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Abstract: The purpose of this article is to present some conditions in the gene-
ral# X n, and the particular 2 X 2 and 3 X 3 cases, that characterize the matrices
set:

T ={AeM(C) | AAT=AT A}
Where M (C) denotes the squared matrices set of nth order, C the set of complex

numbers and 7" the transposition operator.

Keywords: squared Matrix, transposition operator, commutativity, complex num-
bers.

Resumen: el propdsito de este articulo es presentar algunas condiciones que
caracterizan el conjunto de matrices # X # -y €l caso particular de 2 X 2y 3 X 3-:
T ={AeM/(C) | AAT=AT A}

Donde M (C) denota el conjunto de las matrices cuadradas de orden #, C el con-

junto de los niimeros complejos y el operador de trasposicién.

Palabras clave: Matriz cuadrada, operador de transposicién, conmutatividad, ni-
meros complejos.

1. Introduction

For some time now, people have been studying the properties and characterizations of the matri-
ces sets that commute, see [1] and [2]. In this field of investigation the set of normal matrices is
of great importance and up to the date, we know around 100 different characterizations, see [3],
[4] and [5], that reflect normality from different points of view, as for instance: eigenvalues and
singular values, invariant spaces, decomposition in terms of Hermitian and skew-Hermitian ma-
trices, polar decomposition, commutativity of the conjugate and commutativity with its transpose,
amongst others. Motivated by this work, we begin the study of the T set.
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Note that T contains the sets of symmetric,
skew-symmetric, orthogonal, and normal
matrices with real entries and the Hadamard
matrices. Of this topic there are few results,
see [6] page 475. That is why, our work in
this second phase consisted in presenting a
description of some geometric and topolog-
ical characteristics of the general case, and
particularities of the 2 X 2 and 3 X 3 cases.
This characterizations reflect the commuta-
tivity of a matrix with its transpose evidenc-
ing its centralizer, which is done through
non-derogatory matrices, the decomposition
in terms of symmetric and skew-symmetric
matrices and its eigenvalues.

In Some Cuantum Mechanics problems Car-
dy’s differential equation [7] is cited:
2

u(u—l)%+§(1—2u)%=O,Withq)(0)= 0,¢’(1)=1
Which is deduced in a heuristically manner.
Some algebraic aspects in the equation are
viewed when a symmetry property is used:
the orthonormal complete solution to this
equation is given in commutative algebra, i.e.
as normal matrices or matrices that commute
with its transpose [8]. The following nota-
tions are used throughout this article and are
useful in its understanding.

C : Set of complex numbers
M (C) nxn : matrices with complex entries

AS (C): Skew-symmetric matrices with com-
plex entries

S,(C): Symmetric matrices space with com-
plex entries

A : Symmetric part of A€ M (C)

A : Skew-symmetric part of A€ M (C)

||A||F: The Frobenius norm A€ M (C)
o(A): The set of the eigenvalues of A€ M (C)
d(p): The degree of the polynomial p

I Identity matrix of order n

2. Geometric and Topological
Characteristics of T

Regarding the matrices set M (C) we
will consider the inner product given by
(A,B)=Tr(B*A), this inner product induces the
norm over the matrices space

14l= (7, (4°a))"

The inducted metric by this norm is
d(4,B)=I A-Bl,

Lastly, regarding M (C) we will consider the
topology inherited by this metric.

The following results are basic in the de-
velopment of the next section which can be
found in [9] and [1].

Definition 2.1.

Let A€ M (C), the centralizer of A which we
will denote C(4) and define by

C(A)={B€ Mn(C)|AB=BA}

Theorem 2.2.

A€ M (C) is a non derogatory matrix, if and
only if, the characteristic polynomial and the
minimal of are equal.

Theorem 2.3.
A€ M (C) is diagonalizable, if and only if, for
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each eigenvalue of its algebraic and geomet-
ric multiplicity match up.

Theorem 2.4.

Let A€ M (C) be symmetric. A is diagonaliz-
able, if and only if, the matrix that diagonaliz-
es is an orthogonal complex matrix.

For a given field P P[x] is denoted the ring
of all polynomials p(x) over the field P. In a
similar way, for a square matrix A with ele-
ments of P, we denote as P[A] the ring of all
matrices that can be written in the form p(4),
where p(x)EP[x].

Theorem 2.5.

If A is a non-derogatory matrix of order », then

C(A)={p(A)o(p)=n-1}

Theorem 2.6.

If A is matrix of the orden 71, then the minimal

and characteristic polynomial of A match up,
if and only if, C(4) = P[A4].

As an immediate consequence of the theo-
rems given previously we have:

Proposition 2.7.

If A is non-derogatory and 4 £ T,, then
c(a) € T,

Proposition 2.8.

Let A € 5 (C). If 4 is non-derogatory,
thenC(A) = Su(ﬂ:‘)'

Corollary 2.9.

For each symmetric non-derogatory matrix,
an skew-symmetric not null matrix that com-
mutes with it does not exist.

Corollary 2.10.

Let A € M,(T), where A is written in the
foomA = A, + A,..If A, is non-deroga-
toryand 4_, # 0,thend & T,.

a1

2.1.1.Casen x n

This section will present topological charac-
teristics of the T, set in the case n X n.

Proposition 2.11.

T satisfies the following conditions:

L. T, 1s closed.

1L T is whole.

ML Tx is not compact.

IV. Tnis connected by pathways in star form.
V. T, — {0} is connected by pathways.

VL if H € C(A"), then f'(4)(H) = 0 for
each 4 € T,_, where

n’

f:M_(C)— 5_(C)
X—=f(X)=XX"- X"Xx
Proff.

I.  First. f is differentiable in each point, for
which we find
FX+H) =E+H)@X+HT— (X +H)7(X+H)
=XXT +XHT + HXT + HHT — (XXT + XTH + H'X + HTH)
=xxT — XXT + XHT + HXT — XXT —H'X+ HHT — H'H
=f(X)+ (XHT + HXT —XTH—H'X) + (HHT —HTH)

Where
(XHT + HXT — X"TH —H™X) = f'(X)(H)
,(HHT — HTH) = R(H)

This shows that f' exists for each point
and also
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fleM, (C)— 5,(C)
H—-f(X)(H)=XH"+ HXT—X"H—-H"X

This implies the continuity of f, which in
consequence proofs that T, is closed be-
cause T, = f'~*(0).

IL. Since T, is closed and M, (C) is a whole
space, then T, is whole.

. T, is not compact, since is not bound-
ed, since af €T, for &« € C and
I al, = lalyn

V. Let A1: 42 € Ty and

1
2t1 4+ (1—-20)A,if 0=t < —
a(t) 2

1
(2—20)1 + (2t — l]lfl:,:'fgg t=1

Note that & is a continuous path,
a(o) = A, and a(1) = A,. Besides, if
A €T, kJI+k,AE T, for kand

k, in R, which implies that T, is connect-
ed in star form around {I}.

V. Case 1:If A;, 4, &€ (I), then the path is
taken as in (iv).

Case2:IfA, € (I), and 4; & {I), then
A, = kI with k € €. The path is de-
fined as

a(t) = kI +(1—t)4,, which is con-
tinuous and different from zero for each 0
=t=<l1

Case3:IfA;, A; € (I), wetake 4 € T,
with 4 = [—01 'ﬂ ®[0], ., where @
denotes direct adition and [0],_, the
square null matrix of order y; — 2 and @
the path given by

1

2tIA+ (1 —2t)Aif0<t <=

a(t) .2
(2-204+ @t~ DAy, if 3St <1
Note that & is continous path, a(0) =4,
and @(1) = As and also that, [0l €a

VL. Is obtained directly from / found in (0.

2.1.2. Case 2 x 2

This section presents a complete description
of the T, set.

Proposition 2.12.

For each matrix in A € M,(T), A is either
a scalar multiple of the identity matrix or a
non-derogatory matrix.

Proof. Casel: If A is diagonalizable then 4,
either has two equal eigenvalues and in this
case is a multiple of the identity, or its eigen-
values are different and is non-derogatory.
Case 2: If 4 can’t be diagonalized, then its
canonic Jordan form is

[g i:] or [g ,ﬁl?] witha =

In either of these cases A4 is non-derogatory.

Corollary 2.13.
For each A € M,(C) where 4 & (I,),

c(4) ={p(4) Ia(p) = 1}

By direct calculation we have that T, is given
by:

n=(5 2l Yiesaed

Proposition 2.14.

T, satisfies the following conditions:
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. T, —{l,}is a set with two connected
components.

Il. T, —C(A) is a connected set if A4 is
skew-symmetric and disconnected if 4 is
symmetric.

III. Locally T, is a two or three dimensional
manifold except for each point in {I,}.

Prof.

I. Note that form (2.1)

T, =L, [_']1 é]}USZ[':Ej

Also,
:@=( ol [y 1

From these we have that

T, == ([ %, -t JuG0— ) =T uT;

1

o)) = (L) and

[0
Where T = (I, [_1
T, = 5,(C) — (L)

Now let’s see how T: is connected:

If
B 0o 1
A =k, + ks, [_1 ﬂ] and
o 1
A, =nl 5 [ ] e T,
2 Iz + 13 -1 0 2

Where kykyr,mn € C with
ko, #= 0and

0 1 , 1

. zr[_l O]+(1—zr),=11, ifosts>

(2—28) [_'31 é] +(2t— DA, if <

From this definition we conclude

that @&, is a continuous path and that
{I,) € a,(t)foreach0 <t < 1.

In a similar form, for T, we have:
B 1 0 0
Ay =k, + k, [‘i D] + ks [l] 1} and

_ 0 1] [IZI IZI] .
A, r1[:+r:[1 l:I+r3l:I 1ETﬂ

Where kj_:k::kg:rlrrjrrg e C Wlth
k:: kg: I, 1y F 0 and

1
2

[

t=

0 1 .
a:m:[zr[l 0]+(1—2r).41, if 0

(z—zr)[i’ é]+(2r—f);1:, f-<t<1

b | =

From this definition we conclude
that &> is a continuous path and that
(I,) € a,(t)foreach0 =t =< 1.

Il If 4 is skew-symmetric T, — C(4) = T,
, which is connected by (i). If A
is symmetric T, —C(4)E and
T, —{I,) = T, UT,, which is discon-
nected because of

T,—C(A) nT,#0
And
T,—C(A) nT,# 0

This last one is satisfied if we take [_01 lﬂ
matrix, which only commute with multi-

ples of the identity.

% ot ) o
and (L, [—D 1 é]) is a two manifold and
{['i' é] L, [g 'ﬂ) is a three manifold.

2.1.3. Case 3x 3

This section presents a description of the
matrices with complex entries that are inside
the T set.
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Propositon 2.15.

If A is an skew-symmetric non null matrix,
then A is non-derogatory.

Proof.
Let
0 a b
A=|-a 0 ¢
—-b — 0

With a, b and ¢ complex non null scalars. The
eigenvalues of A are: 0, Va®+b® +¢c% i
and —g2+hr + 240 If a*+b*+c* =0
, then the matrix has all its eigenvalues dif-
ferent and as a consequence its characteris-
tic and minimal polynomial are equal; from
this and from theorem 2.2 we conclude that
A 1s non-derogatory. On the other hand, if
a*+b*+ ¢* =0, then the characteris-
tic polynomial of A is p(x) = x¥ and since

—a?— bt —be ac
A= —bc —a® —¢? —ab | F0
ac —ab bt
And
0 —a(a"+b*+¢c) —bat*+ b +cH
A = la(a® +b* + 5 0 —e(a*+b* +eH|=0
bia® +b*+c¢%)  ca®+b +c7) 0

From these the characteristic and minimal
polynomials of 4 coincide, from where we
conclude that by theorem 2.2 4 is non-derog-
atory.

Corollary 2.16.

If A is an skew-symmetric not null matrix, then
C(Ag) = {p(4s) [9(p) = 2}
Proof.

This result is obtained from proposition 2.15
and from theorem 2.5.

Proposition 2.17.

Let Abeamatrixsuchasthatits skew-symmet-
ric part A, isnot null, then 4 € T, ,ifand
onlyit 4 = agly + a, 4,. + a, 4;..

Proof.

Let’s suppose that A € Tgand write 4 as
A= A . + A, thend A = A__A,
. From here and corollary 2.16 we have
that A € C(A,.), and because of these
A € C(A,.).Reciprocally,if4 € C(4,.)
then there are complex scalars @y, &4 and a-
such as,

A4 = Ty [3 + oy ‘qﬂﬂ' + X Ans:y from
where 4 commutes with transpose.

As a direct consequence of the last proposi-
tion we have:

Corollary 2.18.

Ty = 55(C) U (Uy, 20 C(4,.))

Proposition 2.19.

If Bis a symmetric matrix that commutes with
an skew-symmetric matrix A = Q, then:

I. B=al,+ pA*witha, BE T

II. B €(l,)or B has only two different eigen-
values, one of the wit geometric multiplicity
of two.

Proof.

If B commutes with A then from corollary
2.16 we have that

B = gpl3z + a1 A + a2 A°
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with etg, ety , 62 € (. Since B = BT, then
@] = QandB =a0l, + o* A%

Let’s consider

B =al, + BA? (2.2)

withea, f € €. As Ais skew-symmetric of 3
x 3 order, its eigenvalues are: 0, 4 and —A for
some A £ T, as aconsequence, the eigenval-
ues of A% are: 0 y A2 with algebraic multiplicity
of 2. From the Schur triangularization theorem
there is an unitary matrix [J that upper trian-
gularizes A? and from the equality (2.2) such
unitary matrix will also upper triangularizate
B; from this last remark, we conclude that the
eigenvalues of B are: @ and o + BA% Now, if
ff = 0then B & (I3 ), onthe other hand
E has only two different eigenvalues , one of
them with geometrical multiplicity 2, if that
isn’t the case, the geometrical multiplicity
would be 1, and B will be non-derogatory, and
from theorem 2.5

C(B)={p(B)la(p) = 2} € 5,(T)

in this case 4 will be a symmetric not null
matrix, which would be a contradiction.

Corollary 2.20.

Each symmetric matrix B that commutes with
an skew-symmetric matrix A = 0 is diago-
nalizable.

Proof.

From proposition 2.19 we have that
E £ (I3}, and in this case, B is clearly
diagonalizable or B has only two different
eigenvalues, and one of them has geometric
multiplicity of 2. From this remark, we con-
clude that the geometric multiplicity of the ei-
genvalues of B are equal, which implies, from
theorem 2.3, that the matrix is diagonalizable.

Proposition 2.21.

If A and B are non null skew-symmetric ma-
trices with A% # aB? for each @ € @, then

C(A)NnC(B) = I3)

Proof.

Letx € (¢ (4) n C (B) and let’s write

X =apl; + a,A+ a,A* = 1, + §,B + 5,8

With i . 5i € T, then
a,A= B 2.3)
And

aply + a,A* = 1, + 3,B7

Note that X is a symmetric matrix, if
a8, = 0, then by (2,3)

A’ = aB?

For some e¢ € © which is a contradiction.
Therefore X is symmetric matrix of the form

X = a1, + a2 A2 = BOL, + B,B

Also, lets observe that by corollary 2.20
X is diagonalizable. On the other hand, if
a2 = QDorfilz = 0,thenX € (I3}, on
the opposite case

X_I:TD rg_ _ 2
ok _ 4

s 2.4)
And
X—fy Iz 2
27Pc7a _ p

8, (2.5)

Since X is diagonalizable, then A? and B2
are also diagonalizable, therefore, both
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matrices have a null eigenvalue. Let
g(X) = {4, .4, } with 4; = 4, , lets
asume, without a loss of generality that 4,
has algebraic multiplicity 2, then by (2.4) and
(2.5)

M-y _ o ¥ M=o _ 4

o Bz (2.6)
Or
Amag _ g 2B _ g

% B 2.7
Or
Moy _ o 2228 _ g

x B 2.8)

Note that (2.6) and (2.7) can't be give, since in
that case by (2.4) and (2.5) A? = aB? for some
a € C. Like that @y = A, and f, = A,.
Given that the algebraic multiplicity of 4, is
2, then 0 is an eigenvalue of B? with algebraic
multiplicity of 2, because of 6(B?) = {0} and
since B? is diagonalizable, its necessarily that
B?=0, , therefore X' € (/3 }.

Lemma 2.22.
I. If Bisanonnull 3 X 3 symmetric matrix,
we have:

1. B is non-derogatory for the following
cases:

2. B has 3 different eigenvalues.

3. B has 2 eigenvalues both with geom-
et ric multiplicity of one.

in any of these cases £ (B) € 53(C).
II. E is derogatory for the following cases:

1. B has only one eigenvalue with ge-

ometric multiplicity of three, and there-
fore B € (I3 .

2. B has only one eigenvalue with ge-
ometric multiplicity of two, and therefore
it won't exist a non null skew-symmetric
matrix that commute with B.

3. B has two eigenvalues, one of them
with geometric multiplicity of two, and
therefore B € ( (.A) one for some non
null skew-symmetric matrix 4 -

Proof.

I. ab.c Are an immediate consequence of
proposition 2.8.

II. alsaconsequence of theorem 2.3.
II. b Is aconsequence of proposition 2.19.

II. Let
o(B) = {A, A, } withA1 - A2
without loss of generality let’s assume
that A2 has geometric multiplicity of
2. From there and by theorem 2.3 B is
diagonalizable, therefore by theorem
2.4 there will exist a complex orthog-
onal matrix ¢ that will diagonalize
through similarity E. If there is a non
null skew-symmetric matrix X such that
B € ([ (X ).Is enough to proof that
the equation

X2+ L =B

has a solution inside the non null
skew-symmetric matrices set. In effect,
one such skew-symmetric matrix that
is a solution of the equation (2.9) is giv-

0 0 0
¥=iJAd2— A1QT [n 0 1] Q
0 -1 0
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Where @is the ortogonal matrix that di-
agonalicesF.

Next there is a list of properties of non null
skew-symmetric matrix centralizers.

Proposition 2.23.

Let A be a non null skew-symmetric matrix, then:

I dim(C(4)) = 3.

I dim(C(4) n §3(C)) = 2

1. € (A) — (I3 is a connect set.

IV UC(A)is a connect set

V. UC(A) s not a convex set.

Proof.

L

Let ap,x1 and a2 be complex scalars.
Considering the linear combination

a L +aA+a,A, =0 (2.10)

For this to be true the scalars will neces-
sarily be null. From (2.10) we obtain:

714 =0 (2.11)
a, L, + a, A>=0 (2.12)
Then by (2.11) @1 = 0. Now, if @0 =0
from (2.12)

I; = 22 42

3= %o

Which necessarily implies @2 . 0
and g(42) = {—27} therefore 0 ¢
o(A? ), which is a Contradiction. Simi-
larly the condition &2 - 0 leads to a
contradiction.

IL.

Let X,Y € C(A) — (I3 ), where

X=oc013+0(1A+0(2A2

Y=8,L+pBA+pB,A

Note that
(a1,a2),(F1.62) = (0,0).

Let's consider the following cases:

Case 1:

If ¥¢1 - 0 we take the continuous path
Y, (H=tX + (1 -t)A* for some

0=t = l, because in the contrary
case we will have that

tla, I, +o; A+a, A?)+(1-t)A* = kI,
for some k £ ©,

From where

tag = k

tx1 = 0

ta2 +(1—t) = 0

These equalities give t = 0 and
1 = 0, which is an absurd.
Case 2:

If &2 = 0 we take the continuous path
Y2(t)=t¥ + (1 —t)A for some
0 = t£ = 1,andinaway similar to case
1W2 & (I3 yforeach 0 = t = 1.

For cases §1 # 0 and 52 =+ ( we take
the continous paths:
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U3 ) = tY + (1O - t)A? and
Pa(t) = t¥ + (1 —t)4 for
some 0 = t = 1 , respectively. In
a similar way to case 1, it easy to ob-
serve that ¥3,P4 & (I3 ) for each
0=t =1

Now, let's build paths to connect X with ¥
that won’t pass through{I3 }:

1.Ifal,f1 = 0 we take ¢y (t)

1

(1—2t)% + (26)4%, ifost<—

28]

. 1
(2-204° + (2t -1y, if ;<t<1

2.If al,f1 = 0 we take ¢2 (t)

., 1

(1—3t)X + (31)4°, if 0= tig

5 1 2

(2—31)A°+ (3t —1)4, :'fgitig
2

(3—-3t)A+ (3t—-2)Y, if §£r<_:1

Note that any path that connect A~
with 4 is not present in {I3 } since
dim (€ (4)) = 3.

3.Ifa2, 1 # 0 we take ¢3 ()

1

(1—-3t)X +(3t)4, ifﬂitig

. 1 2

(2—-3t)A+ (3t —1)A4°, ffggrgg
., 2

(3—3t)4° + (3t —2)Y, :'fgitil
4. If @2,52 = 0 we take gpd ( t)

1

(1—20)X +(20)4, ffogrig
V. 1

(2—2t)A+ (2t — 1)V, :'fiﬂ_:rgl

tween two elements of UC(A) an ele-
ment of {I3 ), since (I3} = C(4) and
C(A4) is a vectorial -space.

V. Let
0 1 0 0 0 1 .
€=|-1 0 o|,D=|0 o0 o|,E=I;+cC+C?
0 0 0 1.0 0

AndF = I;+ D + D . Then

=]
I3 | =

| = a | =

_1 ! uc(4)
_25+2EE Al

=]

[ SR e
[ S

Therefore UC{A) is not a convex set.

Proposition 2.24.

T3 — (I3 )Isaconnect set.
Proof.

Let er1, &2, a3 be different complex scalars
and

a1 0 ]
B = [ﬂ a2 0 ]

0 0 o3
A non-derogatory symmetric matrix that is
not in £(A) for each non null skew-symmet-

ric matrix 4 from proposition 2.19. Let's take
the path

_ a1 0 0
alt) =tBE+{(1—-¢t)|0 a2 O
0 0 a3

forsomet € [0,1/2]. Itis easy to observe
that a(t) & (I3 ) for each t € [0,1/2].
Now, if t = 1/2 we obtain a symmetric
matrix B with two different eigenvalues,
one of them with geometric multiplicity of
2, from proposition 2.19 there will exist a
non null skew-symmetric matrix 4, such
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that B € C [ﬂ] and from numeral (iii.)
we can connect through a continuous path in
C (A) — {I3) B with any element inside
this set.
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