have compact support. The Calderón – 
Zygmund  operator T  is not local, insomuch 
as 

0
( )Tp s°  , at some point, requires all values   

of the function )(spθ .

4. Local tomography
In computed tomography you can find com-
plete and incomplete sampling [9] data [10]. 
Mathematically, this is expressed as follows: 
If a function 2:f R R→  with compact sup-
port has its Radon transform )(sfθℜ  de-
fined on the whole space ]1,1[1 −×S , say that 
the data is complete, otherwise we say that 
the data are incomplete. Recall that that is the 
unit circle.

4.1 The Region of Interest
An example of a problem of incomplete data is 
the interior problem, called in medical contexts 
the Region of Interest (ROI). This can be stat-
ed as follows: How to calculate the values   of 

),( yxf  for all ),( yx  satisfying 222 ayx =+

, with, 0 1a< <  from the knowledge of projec-
tions of ),( yxf  on the lines passing through 
the neighborhood radius of the origin?  Instead 
of know the Radon transform )(sfθℜ  of 

),( yxf  for all s in 1 [ 1,1]S × − , is known only 
in the restriction ],[1 aaS −×  [9], [10].  The re-
gion of interest is not always in the center of 
the object; you can be anywhere in the object 
support. Mathematical analysis is performed 
assuming that usually it is in the center of the 
object [15], [16]. Figure 7 depicts sinograms 
two regions, one located on the source of the 
object, and the other outside the source. 

 
Figure 7. Sinograms a) ROI on the source of the object 
b) ROI outside source.  Slice of abdomen. Source: own

Having little data is analogous to not having 
scanned the selected section of the patient 
completely. This may be perhaps because 
probably no one is interested in the full court 
all but a small portion (region of interest).

Benefits

• In medicine, in certain situations, the 
study is performed on a region of inter-
est (ROI) so no need to expose the pa-
tient to radiation avoiding large amounts 
of long-term collateral damage to organs 
traversed by X-rays, such as heart, lungs 
and spinal injuries.
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• In other sciences, images can be recon-
structed with few samples obtained from 
non-destructive testing of the object as 
for example, in anthropological studies in 
forensic science, archeology and paleon-
tology, among others.

Figure 8 a) illustrates local no problems tomo-
graphic data are obtained where the line inte-
grals along all lines passing through the object; 
In practice this is done along a large number 
of lines with many angles. In problems of local 
data b) the reductions appreciate the explana-
tions offered by the scan [17], [18], [19].

Figure 8. Data problems. a) Full, global or local. b) 
Incomplete or local. Slice of abdomen. Source: own

4.2 The problem with local tomography
Is it possible to reconstruct a tomographic 
image using only integrals that pass through 
the region of interest? : No, when the filtered 
back-projection algorithm is implemented 
with bases lacking now fading. Yes, when the 
filtered back-projection algorithm uses wave-
let basis [18], [19], [20], [21], [22], [23].

5. Wavelets Bases
Recall that wavelets are localized smooth 
functions with compact support and a number 
of vanishing moments [24], [25], [26], [27], 

[28]. Figure 9 shows the Haar wavelet, which 
has a compact support of one width, a time of 
fading and is discontinuous.

Figure 9. Haar Wavelet. Source: own

Figure 10 illustrates the Shannon wavelet, 
which is very soft but extends through the 
whole real line and decays slowly when time 
is infinite.

Figure 10. Shannon Wavelet. Source: own

The wavelets are generated from dilations 
and translations of a prototype function, called 
the mother wavelet by the equation:







 −

=
a

bt
a

tba ψψ 1)(,
                          (20)

Where Rb∈ , a R+∈  con 0≠a  and ψ  
is admissible [5]. With orthogonal wavelet 
bases, Riesz bases and frames for spaces of 
finite energy signals (like projections) are 
constructed. A result proved by David Walnut 
relates us smoothness of wavelets with van-
ishing moments. If the family { }kj ,ψ  is an or-
thonormal basis, and the wavelet is smooth, 
then it should have no or fade in time [29].
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5.1 Daubechies Bases

In 1988, Ingrid Daubechies constructed a 
family of orthogonal wavelet basis, smooth 
and compactly supported. Daubechies wave-
lets, as they are called, are those with the 
highest number of vanishing moments for 
support. The width of the support is 2 1N −  
where N the number of vanishing moments. 
Daubechies wavelets are classified according 
to the number of times of blackouts N  that 
they have [5], [30]. The Hilbert transform 
function works well with soft, especially with 
oscillatory wavelets. This can be checked 
with studies on the behavior of the Hilbert 
transform of wavelets [12], [31], [32], [33]. 

Some important conclusions for our purposes 
are:

• The Hilbert Transform )(xHψ  of a 
wavelet ψ  is still a wavelet.

• In the presence of some minimal smooth-
ness and decay, the Hilbert transform of 
a wavelet is smooth and oscillating as the 
original wavelet. 

• The location can be controlled by the 
number of times of fading from the origi-
nal wavelet. 

• Decay of the Hilbert transform increases 
with increasing fading moments; many 
moments of lightheadedness may con-
tribute to enhancing the Hilbert trans-
form to 1

1
+nxπ  in the presence of N  fading 

moments [4]. 

• The Hilbert transform of a wavelet basis 
generated from the mother wavelet ψ 
is the wavelet basis generated from the 
wavelet )(xHψ .

5.2. Concrete examples
The figures 11 to 19 are concrete examples 
of the results discussed in section 5.1. The 
behavior of the location, the compact sup-
port, the smoothness and the moments of 
fadings Hilbert transform as it increases the 
degree of the Daubechies observed therein.

Figure 11Daubechies Wavelet 1 (red)
Hilbert Transform (blue). Source own

Figure 12 Daubechies Wavelet 2 (red)
Hilbert Transform (blue). Source: own

Figure 13 Daubechies Wavelet 3 (red)
Hilbert Transform (blue). Source: own

Figure 14 Daubechies Wavelet 4 (red)
Hilbert Transform (blue). Source: own

Figure 15 Daubechies Wavelet 6 (red)
Hilbert Transform (blue). Source: own
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Figure 16 Daubechies Wavelet 8 (red)
Hilbert Transform (blue). Source: own

Figure 17 Daubechies Wavelet 10 (red)
Hilbert Transform (blue). Source: own

Figure 18 Daubechies Wavelet 15 (red)
Hilbert Transform (blue). Source: own

Figure 19 Daubechies Wavelet 20 (red)
Hilbert Transform (blue). Source: own

Figures from 20 to 28 correspond to specific 
examples of Calderon-Zygmund operator and 
some Daubechies. The behavior of the spot, 
the compact support, smoothness and mo-
ments of fading as the operator increases the 
degree of observed Daubechies.

 

Figure 20 Daubechies Wavelet 1 (red)
Calderón-Zygmund Operator (green). Source: own

Figure 21 Daubechies Wavelet 2 (red)
Calderón-Zygmund Operator (green). Source: own

Figure 22 Daubechies Wavelet 3 (red)
Calderón-Zygmund Operator (green). Source: own

Figure 23 Daubechies Wavelet 4 (red)
Calderón-Zygmund Operator   (green). Source: own

Figure 24 Daubechies Wavelet 6 (red)
Calderón-Zygmund Operator (green). Source: own

 

Figure 25 Daubechies Wavelet 8 (red)
Calderón-Zygmund Operator (green). Source: own

 
Figure 26 Daubechies Wavelet 10 (red)

Calderón-Zygmund Operator (green). Source: own

Figure 27 Daubechies Wavelet 15 (red)
Calderón-Zygmund Operator (green). Source: own
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Figure 28 Daubechies Wavelet 20 (red)
Calderón-Zygmund Operator (green). Source: own

6. Conclusions
The filtered back-projection algorithm used 
to invert the Radon transform presents prob-
lems if the bases that are deployed do not 
have sufficient time to blackouts. Studies 
like the one presented in this paper show 
that it is possible to obtain images using lo-
calized wavelet basis; and more specifically, 
Daubechies basis. These have a large number 
of times of fading for support, which causes 
the problem caused by the operator exceeds 
Calderon - Zygmund when convolved with the 
partial derivatives of the projections aren’t 
necessary to use more of the data present. 
These bases have allowed the development 
of many algorithms for localized reconstruct-
ing images as can be seen in a more detailed 
study [34] or [37].
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