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Some properties for matrices that commute with their transpose 
Algunas propiedades para matrices que conmutan con su traspuesta

Juan Carlos Salazar Gualdrón1

Abstract: The purpose of this article is to present some conditions in the gene-
ral n × n, and the particular 2 × 2 and 3 × 3 cases, that characterize the matrices 
set:

Tn={A ∈ Mn(ℂ) | AAT=AT A}
Where Mn(ℂ) denotes the squared matrices set of nth order, ℂ the set of complex 
numbers and T the transposition operator.

Keywords: squared Matrix, transposition operator, commutativity, complex num-
bers. 

Resumen: el propósito de este artículo es presentar algunas condiciones que 
caracterizan el conjunto de matrices n × n -y el caso particular de 2 × 2 y 3 × 3-: 

Tn={A ∈ Mn(ℂ) | AAT=AT A}
Donde Mn(ℂ) denota el conjunto de las matrices cuadradas de orden n, ℂ el con-
junto de los números complejos y el operador de trasposición.

Palabras clave: Matriz cuadrada, operador de transposición, conmutatividad, nú-
meros complejos.

1. Introduction
For some time now, people have been studying the properties and characterizations of the matri-
ces sets that commute, see [1] and [2].  In this field of investigation the set of normal matrices is 
of great importance and up to the date, we know around 100 different characterizations, see [3], 
[4] and [5], that reflect normality from different points of view, as for instance: eigenvalues and 
singular values, invariant spaces, decomposition in terms of Hermitian and skew-Hermitian ma-
trices, polar decomposition, commutativity of the conjugate and commutativity with its transpose, 
amongst others. Motivated by this work, we begin the study of the Tn set.
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Note that Tn contains the sets of symmetric, 
skew-symmetric, orthogonal, and normal 
matrices with real entries and the Hadamard 
matrices. Of this topic there are few results, 
see [6] page 475. That is why, our work in 
this second phase consisted in presenting a 
description of some geometric and topolog-
ical characteristics of the general case, and 
particularities of the 2 × 2 and 3 × 3 cases. 
This characterizations reflect the commuta-
tivity of a matrix with its transpose evidenc-
ing its centralizer, which is done through 
non-derogatory matrices, the decomposition 
in terms of symmetric and skew-symmetric 
matrices and its eigenvalues.

In Some Cuantum Mechanics problems Car-
dy’s differential equation [7] is cited:

Which is deduced in a heuristically manner. 
Some algebraic aspects in the equation are 
viewed when a symmetry property is used: 
the orthonormal complete solution to this 
equation is given in commutative algebra, i.e. 
as normal matrices or matrices that commute 
with its transpose [8]. The following nota-
tions are used throughout this article and are 
useful in its understanding.

ℂ : Set of complex numbers

Mn(ℂ) n×n : matrices with complex entries

ASn(ℂ): Skew-symmetric matrices with com-
plex entries

Sn(ℂ): Symmetric matrices space with com-
plex entries

As: Symmetric part of A∈ Mn(ℂ)

Aas: Skew-symmetric part of A∈ Mn(ℂ)

||A|| F: The Frobenius norm A∈ Mn(ℂ)

σ(A): The set of the eigenvalues of A∈ Mn(ℂ)

∂(p): The degree of the polynomial p

In Identity matrix of order n

2. Geometric and Topological  
Characteristics of Tn

Regarding the matrices set Mn(ℂ) we 
will consider the inner product given by 
〈A,B〉=Tr(B*A), this inner product induces the 
norm over the matrices space

The inducted metric by this norm is 

Lastly, regarding Mn(ℂ) we will consider the 
topology inherited by this metric.

The following results are basic in the de-
velopment of the next section which can be 
found in [9] and [1].

Definition 2.1. 

Let A∈ Mn(ℂ), the centralizer of A which we 
will denote C(A) and define by 

Theorem 2.2. 

A∈ Mn(ℂ) is a non derogatory matrix, if and 
only if, the characteristic polynomial and the 
minimal of  are equal.

Theorem 2.3.

A∈ Mn(ℂ) is diagonalizable, if and only if, for 
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each eigenvalue of  its algebraic and geomet-
ric multiplicity match up.

Theorem 2.4. 

Let A∈ Mn(ℂ) be symmetric. A is diagonaliz-
able, if and only if, the matrix that diagonaliz-
es  is an orthogonal complex matrix.

For a given field P, P[x] is denoted the ring 
of all polynomials p(x) over the field P. In a 
similar way, for a square matrix A with ele-
ments of P, we denote as P[A] the ring of all 
matrices that can be written in the form p(A), 
where p(x)∈P[x].

Theorem 2.5.

If A is a non-derogatory matrix of order n, then

Theorem 2.6. 

If  is matrix of the orden , then the minimal 
and characteristic polynomial of  match up, 
if and only if, .

As an immediate consequence of the theo-
rems given previously we have:

Proposition 2.7. 

If  is non-derogatory and , then 
.

Proposition 2.8. 

Let . If  is non-derogatory, 
then .

Corollary 2.9. 

For each symmetric non-derogatory matrix, 
an skew-symmetric not null matrix that com-
mutes with it does not exist.

Corollary 2.10. 

Let , where  is written in the 
form . If  is non-deroga-
tory and , then .

2.1.1. Case n × n

This section will present topological charac-
teristics of the  set in the case n × n.

Proposition 2.11.

 satisfies the following conditions:

I.	  is closed.

II.	  is whole.

III.	  is not compact.

IV.	 is connected by pathways in star form.

V.	  is connected by pathways.

VI.	 if  , then  for 
each , where

	

	

Proff.

I. 	 First. f is differentiable in each point, for 
which we find

	 Where 

, 

	 This shows that  exists for each point 
and also



240

J. C. Salazar

Universidad Distrital Francisco José de Caldas - Technological Faculty

		       

	 This implies the continuity of f, which in 
consequence proofs that  is closed be-
cause .

II. Since  is closed and  is a whole 
space, then  is whole.

III.  is not compact, since is not bound-
ed, since  for  and 

.

IV. Let  and

	 Note that  is a continuous path, 
 and . Besides, if 

, for and 
 in , which implies that is connect-

ed in star form around .

V. 	 Case 1: If ⟩, then the path is 
taken as in (iv).

	 Case 2: If ⟩,  and ⟩, then 
 with . The path is de-

fined as 

	 , which is con-
tinuous and different from zero for each 0 
≤ t ≤ 1

	 Case 3: If , we take  
with , where  
denotes direct adition and  the 
square null matrix of order  and  
the path given by

Note that  is continous path,  
and , and also that, .

VI. Is obtained directly from  found in (i).

2.1.2. Case 2 × 2

This section presents a complete description 
of the  set.

Proposition 2.12. 

For each matrix in ,  is either 
a scalar multiple of the identity matrix or a 
non-derogatory matrix.

Proof. Case1: If  is diagonalizable then , 
either has two equal eigenvalues and in this 
case is a multiple of the identity, or its eigen-
values are different and is non-derogatory. 
Case 2: If  can’t be diagonalized, then its 
canonic Jordan form is

In either of these cases  is non-derogatory.

Corollary 2.13. 

For each  where , 

By direct calculation we have that  is given 
by:

Proposition 2.14.

 satisfies the following conditions:
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I.	 is a set with two connected 
components.

II.	  is a connected set if  is 
skew-symmetric and disconnected if  is 
symmetric.

III.	 Locally  is a two or three dimensional 
manifold except for each point in .

Prof.

I.	 Note that form (2.1) 

	

	 Also,

	

	 From these we have that

	

	 Where  and

 	

	 Now let’s see how  is connected:

	 If

	

	

	 Where  with 
 and

	

	 From this definition we conclude 
that   is a continuous path and that 

 for each .

	 In a similar form, for  we have:

	

	

	 Where  with 
 and

 

	 From this definition we conclude 
that   is a continuous path and that 

 for each .

II.	 If  is skew-symmetric 
, which is connected by . If  
is symmetric  and 

, which is discon-
nected because of

	

	 And

	

	 This last one is satisfied if we take  
matrix, which only commute with multi-
ples of the identity.

III	 Given that 
 

and  is a two manifold and 
 is a three manifold.

2.1.3. Case 3 x 3

This section presents a description of the 
matrices with complex entries that are inside 
the  set.
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Propositon 2.15. 

If  is an skew-symmetric non null matrix, 
then  is non-derogatory.

Proof.

Let

 
With a, b and c complex non null scalars. The 
eigenvalues of  are: 0, 
and . If 
, then the matrix has all its eigenvalues dif-
ferent and as a consequence its characteris-
tic and minimal polynomial are equal; from 
this and from theorem 2.2 we conclude that 

 is non-derogatory. On the other hand, if 
, then the characteris-

tic polynomial of  is  and since

And

From these the characteristic and minimal 
polynomials of  coincide, from where we 
conclude that by theorem 2.2  is non-derog-
atory.

Corollary 2.16. 

If  is an skew-symmetric not null matrix, then

Proof.

This result is obtained from proposition 2.15 
and from theorem 2.5.

Proposition 2.17.

Let  be a matrix such as that its skew- symmet-
ric part  is not null, then  , if and 
only if .

Proof.

Let’s suppose that and write  as  
, then 

. From here and corollary 2.16 we have 
that , and because of these 

. Reciprocally, if  
then there are complex scalars and  
such as

, from 
where   commutes with transpose.

As a direct consequence of the last proposi-
tion we have:

Corollary 2.18. 

Proposition 2.19.

If is a symmetric matrix that commutes with 
an skew-symmetric matrix , then:

I.	 B = α I3 + βA2 with α, β ∈  

II.	 B  ∈ ⟨I3 ⟩ or B has only two different eigen-
values, one of the wit geometric multiplicity 
of two.

Proof.

If B commutes with A  then from corollary 
2.16 we have that
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with   ∈  . Since B = BT , then 
 and B = α0 I3 + α2 A2.

Let’s consider

	       B = αI3 + βA
2             (2.2)

with . As  is skew-symmetric of 3 
× 3 order, its eigenvalues are:  and  for 
some , as a consequence, the eigenval-
ues of A2 are: 0 y λ2 with algebraic multiplicity 
of 2. From the Schur triangularization theorem 
there is an unitary matrix  that upper trian-
gularizes A2 and from the equality (2.2) such 
unitary matrix will also upper triangularizate 

; from this last remark, we conclude that the 
eigenvalues of  are:  and α + βλ2. Now, if

 then , on the other hand 
 has only two different eigenvalues , one of 

them with geometrical multiplicity 2, if that 
isn’t the case, the geometrical multiplicity 
would be 1, and  will be non-derogatory, and 
from theorem 2.5

in this case   will be a symmetric not null 
matrix, which would be a contradiction.

Corollary  2.20.

Each symmetric matrix   that commutes with 
an skew-symmetric matrix  is diago-
nalizable.

Proof.

From proposition 2.19 we have that 
, and in this case,  is clearly 

diagonalizable or  has only two different 
eigenvalues, and one of them has geometric 
multiplicity of 2. From this remark, we con-
clude that the geometric multiplicity of the ei-
genvalues of  are equal, which implies, from 
theorem 2.3, that the matrix is diagonalizable.

Proposition 2.21.

If  and  are non null skew-symmetric ma-
trices with A2 ≠ αB2 for each , then

Proof.

Let  and let’s write

With , then

       		               (2.3)

And

Note that  is a symmetric matrix, if 
, then by (2,3) 

A2 = αB2 
 
For some  which is a contradiction. 
Therefore  is symmetric matrix of the form 

X = α0 I3 + α2 A2 = β0 I3 + β2B
2

Also, lets observe that by corollary 2.20 
 is diagonalizable. On the other hand, if 

, then , on 
the opposite case

        (2.4)

And 

     (2.5)

Since X is diagonalizable, then A2  and B2 
are also diagonalizable, therefore, both 
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matrices have a null eigenvalue. Let 
 with  , let′s 

asume, without a loss of generality that  
has algebraic multiplicity 2, then by (2.4) and 
(2.5)

 
    	              (2.6)

Or

  	              (2.7)

Or

      	              (2.8)

Note that (2.6) and (2.7) can′t be give, since in 
that case by (2.4) and (2.5)  A2 = αB2 for some 

. Like that . 
Given that the algebraic multiplicity of  is 
2, then 0 is an eigenvalue of B2 with algebraic 
multiplicity of 2, because of σ(B2) = {0} and 
since B2 is diagonalizable, its necessarily that  
B2=03x3 therefore .

Lemma 2.22. 

I.	 If  is a non null 3 × 3 symmetric matrix, 
we have:

	 1.  is non-derogatory for the following 	
    cases:

	 2.  has 3 different eigenvalues.

	 3.   has 2 eigenvalues both with geom-
et  	     ric multiplicity of one.

in any of these cases .

II.	  is derogatory for the following cases:

	 1.  has only one eigenvalue with ge-

ometric multiplicity of three, and there-
fore 

	 2.   has only one eigenvalue with ge-
ometric multiplicity of two, and therefore 
it won't exist a non null skew-symmetric 
matrix that commute with .

	 3.  has two eigenvalues, one of them 
with geometric multiplicity of two, and 
therefore  one for some non 
null skew-symmetric matrix  

Proof.

I.	 a.b.c Are an immediate consequence of 
proposition 2.8.

II.	 a Is a consequence of theorem 2.3.

II.	 b Is a consequence of proposition 2.19.

II.	 Let 
 

without loss of generality let’s assume 
that  has geometric multiplicity of 
2. From there and by theorem 2.3  is 
diagonalizable, therefore by theorem 
2.4 there will exist a complex orthog-
onal matrix  that will diagonalize 
through similarity . If there is a non 
null skew-symmetric matrix  such that 

 Is enough to proof that 
the equation

	  X2 + λ1 I3 = B

	 has a solution inside the non null 
skew-symmetric matrices set. In effect, 
one such skew-symmetric matrix that 
is a solution of the equation (2.9) is giv-
en by:
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	 Where is the ortogonal matrix that di-
agonalices .

Next there is a list of properties of non null 
skew-symmetric matrix centralizers.

Proposition 2.23.

Let A be a non null skew-symmetric matrix, then:

I.	 .

II.	 .

III.	  is a connect set.

IV.	 is a connect set

V.	  is not a convex set.

Proof.

I.	 Let   and   be complex scalars. 
Considering the linear combination

	 α0 I3 + α1 A + α2 A2  = 0                 (2.10)

	 For this to be true the scalars will neces-
sarily be null. From (2.10) we obtain:

	       		             (2.11)

	 α0 I3 + α2 A
2=0   	                         (2.12)

	 Then by (2.11)  = 0. Now, if 0 
from (2.12)

	

	 Which necessarily implies  
and  therefore 0 ∉  
σ(A2 ), which is a contradiction. Simi-
larly the condition   leads to a 
contradiction.

II.	 Let  where 

	 X = α0 I3 + α1 A + α2 A
2 

	 Y = β0 I3 + β1 A + β2 A
2

	 Note that 
 

Let's consider the following cases:

	 Case 1:

	 If  we take the continuous path  
ψ1 (t)= tX + (1 – t)A2  for some

 	 , because in the contrary 
case we will have that

       t(α0 I3 +α1 A+α2 A
2 )+(1-t)A2 = kI3

	  for some ,

	 From where

	

	

	

	 These equalities give  and 
, which is an absurd.

	 Case 2:

	 If  we take the continuous path 
 for some

 , and in a way similar to case 
1 for each .

	 For cases  and  we take 
the continous paths:
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  ψ3 (t) = tY  + (1 - t)A2 and 
 for 

some  , respectively. In 
a similar way to case 1, it easy to ob-
serve that  for each 

.

	 Now, let's build paths to connect  with   
that won’t pass through :

1. If  we take 

2. If  we take 

Note that any path that connect  
with  is not present in  since 

.

3. If  we take 

4. If  we take 

IV.	 It enough to consider a continuous path 
that will take as connecting points be-

tween two elements of  an ele-
ment of , since  and 

 is a vectorial -space.

V.	 Let

	

 
And   . Then

	

	 Therefore  is not a convex set.

Proposition 2.24. 

 Is a connect set.

Proof. 

Let be different complex scalars 
and

A non-derogatory symmetric matrix that is 
not in   for each non null skew-symmet-
ric matrix   from proposition 2.19. Let's take 
the path

for some   It is easy to observe 
that  for each  
Now, if  we obtain a symmetric 
matrix  with two different eigenvalues, 
one of them with geometric multiplicity of 
2, from proposition 2.19 there will exist a 
non null skew-symmetric matrix , such 
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that  and from numeral (iii.) 
we can connect through a continuous path in 

 with any element inside 
this set.
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