
Visión Electrónica Vol. 10 No. 2 (2016) • Julio-Diciembre • p.p. 179-183 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

Visión Electrónica
Más que un estado sólido

http: revistas.udistrital.edu.co/ojs/index.php/visele/index

VISION ELECTRONICA

A CASE-STUDY VISION

Quadratic Assignment problem (QAP) on GPU through a
master-slave PGA

Problema de asignación quadrática (PAC) sobre GPU a través de una
PGA Maestro-Esclavo

Julián Octavio Castellanos Millán.1, Vı́ctor Hugo Amarillo Calvo.2, Roberto Manuel Poveda Chaves.3

información del art́ıculo abstract

Historia del art́ıculo:

Enviado: 05/10/2016

Recibido: 05/11/2016

Aceptado: 15/11/2016

Keywords:

Parallel Genetic Algorithms (PGA)

Compute Unified Device

Architecture (CUDA)

Quadratic Assignment Problem

(QAP)

Graphics Processing Unit (GPU)

This document describes the implementation of a Master–Slave Parallel Genetic Algorithm

(PGA) on Graphic Processing Units (GPU) to find solutions or solutions close- to optimal

solutions to particular instances of the Quadratic Assignment Problem (QAP). The

efficiency of the algorithm is tested on a set of QAPLIB standard library problems.

resumen

Palabras clave:

Algoritmos genéticos paralelos

(AGP)

Cálculo de Arquitectura Unificada

de Dispositivos (CAUD)

Problema de Asignación Cuadrática

(PAC)

Unidad de Procesamiento gráfico

(UPG)

Este documento describe la implementación de un algoritmo genético paralelo maestro-
esclavo (AGP) en unidades de procesamiento gráfico (UPG) para encontrar soluciones -o
soluciones cercanas a soluciones óptimas para casos particulares del Problema de asignación
Cuadrática (PAC). La eficiencia del algoritmo se prueba en un conjunto de problemas de
la biblioteca estándar QAPLIB.

1Development in informatics and Technology Stefanini Colombia S.A. Bogotá, Colombia. E-mail: julcas.ud@gmail.com
2Development Team Manager in ALDEAMO. Bogotá, Colombia. E-mail: torvic87@gmail.com.
3Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. E-mail: rpoveda@udistrital.edu.co.

Citar este art́ıculo como: J. O. Castellanos, V. H. Amarillo, R. M. Poveda. “ Quadratic Assignment problem (QAP) on GPU through
a master-slave PGA ” . Visión Electrónica, algo más que un estado sólido, Vol. 10, No. 2, 179-183, julio-diciembre 2016.

180 J. O. Castellanos, V. H. Amarillo, R. M. Poveda.

1. Introduction

The QAP is a combinatorial problem introduced
by Koopmans and Beckmann in 1957 [1] and belongs
to the NP-complete problems [2], the QAP consists of
finding the optimal assignment of facilities to locations,
knowing the distances between cities and the flow
between locations. This problem is considered one of the
most complex combinatorial optimization problems and
it is the model of many problems in the real world, like
facilities location, fields planning, computer keywords
design, electronic keyboard cabling and other areas [3].

Diverse exact methods have been used, like Branch
and Bound, Dynamic Programming, or Back-tracking
to solve this problem; [4] shows outstanding research
applying these methods to instances with a relatively
small problem size; to this day there is no exact algorithm
that can solve in a reasonable computational time
problems of n > 40. QAPLIB library [5] presents a great
quantity of QAP test problems of a given size along with
the better known solutions. Metaheuristics methods have
emerged in the last 20 years to approach the problem; in
particular Evolutionary Computation, as a robust and
flexible alternative to solve these complex optimization
problems; modern hardware architectures like GPU offer
the possibility to execute those algorithms in parallel,
thus diminishing execution time significantly.

2. Preliminaries

2.1. Quadratic Assignment Problem QAP

QAP consists of assigning a set of n facilities in a set
of locations; cost is a function of the distance between
locations and the flow between facilities. The objective
is to assign each facility to each location so that the cost
is minimized.

The mathematical model (that corresponds to the
Koopmans & Beckmann’s original formulation) is (1):

min
σ∈Sn

n∑

i=1

n∑

j=1

fijdσ(i)σ(j) (1)

Where D = (dkl) is a distance matrix, F = (fij)
is a flow matrix (D and F both size n × n) and
Sn = {σ | σ : N → N}, where N = {1, 2, ..., n} (it
is often said that n is the QAP size). Each individual
product fijdσ(i)σ(j) of the previous formula is the cost to
assign facility i to location σ(i) and facility j to location
σ(j).

Sahi & Gonzalez -besides showing that the QAP
is NP-complete- show that it is impossible to find an
approximate solution in polynomial time within any
constant factor of the optimal solution unless [2].

Another reason that highlights the QAP complexity
is that many other outstanding NP- complete problems
like LAP (Linear Arrangement Problem), GPP
(Graph Partitioning Problem), MCP (Maximum Clique
Problem), PPG (Packing Problems in Graphs) and TSP
(Travelling Salesman Problem) are just particular QAP
instances [6]. For instance:

TSP : min
σ∈Sn

n−1∑

i=1

dσ(i)σ(i+1) + dσ(n)σ(1)

≡ min
σ∈Sn

n−1∑

i=1

fi(i+1)dσ(i)σ(i+1) + fn1dσ(n)σ(1)

≡ min
σ∈Sn

n∑

i=1

n∑

j=1

fijdσ(i)σ(j) : QAP (2)

Taking for the QAP a D = (dij) as the TSP matrix
distances and a F = (fij) as an adjacency matrix of a n
vertices Hamiltonian cycle, F can be the matrix:

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

2.2. Genetic Algorithms

Genetic Algorithms (GA) is one of the most
outstanding approaches in the field of evolutionary
algorithms and are defined as general purpose iterative
adaptive search procedures with the advantage that they
describe in an abstract and rigorous way the collective
adaptation of a population of individuals to a given
environment, based on a behavior similar to a natural
system [7].

The following pseudo code in algorithm 1 summarizes
a simple AG:

Algorithm 1. Simple Genetic Algorithm

To produce an initial population of individuals.
CYCLE while the termination condition cannot be
found.

Evaluate the aptitude of all individuals.

Universidad Distrital Francisco José de Caldas - Facultad tecnológica

Quadratic Assignment problem (QAP) on GPU through a master-slave PGA 181

Select individuals apt for reproduction.
Produce new individuals.
Generate a new population inserting some new

individuals and discarding some bad old
individuals.

Mutate some individuals.
Final CYCLE while

2.3. Parallel Evolutionary Algorithms

Parallel Evolutionary Algorithms come to existence
in a natural manner, since each individual is
considered an independent unit [8]. Parallel Evolutionary
Algorithms, in essence, have the same function as
traditional genetic algorithms, but ease problem
solving by distributing workloads and operating in a
simultaneous manner on the domain of the problem
by allowing an agile solution with respect to time and
computational effort [9].

There are different types of Parallel Evolutionary
Algorithms; they are classified according to the way
population individuals interact and of how their size is
defined; the master-slave, fine grain and coarse grain
models are outstanding [9], this document uses the
master-slave model to implement a QAP solution.

• Master–Slave model (Global parallelization
model)

This model parallelizes an Evolutionary Algorithm
in the level of its fitness function. A master
process distributes multiple individuals to various slave
processes; they return right away the fitness of those
individuals. This procedure results efficient given that
the evaluation of the fitness function is the task within
an Evolutionary Algorithm that consumes a greater
processing time, (Figure 1).

Figure 1: Master-Slave Model.

Source: own.

2.4. GPU’s

Parallel multiprocessing architectures like Graphic
Processing Units (GPU) [10] have significantly evolved

in the last 7 years, to increase the graphic processing
capabilities in the game industry, to make them faster
and more realistic. Such multiprocessing have been used
in science for the solution of problems in the real world
(computational biology, cryptography, among others)
with the help of APIs like CUDA (Compute Unified
Device Architecture), OPEN CL, or Direct Compute that
exploit those GPU advantages. So, now the term GPGPU
is well known (General Purpose Graphic Processing
Units).

The main advantage of a GPU is its structure—
each GPU contains up to hundreds of cores grouped in
multiprocessors of SIMD architecture (one instruction,
multiple data).

Evolutionary algorithms are inherently parallel in
nature, so they are favored to be implemented on GPU,
but considering the challenge of how to adequately
handle the access to the device memory.

The QAP has been little studied with parallel models,
evolutionary techniques and parallel multiprocessing at
the same time. The most important work in this field are:

In [11] they combine evolutionary computation and
local search to solve QAPs, the authors emphasize the
fact that, to the day, this hybrid implementation had
been scarcely used. This work maps the search space
in the GPU memory hierarchy minimizing GPU-CPU
data transfer; texture memory is dedicated to aptitude
function evaluation. The Authors leave the door open
to consider multi-GPU architectures that work with a
parallel GPU search algorithm.

In [12] the authors use Evolutionary Algorithms to
solve the QAP. They implement a Cellular Evolutionary
or fine grain Algorithm on a n-dimensional toroidal grid
as an extension of the usual bi-dimensional grids.

In [13] they use metaheuristics but based on
trajectories such as TS (Tabu Search), SA (Simeled
Annealing) and PSO (Particle Swarm Optimization)
along with 3-opt, 3-opt greedy and VZN to solve the
QAP. The authors show that the combination of 3-opt
and TS offers the best results to problems in QAPLIB
of 12 to 30 nodes.

In [14] they use ACO to solve the QAP. They combine
ACO and an efficient method to handle 2-opt heuristics
properly assigning CUDA threads; the authors use only
one GPU but make it clear that it would be useful to use
more than one and propose to use the same algorithm
but extended to a Tabu Search.

Visión Electrónica Vol. 10 No. 2 (2016) • Julio-Diciembre • p.p. 179-183 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

182 J. O. Castellanos, V. H. Amarillo, R. M. Poveda.

3. Implementation

An AG global population of 15360 is initialized in the
CPU memory and is sent to the GPU device memory so
that each thread (256 in total), distributed in 2 blocks,
process a fraction of it. Each global population fraction
is called subpopulation, and each is composed of 60
individuals where, on each, an AG is executed.

A Roulette Selection is executed [15], a generational
Partially Matched Crossover (PMX) [16] with a
probability rate of 0,25, and a Simple Inversion Mutation
(SIM) [16] with a probability rate of 0,05 (except for
subpopulations 0 and 128, they have a mutation rate of
0,6 to give that algorithm a greater level of diversity);
tests were made with other selection, crossover and

mutation techniques, being the aforementioned the ones
that gave the best results.

Each thread makes on each subpopulation a given
number of iterations (5, 7, 10, 13, or 15) then, the
host examines the general termination condition for
all threads. If the condition is satisfied the algorithm
ends, otherwise, it is considered that individuals
migration phase between subpopulations according
to a ring topology, more precisely 5 % of the ith
subpopulation individuals replace the 5 % of individuals
of the subpopulation handled by the thread (i +
1)(mod256),(∀i, 0 ≤ i ≤ 255); in each previous 5 % there
is also a 0.8 probability to include the best individual of
the i th population to the (i+ 1)(mod256). The figure 2
describes the implementation.

Figure 2: Flowchart PGA Implementation.

Source: own.

4. Results and conclusions

The following results were obtained for 13 problems of
the size n = 16 and two problems size n = 20 included in
the QAPLIB library. In table 1 we can see the best results
found for each problem, with the number of iterations

that run the genetic algorithm in each subpopulation
(only the best result is shown, be it in iteration 5, 7,
10, 13, or 15), the quantity of executions controlled by
the host and the gap between the found solution and
the best reported solution in QAPLIB, according to the
formula 3:

Universidad Distrital Francisco José de Caldas - Facultad tecnológica

Quadratic Assignment problem (QAP) on GPU through a master-slave PGA 183

gap =
Best solution found − Best solution reported in QAPLIB

Best solution reported in QAPLIB
(3)

Tabla 1: Obtained results. Source: own.

Name
Instance

Size of
Instance

Solution
QAPLIB

Iteration of
algorithm genetic

Executions
in host

Solution
found

gap

Esc16a 16 68 5 5 68 0
Esc16b 16 292 5 1 292 0
Esc16c 16 160 5 5 160 0
Esc16d 16 16 5 3 16 0
Esc16e 16 28 5 5 28 0
Esc16f 16 0 5 1 0 0
Esc16g 16 26 10 3 26 0
Esc16h 16 996 7 2 996 0
Esc16i 16 14 5 2 14 0
Esc16j 16 8 5 6 8 0
Had16 16 3720 5 31 3720 0
Nug16a 16 1610 7 83 1610 0
Nug16b 16 1240 5 95 1240 0
Nug20 20 2570 13 122 2614 1,71
Had20 20 6922 10 154 6926 0,06

The implementation of the algorithm only considered
the local memory of the threads and the global memory
of the device; making use of other types of memory that
offer GPU (shared memory, texture memory) and with a
combination of them there could surely have been better
results in a lesser number of iterations (executions).

It can be concluded that using a fine grain or coarse
grain parallel model or a hybrid between the two (as
Grisland did [17]), it is possible to tackle problems
greater that n = 16 or n = 20, and the use of local
search heuristics would surely help find good results for
these greater instances of the problem.

References

[1] T. Koopmans and M. Beckman, “Assignment
problems and the location of economic activities”,
Econometrica, vol. 25, pp. 53-76, 1957.

[2] S. Sahni and T. Gonzalez, “P-complete
approximation problems”, Journal of the Association
for Computing Machinery, vol. 23, pp. 555–565, 1976.

[3] R. Burkard, E. Cela, P. Pardalos and L. Pitsoulis,
“The quadratic assignment problem.,” Handbook of
Combinatorial Optimization, vol. 2, pp. 241-338,
1998.

[4] E. Loiola, N. de Abreo, P. Boaventura-Nett, P.
Hahn and T. Querido, “A survey for the quadratic
assignment problem,” European Journal of Operation
Resarch, vol. 176, pp. 657-690, 2007.

[5] R. Burkard, Ç. E., S. Karisch and R. F.,
“QAPLIB - A Quadratic Assignment Problem

Library,” Septiembre 2015 [Online]. Available:
http://www.opt.math.tu-graz.ac.at/qaplib/

[6] R. Burkard, “The Quadratic Assignment Problem,”
Handbook of Combinatorial Optimization,
pp.2741-2814, 2 nd Edition. Springer: New York,
2013.

[7] Z. Michalewicz, “Genetic Algorithms + Data
Structures = Evolution Programs,” Springer- Verlag,
1994.

[8] K. De Jong, W. Spears and D. Gordon, “Using
genetic algorithms for concept learning.,” Machine
Learning, vol. 13, no. 2, pp. 161-188, 1993.

[9] M. Tomassini, “A survey of genetic algorithms.,”
Annual Reviews of Computational Physics, World
Scientific, vol. 3, pp. 87-118, 1995.

[10] Nvidia, “CUDA GPUs” Agosto 2015 [Online].
Available: https://developer.nvidia.com/cuda-gpus

[11] T. Luong, N. Melab and E. Talbi, “Gpu-based
island model for evolutionary algorithms,” Genetic
and Evolutionary Computation Conference, pp.
1089-1096, 2010.

[12] N. Soca, J. Blengio, M. Pedemonte and P.
Ezzatti, “Pugace, a cellular evolutionary algorithm
framework on gpus,” IEEE Congress on Evolutionary
Computation, pp. 3891- 3898, 2010.

[13] M. Bashiri, “An analytical comparison to
heuristic and meta-heuristic solution”. Computers
and Industrial Engineering (CIE), 2010 40th
International Conference on

[14] S. Tsutsui and N. Fujimoto, “An analytical study
of gpu computation for solving qaps by parallel
evolutionary computation with independent run,”
IEEE, 2010.

[15] L. Thiele and T. Blickle, “A comparison of selection
schemes used in genetic algorithms,” TIK Report of
Swiss Federal Insititute of Technology, 1995.

[16] C. Kuijpers, P. Larrañaga, R. Murga, I. Inza and S.
Dizdarevic, “Genetic Algorithms for the Travelling
Salesman Problem: A Review of Representations and
Operators,” Artificial Intelligence Review, vol. 13, no.
2, pp. 129-170, 1999.

[17] E. León, J. Gómez and R. Poveda, “Grisland: A
parallel genetic algorithm for finding near optimal,”
GECCO, 2009.

Visión Electrónica Vol. 10 No. 2 (2016) • Julio-Diciembre • p.p. 179-183 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

