Some properties for matrices that commute with their transpose Algunas propiedades para matrices que conmutan con su traspuesta

Juan Carlos Salazar Gualdrón'

Fecha de envío: 19 de septimebre de 2015 Fecha de recepción: 10 de octubre de 2015 Fecha de aceptación: 10 de noviembre de 2015

Abstract

The purpose of this article is to present some conditions in the general $n \times n$, and the particular 2×2 and 3×3 cases, that characterize the matrices set: $$
T_{n}=\left\{A \in M_{n}(\mathbb{C}) \mid A A^{T}=A^{T} A\right\}
$$

Where $M_{n}(\mathbb{C})$ denotes the squared matrices set of nth order, \mathbb{C} the set of complex numbers and T the transposition operator.

Keywords: squared Matrix, transposition operator, commutativity, complex numbers.

Resumen: el propósito de este artículo es presentar algunas condiciones que caracterizan el conjunto de matrices $n \times n$-y el caso particular de 2×2 y 3×3-:

$$
T_{n}=\left\{A \in M_{n}(\mathbb{C}) \mid A A^{T}=A^{T} A\right\}
$$

Donde $M_{n}(\mathbb{C})$ denota el conjunto de las matrices cuadradas de orden n, \mathbb{C} el conjunto de los números complejos y el operador de trasposición.

Palabras clave: Matriz cuadrada, operador de transposición, conmutatividad, números complejos.

1. Introduction

For some time now, people have been studying the properties and characterizations of the matrices sets that commute, see [1] and [2]. In this field of investigation the set of normal matrices is of great importance and up to the date, we know around 100 different characterizations, see [3], [4] and [5], that reflect normality from different points of view, as for instance: eigenvalues and singular values, invariant spaces, decomposition in terms of Hermitian and skew-Hermitian matrices, polar decomposition, commutativity of the conjugate and commutativity with its transpose, amongst others. Motivated by this work, we begin the study of the T_{n} set.

1 BSc. In Mathematics, Universidad Industrial de Santander, Colombia. MSc. In Mathematical Sciences, Universidad Nacional de Colombia, Colombia. Current position: professor Universidad Santo Tomás, Colombia. E-mail: juansalazar@usantotomas.edu.co

VISION

ELECTRONICA

Note that T_{n} contains the sets of symmetric, skew-symmetric, orthogonal, and normal matrices with real entries and the Hadamard matrices. Of this topic there are few results, see [6] page 475. That is why, our work in this second phase consisted in presenting a description of some geometric and topological characteristics of the general case, and particularities of the 2×2 and 3×3 cases. This characterizations reflect the commutativity of a matrix with its transpose evidencing its centralizer, which is done through non-derogatory matrices, the decomposition in terms of symmetric and skew-symmetric matrices and its eigenvalues.

In Some Cuantum Mechanics problems Cardy's differential equation [7] is cited:

$$
u(u-1) \frac{d^{2} \phi}{d u^{2}}+\frac{2}{3}(1-2 u) \frac{d \phi}{d u}=0, \text { with } \phi(0)=0, \phi(1)=1
$$

Which is deduced in a heuristically manner. Some algebraic aspects in the equation are viewed when a symmetry property is used: the orthonormal complete solution to this equation is given in commutative algebra, i.e. as normal matrices or matrices that commute with its transpose [8]. The following notations are used throughout this article and are useful in its understanding.

\mathbb{C} : Set of complex numbers

$M_{n}(\mathbb{C}) n \times n:$ matrices with complex entries
$A S_{n}(\mathbb{C})$: Skew-symmetric matrices with complex entries
$S_{n}(\mathbb{C})$: Symmetric matrices space with complex entries
$A_{s}:$ Symmetric part of $A \in M_{n}(\mathbb{C})$

$$
A_{a s}: \text { Skew-symmetric part of } A \in M_{n}(\mathbb{C})
$$

$\|\mathrm{A}\| F$: The Frobenius norm $A \in M_{n}(\mathbb{C})$
$\sigma(\mathrm{A})$: The set of the eigenvalues of $A \in M_{n}(\mathbb{C})$
$\partial(p)$: The degree of the polynomial p
I_{n} Identity matrix of order n

2. Geometric and Topological Characteristics of T_{n}

Regarding the matrices set $M_{n}(\mathbb{C})$ we will consider the inner product given by $\langle A, B\rangle=\operatorname{Tr}\left(B^{*} A\right)$, this inner product induces the norm over the matrices space

$$
\|A\|_{F}=\left(T_{r}\left(A^{*} A\right)\right)^{1 / 2}
$$

The inducted metric by this norm is

$$
d(A, B)=\|A-B\|_{F}
$$

Lastly, regarding $M_{n}(\mathbb{C})$ we will consider the topology inherited by this metric.

The following results are basic in the development of the next section which can be found in [9] and [1].

Definition 2.1.

Let $A \in M_{n}(\mathbb{C})$, the centralizer of A which we will denote $C(A)$ and define by

$$
C(A)=\{B \in M n(\mathbb{C}) \mid A B=B A\}
$$

Theorem 2.2.

$A \in M_{n}(\mathbb{C})$ is a non derogatory matrix, if and only if, the characteristic polynomial and the minimal of are equal.

Theorem 2.3.

$A \in M_{n}(\mathbb{C})$ is diagonalizable, if and only if, for
each eigenvalue of its algebraic and geometric multiplicity match up.

Theorem 2.4.

Let $A \in M_{n}(\mathbb{C})$ be symmetric. A is diagonalizable, if and only if, the matrix that diagonalizes is an orthogonal complex matrix.

For a given field $P, P[x]$ is denoted the ring of all polynomials $p(x)$ over the field P. In a similar way, for a square matrix A with elements of P, we denote as $P[A]$ the ring of all matrices that can be written in the form $p(A)$, where $p(x) \in P[x]$.

Theorem 2.5.

If A is a non-derogatory matrix of order n, then

$$
C(A)=\{p(A) \mid \partial(p) \leq n-1\}
$$

Theorem 2.6.

If A is matrix of the orden n, then the minimal and characteristic polynomial of A match up, if and only if, $C(A)=P[A]$.

As an immediate consequence of the theorems given previously we have:

Proposition 2.7.

If A is non-derogatory and $A \in T_{n}$, then $C(A) \subseteq T_{n}$.

Proposition 2.8.

Let $A \in S_{n}(\mathbb{C})$. If A is non-derogatory, then $C(A) \subseteq S_{n}(\mathbb{C})$.

Corollary 2.9.

For each symmetric non-derogatory matrix, an skew-symmetric not null matrix that commutes with it does not exist.

Corollary 2.10.

Let $A \in M_{n}(\mathbb{C})$, where A is written in the form $A=A_{s}+A_{a s}$. If $A_{s n}$ is non-derogatory and $A_{s n} \neq 0$, then $A \notin T_{n}$.

2.1.1. Case $n \times n$

This section will present topological characteristics of the T_{n} set in the case $\mathrm{n} \times \mathrm{n}$.

Proposition 2.11.

T_{n} satisfies the following conditions:
I. $\quad T_{n}$ is closed.
II. T_{n} is whole.
III. T_{n} is not compact.
IV. T_{n} is connected by pathways in star form.
V. $T_{n}-\{0\}$ is connected by pathways.
VI. if $H \in C\left(A^{T}\right)$, then $f^{\prime}(A)(H)=0$ for each $A \in T_{n}$, where

$$
\begin{aligned}
& f: M_{n}(\mathbb{C}) \rightarrow S_{n}(\mathbb{C}) \\
& X \rightarrow f(X)=X X^{T}-X^{T} X
\end{aligned}
$$

Proff.
I. First. f is differentiable in each point, for which we find
$f(X+H)=(X+H)(X+H)^{T}-(X+H)^{T}(X+H)$

$$
\begin{aligned}
& =X X^{T}+X H^{T}+H X^{T}+H H^{T}-\left(X X^{T}+X^{T} H+H^{T} X+H^{T} H\right) \\
& =X X^{T}-X X^{T}+X H^{T}+H X^{T}-X X^{T}-H^{T} X+H H^{T}-H^{T} H \\
& =f(X)+\left(X H^{T}+H X^{T}-X^{T} H-H^{T} X\right)+\left(H H^{T}-H^{T} H\right)
\end{aligned}
$$

Where

$$
\left(X H^{T}+H X^{T}-X^{T} H-H^{T} X\right)=f^{\prime}(X)(H)
$$

$$
\left(H H^{T}-H^{T} H\right)=R(H)
$$

This shows that f^{\prime} exists for each point and also

VISION
 ELECTRONICA

$$
f^{\prime}: M_{n}(\mathbb{C}) \rightarrow S_{n}(\mathbb{C})
$$

$$
H \rightarrow f^{\prime}(X)(H)=X H^{T}+H X^{T}-X^{T} H-H^{T} X
$$

This implies the continuity of f, which in consequence proofs that T_{n} is closed because $T_{n}=f^{\prime-1}(0)$.
II. Since T_{n} is closed and $M_{n}(\mathbb{C})$ is a whole space, then T_{n} is whole.
III. T_{n} is not compact, since is not bounded, since $\alpha I \in T_{n}$ for $\alpha \in \mathbb{C}$ and $\left\|\alpha I_{n}\right\|_{F}=|\alpha| \sqrt{n}$.
IV. Let $A_{1}, A_{2} \in T_{n}$ and
$\alpha(t)\left\{\begin{array}{c}2 t I+(1-2 t) A_{1}, \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t) I+(2 t-1) A_{2}, \text { if } \frac{1}{2} \leq t \leq 1\end{array}\right.$
Note that α is a continuous path, $\alpha(o)=A_{1}$ and $\alpha(1)=A_{2}$. Besides, if $A \in T_{n}, k_{1} I+k_{2} A \in T_{n}$, for k_{1} and k_{2} in \mathbb{R}, which implies that T_{n} is connected in star form around $\langle I\rangle$.
V. Case 1: If $A_{1}, A_{2} \notin\langle\mathrm{I}\rangle$, then the path is taken as in (iv).

Case 2: If $A_{2} \in\langle\mathrm{I}\rangle$, and $A_{1} \notin\langle\mathrm{I}\rangle$, then $A_{2}=k I$ with $k \in \mathbb{C}$. The path is defined as
$\alpha(t)=k I+(1-t) A_{1}$, which is continuous and different from zero for each 0 $\leq \mathrm{t} \leq 1$

Case 3: If $A_{1}, A_{2} \in\langle\mathrm{I}\rangle$, we take $A \in T_{n}$ with $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \oplus[0]_{n-2}$, where \oplus denotes direct adition and $[0]_{n-2}$ the square null matrix of order $n-2$ and α the path given by
$\alpha(t)\left\{\begin{array}{c}2 t I A+(1-2 t) A_{1}, \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t) A+(2 t-1) A_{2}, \text { if } \frac{1}{2} \leq t \leq 1\end{array}\right.$
Note that α is continous path, $\alpha(0)=A_{1}$ and $\alpha(1)=A_{2}$, and also that, $[0] \notin \alpha$.
VI. Is obtained directly from f^{\prime} found in (i).

2.1.2. Case 2×2

This section presents a complete description of the T_{2} set.

Proposition 2.12.

For each matrix in $A \in M_{2}(\mathbb{C}), A$ is either a scalar multiple of the identity matrix or a non-derogatory matrix.

Proof. Case1: If A is diagonalizable then A, either has two equal eigenvalues and in this case is a multiple of the identity, or its eigenvalues are different and is non-derogatory. Case 2: If A can't be diagonalized, then its canonic Jordan form is
$\left[\begin{array}{ll}\alpha & 1 \\ 0 & \alpha\end{array}\right]$ or $\left[\begin{array}{ll}\alpha & 1 \\ 0 & \beta\end{array}\right]$ with $\alpha \neq \beta$
In either of these cases A is non-derogatory.

Corollary 2.13.

For each $A \in M_{2}(\mathbb{C})$ where $A \notin\left\langle\mathrm{I}_{2}\right\rangle$, $C(A)=\{p(A) \mid \partial(p) \leq 1\}$

By direct calculation we have that T_{2} is given by:
$T_{2}=\left\{\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right], \left.\left[\begin{array}{ll}a & b \\ b & d\end{array}\right] \right\rvert\, a, b, d \in \mathbb{C}\right\}$

Proposition 2.14.

T_{2} satisfies the following conditions:
I. $\quad T_{2}-\left\langle I_{2}\right\rangle$ is a set with two connected components.
II. $T_{2}-C(A)$ is a connected set if A is skew-symmetric and disconnected if A is symmetric.
III. Locally T_{2} is a two or three dimensional manifold except for each point in $\left\langle I_{2}\right\rangle$.

Prof.
I. Note that form (2.1)

$$
T_{2}=\left\langle I_{2},\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right\rangle \cup S_{2}(\mathbb{C})
$$

Also,
$S_{2}(\mathbb{C})=\left\langle\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], I_{2}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\rangle$
From these we have that
$T_{2}-\left\langle L_{2}\right\rangle=\left(\left\langle L_{2},\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\rangle-\left\langle L_{2}\right\rangle\right) \cup\left(S_{2}(\mathbb{C})-\left\langle L_{2}\right\rangle\right)=\tilde{T}_{2} \cup \tilde{T}_{2}$
Where $\widehat{T_{2}}=\left\langle I_{2},\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\rangle-\left\langle I_{2}\right\rangle$ and
$\widetilde{T_{2}}=S_{2}(\mathbb{C})-\left\langle I_{2}\right\rangle$
Now let's see how $\widehat{T_{2}}$ is connected:
If
$A_{1}=k_{1} I_{2}+k_{2}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ and
$A_{2}=r_{1} I_{2}+r_{2}\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right] \in \widehat{T_{2}}$
Where $\quad k_{1}, k_{2}, r_{1}, r_{2} \in \mathbb{C} \quad$ with $k_{2}, r_{2} \neq 0$ and
$\alpha_{1}(t)=\left\{\begin{array}{cc}2 t\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]+(1-2 t) A_{1}, & \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t)\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]+(2 t-I) A_{2}, & \text { if } \frac{1}{2} \leq t \leq 1\end{array}\right.$
From this definition we conclude that α_{1} is a continuous path and that $\left\langle I_{2}\right\rangle \notin \alpha_{1}(t)$ for each $0 \leq t \leq 1$.

In a similar form, for $\widetilde{T_{2}}$ we have:
$A_{1}=k_{1} I_{2}+k_{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+k_{3}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and
$A_{2}=r_{1} I_{2}+r_{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+r_{3}\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right] \in \widetilde{T_{2}}$
Where $k_{1}, k_{2}, k_{3}, r_{1}, r_{2}, r_{3} \in \mathbb{C}$ with $k_{2}, k_{3}, r_{2}, r_{3} \neq 0$ and
$\alpha_{2}(t)=\left\{\begin{array}{c}2 t\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]+(1-2 t) A_{1}, \quad \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t)\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]+(2 t-I) A_{2}, \quad \text { if } \frac{1}{2} \leq t \leq 1\end{array}\right.$
From this definition we conclude that α_{2} is a continuous path and that $\left\langle I_{2}\right\rangle \notin \alpha_{2}(t)$ for each $0 \leq t \leq 1$.
II. If A is skew-symmetric $T_{2}-C(A)=\widetilde{T_{2}}$, which is connected by (i). If A is symmetric $T_{2}-C(A) \subseteq$ and $T_{2}-\left\langle I_{2}\right\rangle=\widehat{T_{2}} \cup \widetilde{T_{2}}$, which is disconnected because of
$T_{2}-C(A) \cap \widehat{T_{2}} \neq \emptyset$
And
$T_{2}-C(A) \cap \widetilde{T_{2}} \neq \emptyset$
This last one is satisfied if we take $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ matrix, which only commute with multiples of the identity.

III $T_{2}=\left\langle I_{2},\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\rangle \cup\left\langle\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], I_{2},\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\rangle$ that and $\left\langle I_{2},\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\rangle$ is a two manifold and $\left\langle\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], I_{2},\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\rangle$ is a three manifold.

2.1.3. Case 3×3

This section presents a description of the matrices with complex entries that are inside the T_{3} set.

VISION

ELECTRONICA

Propositon 2.15.

If A is an skew-symmetric non null matrix, then A is non-derogatory.

Proof.
Let
$A=\left[\begin{array}{ccc}0 & a & b \\ -a & 0 & c \\ -b & -c & 0\end{array}\right]$
With a, b and c complex non null scalars. The eigenvalues of A are: $0, \sqrt{a^{2}+b^{2}+c^{2}} i$ and $-\sqrt{a^{2}+b^{2}+c^{2}} i$. If $a^{2}+b^{2}+c^{2} \neq 0$, then the matrix has all its eigenvalues different and as a consequence its characteristic and minimal polynomial are equal; from this and from theorem 2.2 we conclude that A is non-derogatory. On the other hand, if $a^{2}+b^{2}+c^{2}=0$, then the characteristic polynomial of A is $p(x)=x^{3}$ and since $A^{2}=\left[\begin{array}{ccc}-a^{2}-b^{2} & -b c & a c \\ -b c & -a^{2}-c^{2} & -a b \\ a c & -a b & -b^{2}-c^{2}\end{array}\right] \neq 0$ And
$A^{3}=\left[\begin{array}{ccc}0 & -\left(a^{2}+b^{2}+c^{2}\right) & -b\left(a^{2}+b^{2}+c^{2}\right) \\ a\left(a^{2}+b^{2}+c^{2}\right) & 0 & -c\left(a^{2}+b^{2}+c^{2}\right) \\ b\left(a^{2}+b^{2}+c^{2}\right) & 0\end{array}\right]=0$
From these the characteristic and minimal polynomials of A coincide, from where we conclude that by theorem 2.2 A is non-derogatory.

Corollary 2.16.

If A is an skew-symmetric not null matrix, then
$C\left(A_{a s}\right)=\left\{p\left(A_{a s}\right) \mid \partial(p) \leq 2\right\}$

Proof.
This result is obtained from proposition 2.15 and from theorem 2.5 .

Proposition 2.17.

Let A beamatrix such as that itsskew-symmetric part $A_{a s}$ is not null, then $A \in T_{3}$, if and only if, $A=\alpha_{0} I_{3}+\alpha_{1} A_{a s}+\alpha_{2} A_{a s}^{2}$.

Proof.

Let's suppose that $A \in T_{3}$ and write A as $A=A_{s}+A_{a s}$, then $A_{s} A_{a s}=A_{a s} A_{s}$. From here and corollary 2.16 we have that $A \in C\left(A_{a s}\right)$, and because of these $A \in C\left(A_{a s}\right)$. Reciprocally, if $A \in C\left(A_{a s}\right)$ then there are complex scalars α_{0}, α_{1} and α_{2} such as,
$A=\alpha_{0} I_{3}+\alpha_{1} A_{a s}+\alpha_{2} A_{a s}{ }^{2}$, from where A commutes with transpose.

As a direct consequence of the last proposition we have:

Corollary 2.18.

$T_{3}=S_{3}(\mathbb{C}) \cup\left(\cup_{A_{a s} \neq 0} C\left(A_{a s}\right)\right)$

Proposition 2.19.

If Bis a symmetric matrix that commutes with an skew-symmetric matrix $A \neq 0$, then:
I. $B=\alpha I_{3}+\beta A^{2}$ with $\alpha, \beta \in \mathbb{C}$
II. $B \in\left\langle I_{3}\right\rangle$ or B has only two different eigenvalues, one of the wit geometric multiplicity of two.

Proof.
If B commutes with A then from corollary 2.16 we have that

$$
B=\alpha_{0} I_{3}+\alpha_{1} A+\alpha_{2} A^{L}
$$

with $\alpha_{0}, \alpha_{1}, \alpha_{2} \in \mathbb{C}$. Since $B=B^{T}$, then $\alpha_{1}=0$ and $B=\alpha 0 I_{3}+\alpha^{2} A^{2}$.

Let's consider

$$
\begin{equation*}
B=\alpha I_{3}+\beta A^{2} \tag{2.2}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{C}$. As A is skew-symmetric of 3 $\times 3$ order, its eigenvalues are: $0, \lambda$ and $-\lambda$ for some $\lambda \in \mathbb{C}$, as a consequence, the eigenvalues of A^{2} are: $0 \mathrm{y} \lambda^{2}$ with algebraic multiplicity of 2 . From the Schur triangularization theorem there is an unitary matrix U that upper triangularizes A^{2} and from the equality (2.2) such unitary matrix will also upper triangularizate B; from this last remark, we conclude that the eigenvalues of B are: α and $\alpha+\beta \lambda^{2}$. Now, if $\beta=0$ then $B \in\langle I 3\rangle$, on the other hand B has only two different eigenvalues, one of them with geometrical multiplicity 2 , if that isn't the case, the geometrical multiplicity would be 1 , and B will be non-derogatory, and from theorem 2.5
$C(B)=\{p(B) \mid \partial(p) \leq 2\} \subseteq S_{3}(\mathbb{C})$
in this case A will be a symmetric not null matrix, which would be a contradiction.

Corollary 2.20.

Each symmetric matrix B that commutes with an skew-symmetric matrix $A \neq 0$ is diagonalizable.

Proof.

From proposition 2.19 we have that $B \in\langle I 3\rangle$, and in this case, B is clearly diagonalizable or B has only two different eigenvalues, and one of them has geometric multiplicity of 2 . From this remark, we conclude that the geometric multiplicity of the eigenvalues of B are equal, which implies, from theorem 2.3, that the matrix is diagonalizable.

Proposition 2.21.

If A and B are non null skew-symmetric ma- trices with $\mathrm{A}^{2} \neq \alpha \mathrm{B}^{2}$ for each $\alpha \in \mathbb{C}$, then
$C(A) \cap C(B)=\langle I 3\rangle$

Proof.

Let $X \in C(A) \cap C(B)$ and let's write
$X=\alpha_{0} I_{3}+\alpha_{1} A+\alpha_{2} A^{2}=\beta_{0} I_{3}+\beta_{1} B+\beta_{2} B^{2}$

With $\alpha_{i}, \beta_{i} \in \mathbb{C}$, then
$\alpha_{1} A=\beta_{1} B$
And
$\alpha_{0} I_{3}+\alpha_{2} A^{2}=\beta_{0} I_{3}+\beta_{2} B^{2}$

Note that X is a symmetric matrix, if $\alpha_{1}, \beta_{1}=0$, then by $(2,3)$
$\mathrm{A}^{2}=\alpha \mathrm{B}^{2}$
For some $\alpha \in \mathbb{C}$ which is a contradiction.
Therefore X is symmetric matrix of the form
$X=\alpha_{0} I_{3}+\alpha^{2} A^{2}=\beta 0 I_{3}+\beta_{2} B^{2}$
Also, lets observe that by corollary 2.20
X is diagonalizable. On the other hand, if $\alpha_{2}=0$ or $\beta_{2}=0$, then $X \in\left\langle I_{3}\right\rangle$, on the opposite case
$\frac{X-\alpha_{0} I_{3}}{\alpha_{2}}=A^{2}$
And
$\frac{x-\beta_{0} I_{3}}{\beta_{2}}=B^{2}$
Since X is diagonalizable, then A^{2} and B^{2} are also diagonalizable, therefore, both

VISION

ELECTRONICA
matrices have a null eigenvalue. Let $\sigma(X)=\left\{\lambda_{1}, \lambda_{2}\right\}$ with $\lambda_{1}=\lambda_{2}$, let's asume, without a loss of generality that λ_{2} has algebraic multiplicity 2 , then by (2.4) and (2.5)
$\frac{\lambda_{1}-\alpha_{0}}{\alpha_{2}}=0$ y $\frac{\lambda_{1}-\beta_{0}}{\beta_{2}}=0$

Or
$\frac{\lambda 2-\alpha_{0}}{\alpha_{2}}=0$ y $\frac{\lambda 2-\beta_{0}}{\beta_{2}}=0$

Or
$\frac{\lambda 1-\alpha_{0}}{\alpha_{2}}=0$ y $\frac{\lambda 2-\beta_{0}}{\beta_{2}}=0$

Note that (2.6) and (2.7) can't be give, since in that case by (2.4) and (2.5) $\mathrm{A}^{2}=\alpha \mathrm{B}^{2}$ for some $\alpha \in \mathbb{C}$. Like that $\alpha_{0}=\lambda_{1}$ and $\beta_{0}=\lambda_{2}$. Given that the algebraic multiplicity of λ_{2} is 2 , then 0 is an eigenvalue of B^{2} with algebraic multiplicity of 2 , because of $\sigma\left(B^{2}\right)=\{0\}$ and since B^{2} is diagonalizable, its necessarily that $\mathrm{B}^{2}=0_{3 \times 3}$ therefore $X \in\langle I 3\rangle$.

Lemma 2.22.

I. If B is a non null 3×3 symmetric matrix, we have:

1. B is non-derogatory for the following cases:
2. B has 3 different eigenvalues.
3. B has 2 eigenvalues both with geomet ric multiplicity of one.
in any of these cases $C(B) \subseteq S_{3}(\mathbb{C})$.
II. B is derogatory for the following cases:
4. B has only one eigenvalue with ge-
ometric multiplicity of three, and therefore $B \in\langle I 3\rangle$.
5. B has only one eigenvalue with geometric multiplicity of two, and therefore it won't exist a non null skew-symmetric matrix that commute with B.
6. B has two eigenvalues, one of them with geometric multiplicity of two, and therefore $B \in C(A)$ one for some non null skew-symmetric matrix A.

Proof.

I. a.b.c Are an immediate consequence of proposition 2.8.
II. a Is a consequence of theorem 2.3.
II. b Is a consequence of proposition 2.19.
II. Let
$\sigma(B)=\left\{\lambda_{1}, \lambda_{2}\right\}$ with $\lambda_{1} \neq \lambda_{2}$ without loss of generality let's assume that λ_{2} has geometric multiplicity of 2. From there and by theorem $2.3 B$ is diagonalizable, therefore by theorem 2.4 there will exist a complex orthogonal matrix Q that will diagonalize through similarity B. If there is a non null skew-symmetric matrix X such that $B \in C(X)$. Is enough to proof that the equation

$$
\mathrm{X}^{2}+\lambda_{1} \mathrm{I}_{3}=\mathrm{B}
$$

has a solution inside the non null skew-symmetric matrices set. In effect, one such skew-symmetric matrix that is a solution of the equation (2.9) is giv-
$X=i \sqrt{\lambda_{2}-\lambda_{1}} Q^{T}\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right] Q$

Where Q is the ortogonal matrix that diagonalices B.

Next there is a list of properties of non null skew-symmetric matrix centralizers.

Proposition 2.23.

Let A be a non null skew-symmetric matrix, then:
I. $\operatorname{dim}(C(A))=3$.
II. $\operatorname{dim}(C(A) \cap S 3(C))=2$.
III. $C(A)-\langle I 3\rangle$ is a connect set.
IV. $\mathrm{U} C(A)$ is a connect set
V. $\mathrm{U} C(A)$ is not a convex set.

Proof.

I. Let α_{0}, α_{1} and $\alpha 2$ be complex scalars. Considering the linear combination
$\alpha_{0} \mathrm{I}_{3}+\alpha_{1} \mathrm{~A}+\alpha_{2} \mathrm{~A}_{2}=0$
For this to be true the scalars will necessarily be null. From (2.10) we obtain:

$$
\begin{align*}
& \alpha_{1} A=0 \tag{2.11}\\
& \alpha_{0} \mathrm{I}_{3}+\alpha_{2} \mathrm{~A}^{2}=0 \tag{2.12}
\end{align*}
$$

Then by (2.11) $\alpha_{1}=0$. Now, if $\alpha_{0} \neq 0$ from (2.12)
$I_{3}=\frac{-\alpha_{2}}{\alpha_{0}} A^{2}$
Which necessarily implies $\alpha_{2} \neq 0$ and $\sigma\left(A^{2}\right)=\left\{\frac{-\alpha_{0}}{\alpha_{2}}\right\}$ therefore $0 \notin$ $\sigma\left(\mathrm{A}^{2}\right)$, which is a contradiction. Similarly the condition $\alpha_{2} \neq 0$ leads to a contradiction.
II. Let $X, Y \in C(A)-\langle I 3\rangle$, where

$$
\mathrm{X}=\alpha_{0} \mathrm{I}_{3}+\alpha_{1} \mathrm{~A}+\alpha_{2} \mathrm{~A}^{2}
$$

$$
\mathrm{Y}=\beta_{0} \mathrm{I}_{3}+\beta_{1} \mathrm{~A}+\beta_{2} \mathrm{~A}^{2}
$$

Note that

$$
\left(\alpha_{1}, \alpha_{2}\right),\left(\beta_{1}, \beta_{2}\right)=(0,0)
$$

Let's consider the following cases:

Case 1:

If $\alpha_{1} \neq 0$ we take the continuous path $\psi_{1}(t)=t X+(1-t) A^{2}$ for some
$0 \leq t \leq 1$, because in the contrary case we will have that
$\mathrm{t}\left(\alpha_{0} \mathrm{I}_{3}+\alpha_{1} \mathrm{~A}+\alpha_{2} \mathrm{~A}^{2}\right)+(1-\mathrm{t}) \mathrm{A}^{2}=\mathrm{kI}_{3}$
for some $k \in \mathbb{C}$,
From where
$t \alpha_{0}=k$
$t \alpha_{1}=0$
$t \alpha 2+(1-t)=0$
These equalities give $t=0$ and $1=0$, which is an absurd.

Case 2:

If $\alpha 2 \neq 0$ we take the continuous path $\psi_{2}(t)=t X+(1-t) A$ for some $0 \leq t \leq 1$, and in a way similar to case $1 \psi 2 \notin\langle I 3\rangle$ for each $0 \leq t \leq 1$.

For cases $\beta 1 \neq 0$ and $\beta 2 \neq 0$ we take the continous paths:

VISION
ELECTRÓNICA
$\psi 3 \quad(\mathrm{t})=\mathrm{tY}+(1-\mathrm{t}) \mathrm{A}^{2}$ and $\psi 4(t)=t Y+(1-t) A \quad$ for some $0 \leq t \leq 1$, respectively. In a similar way to case 1 , it easy to observe that $\psi 3, \psi 4 \notin\langle I 3\rangle$ for each $0 \leq t \leq 1$.

Now, let's build paths to connect X with Y that won't pass through $\langle I 3\rangle$:

1. If $\alpha 1, \beta 1 \neq 0$ we take $\phi_{1}(t)$

$$
\begin{cases}(1-2 t) X+(2 t) A^{2}, & \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t) A^{2}+(2 t-1) Y, & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

2. If $\alpha 1, \beta 1 \neq 0$ we take $\phi 2(t)$

$$
\begin{cases}(1-3 t) X+(3 t) A^{2}, & \text { if } 0 \leq t \leq \frac{1}{3} \\ (2-3 t) A^{2}+(3 t-1) A, & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ (3-3 t) A+(3 t-2) Y, & \text { if } \frac{2}{3} \leq t \leq 1\end{cases}
$$

Note that any path that connect A^{2} with A is not present in $\langle I 3\rangle$ since $\operatorname{dim}(C(A))=3$.
3. If $\alpha 2, \beta 1 \neq 0$ we take $\phi 3(t)$
$\begin{cases}(1-3 t) X+(3 t) A, & \text { if } 0 \leq t \leq \frac{1}{3} \\ (2-3 t) A+(3 t-1) A^{2}, & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ (3-3 t) A^{2}+(3 t-2) Y, & \text { if } \frac{2}{3} \leq t \leq 1\end{cases}$
4. If $\alpha 2, \beta 2 \neq 0$ we take $\phi 4(t)$
IV. $\begin{cases}(1-2 t) X+(2 t) A, & \text { if } 0 \leq t \leq \frac{1}{2} \\ (2-2 t) A+(2 t-1) Y, & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}$
tween two elements of $U C(A)$ an element of $\langle I 3\rangle$, since $\langle I 3\rangle \subseteq \cap C(A)$ and $C(A)$ is a vectorial \mathbb{R}-space.
V. Let

$$
C=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], D=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right], E=I_{3}+C+C^{2}
$$

And $F=I_{3}+D+D^{2}$. Then

$$
\left[\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right]=\frac{1}{2} E+\frac{1}{2} B \notin \mathrm{U} C(A)
$$

Therefore $\mathrm{U} C(A)$ is not a convex set.

Proposition 2.24.

$T 3-\left\langle I_{3}\right\rangle$ Is a connect set.
Proof.
Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be different complex scalars and
$B=\left[\begin{array}{ccc}\alpha_{1} & 0 & 0 \\ 0 & \alpha_{2} & 0 \\ 0 & 0 & \alpha_{3}\end{array}\right]$
A non-derogatory symmetric matrix that is not in $C(A)$ for each non null skew-symmetric matrix A from proposition 2.19. Let's take the path
$\alpha(t)=t B+(1-t)\left[\begin{array}{ccc}\alpha_{1} & 0 & 0 \\ 0 & \alpha_{2} & 0 \\ 0 & 0 & \alpha_{3}\end{array}\right]$
for some $t \in[0,1 / 2]$. It is easy to observe that $\alpha(t) \notin\left\langle I_{3}\right\rangle$ for each $t \in[0,1 / 2]$. Now, if $t=1 / 2$ we obtain a symmetric matrix \hat{B} with two different eigenvalues, one of them with geometric multiplicity of 2, from proposition 2.19 there will exist a non null skew-symmetric matrix \hat{A}, such
that $\hat{B} \in C(\hat{A})$ and from numeral (iii.) we can connect through a continuous path in $C(\hat{A})-\left\langle I_{3}\right\rangle \hat{B}$ with any element inside this set.

Bibliography

[1] D. A. Suprunenko, and R. I. Tyshkevich, "Commutative matrices", Academic Press, 1968.
[2] O. Taussky, "A generalization of matrix commutativity", Linear Algebra and its Applications, 2 pp. 349-353, 1969.
[3] L. Elsner, and C. R. Ikramov, "Normal matrices: An Update", Linear Algebra and its Applications, pp. 79-98, 1997.
[4] R. Grone, C. R. Johnson and H. Wolkovicz, Normal matrices, Linear Algebra and its Applications, pp. 213-225, 1987.
[5] G. Goodson, "Matrices That Commute with Their Con- jugatevand Transpose", Advances in Linear Algebra \& Matrix Theory, 3 pp. 22-25, 2013.
[6] R. Horn, and C. Johnson, "Topics in Matrix Analysis" Cambridge U.P., 1991.
[7] K. Golden, G. Grimmett, R. James, G. Milton and P. Sen, "Mathematics of Multiscale Materials", Springer, pp. 18-19, 1998.
[8] Z. Horváth, and L. Palla, "Nonperturbative Quantum- field-theoretic Methods and Their Applications:" proceed- ings of the 24th Johns Hopkins workshop, Bolyai College, Budapest, Hungary, World Scientific, pp. 14-17, august 2000.
[9] R. Horn and C.Johnson, "Matrix Analysis", Cambridge U.P., 1985.

