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This article describes the most important aspects in the diagnosis of failures on

industrial processes. An analysis of process safety is seen from monitoring tools

including expert systems as well as intelligent hybrid models. The article continues

to identify aspects such as reliability, risk analysis, fault diagnosis techniques and

industrial control and safety systems in processes. Reliability and risk analysis

provide important information in a process safety tool; analyzes such as HAZOP,

FMEA, Fault trees and Bow tie are described through this article. Then compiled

and summarized the different techniques and models of fault diagnosis concluding

with a presentation of control and safety systems in an industrial process.
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En este art́ıculo, se describen los aspectos más importantes en la realización de

diagnóstico de fallos en procesos industriales. Un análisis de la seguridad en procesos

es visto desde las herramientas de supervisión incluyendo los sistemas expertos

aśı como modelos h́ıbridos inteligentes. El articulo continua identificando aspectos

como la confiabilidad, análisis de riesgos, técnicas de diagnóstico de fallos y los

sistemas industriales de control y seguridad en procesos. La confiabilidad y el

análisis de riesgos aportan información importante en una herramienta de seguridad

de procesos; análisis como HAZOP, FMEA, Fault trees y Bow tie son descritos

en este art́ıculo. Seguidamente se hace un compilado y resumen de las diferentes

técnicas y modelos de diagnóstico de fallos concluyendo con una presentación de

los sistemas de control y seguridad en un proceso industrial.
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1. Introduction

In automatic control systems the supervision
functions serve to indicate undesirable or not permitted
processes and states and take appropriate actions
that maintain performance and avoid damage or harm
conditions. From supervision we can discriminate the
following functions:

• Monitoring: The measurable variables are check
with respect to their tolerances and alarms that are
generated to alert the operators.

• Supervision: Supervision with fault diagnostic:
This action is developed from the analysis of the
measurable variables detecting the symptoms of a
possible failure [1, 2].

• Automatic protection: Actions for counteract
the possible damages. A system is said to be
diagnosable, if whatever the behavior of the system
is, we will be able to determine without ambiguity
a unique diagnosis.

The diagnosability of a system is generally computed
from its model [3], and in applications using model-based
diagnosis, such a model is already present and does not
need to be built from scratch. The fault diagnosis in
general consists on the following three important aspects:
Fault detection: it consists in to discover the existence
of faults in the most useful units in the process, Fault
isolation: it is referred to localize (classified) the different
faults, and Fault analysis or identification: it consists into
determinate the type, degree and origin of the fault [4].
In Figure 1, is presented the supervision scheme in which
the first level involves the instrumentation and actuators
of the system. The next level contains the acquisition and
control equipments followed by the supervision stage.
To determine the events and signals of a procedure is
necessary to analyze and to consider the initial conditions
of the process and to identify the most possible failure
modes. Hence, a complex system requires a division into
subsystems for allowing a reliable analysis.

Safety requirements and the increasing efficiency in
monitoring, control and management of complex systems
motivates great interest and efforts devoted to the
development of fault detection and isolation techniques.
Many popular approaches are available for identifying
faults. Among them, methods based on signals are widely
used and try to extract useful information from the
analysis of specific signals through a comprehensive and
rigorous analysis of the main statistical methods used to
detect changes [5].

Figure 1: Supervision squeme.

Source: own.

The model-based methods, like parity or space-based
approaches observers [6], used a mathematical model of
the plant to explore the implicit analytical redundancy
relations model to monitor inconsistencies between the
model and data measured. However, these methods
suggest a big demanding of computational load. Other
popular methods as those based on fault trees [7] or
causal graphs and propagation [8] were based on a
qualitative model of the plant. Other approaches have
been developed by expert systems based on artificial
intelligence techniques [9].

On the other hand, hierarchical clustering methods
were used to carry out pattern matching correlation
[10] in which some frequent patterns multiple alarm
correlation may be discovered to have the ability to
reflect the sequence of normal operation. Any change
in the pattern may indicate abnormal alterations sensor
degradation or malfunction.

Hybrid intelligent systems are an important future
direction to research and to develop in diagnostic
systems. The disadvantage of diagnostic systems based
on a single method is not versatile enough to control
systems on a large scale, so these systems need to
integrate various techniques to make efficient diagnosis.
The integration of diagnostic methods combines many
types of techniques of fault detection; in particular,
the complementary combination of quantitative and
qualitative models can greatly reduce the false alarm
rate. All these methods have their advantages and their
specific fields of application, which can be implemented
efficiently on a general approach for fault detection in
compliance with the following characteristics:

• The modularity and exibility:The model
must describe any element of the process and
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224 J. W. Vásquez C.

environmental assessment. These models should
be implemented in a library to use it in the
construction of diagnostic algorithm.

• Hierarchical design: According to a top-down
approach the model of fault detection could be
create diagnostic procedures in different extraction
levels.

• Data fusion: The diagnostic system should
be able to extract information from many
different sources: local signal analysis, intelligent
instrumentation, empirical knowledge, logical
conditions.

• Temporal Analysis: The diagnostic system
can provide useful information to complete the
diagnosis analyzing the dynamic events detection
in abnormal behavior of the system.

• Compatibility with industry standards: The
Failure Mode Effects (FMEA) is a method to
determine the possible failure occurrences in
the industry. Then, the diagnostic system for
the industry must apply this method in the
determination of the failures to be detected.

Concluding, the goal to obtain an efficient and reliable
methodology in safe process must include the following
aspects, see Figure 2: Reliability & risk management,
Control & safety systems, and Fault diagnosis techniques.

Figure 2: CBAM- Chronicle Based Alarm Management
analysis [11–13].

2. Reliability and risk management

Reliability can be assumed as the ability of a system
or component to perform its required functions under

stated conditions for a specified time; meanwhile, safety
is the state of being ”safe”. In other words, it is
the condition of being protected from harm or other
non-desirable outcomes. Consequently, if a system is
reliable, supposedly it is also safe. For example, a new
pistol is reliable, but is it safe, so if exists a risk of hurt or
damage, the use of a pistol needs strict conditions for its
manage. Likewise, it happens in the industrial processes,
if there exist the risk of that something wrong occurs,
this situation or risk needs management.

Additionally, it is common to confuse safety with
security; security is the degree of resistance to, or
protection from harm. It applies to any vulnerable or
valuable asset, such as a person, dwelling, community,
item, nation, or organization. In short, safety is the
minimization of a risk of occurrence in accidents and
serious incidents in the system, equipments (prevention).
On the othne hand, security is responsible for the control
of incidents of infrastructure, property and persons
against acts of unlawful interference (protection).

The relationship between safety and reliability had
been enhanced since the Industrial Revolution. The
use of new sources of power, using water or steam,
nuclear plants and petro- chemical industry not only
have given great potential for the rapid development of
manufacturing technology, likewise provided a terrible
potential for death and injury when processes went
wrong. Due to the demand for new machinery and the
use of chemical elements such as oil and gas, the number
of fatal accidents has increased. Although, designing new
machines make possible the growing scientific knowledge,
designers still lean strongly on past experience [14]. On
the other hand, based on this experience, some risks can
be accepted.

In Figure 3 for example, is represented a framework of
the risk assessment process, which contains three levels
of activities: Risk analysis, Risk assessment, and Risk
management.

Risk analysis is a technical process that initiates
defining the system continuing with the hazard
identification, frequency analysis, also consequence
modeling, and concluding with the risk calculation.
The risk assessment level presents the actions of risk
acceptability, risk reduction decisions, and cost-benefit
judgments. Risk management consists on the action to
monitor, test, and control risk levels, and it is part of the
safety management plan of the organization.

Quantitative Risk Assessment (QRA) is the most
sophisticated technique to calculate the risks of incidents,
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Diagnosis in industrial processes 225

estimate the uncertainties of the calculated risk levels,
and provide metrics for cost-effective risk minimization.
Moreover, to quantifying the effects of data uncertainty,
QRA uses models to estimate conditional probabilities
of failure for components or layers of protection that
are not mutually independent. For risk assessment
related to reactive chemicals, statistical data from
incidents are often insufficient and are related to specific
circumstances.

Figure 3: Flow diagram for a risk assessment process.

Source: own.

Thus, it is important to develop an effective
implementation of QRA methods, such as statistical
inference, requires signi cant cost, time and
experience. Consequently, less costly qualitative and
semi-quantitative risk assessment techniques can be used
effectively to identify where a more quantitative analysis
of the most critical components of a chemical system
may be needed [15,16].

2.1. Hazard analysis

A hazard analysis is a systematic method for
identifying, evaluating and controlling the hazards of
a system. It is part of risk management, which consists
in five phases: 1. Definition, 2. Hazard identification
3. Hazard and risk assessment, 4. Proposed hazard
resolution, and 5. Follow-up to proposed activities. The
analysis of hazards corresponds to the first two phases
of this process; however, from the information obtained
in these phases, we obtain the necessary information to
carry out its evaluation and its proposal of resolution
to an acceptable level. These phases are fundamental
in processes that undergo modifications, expansions, or

a reconfiguration of their operating conditions. Hazard
assessment techniques can be classified as: scenario-based
or non-scenario-based. Among the first are procedures
such as: Hazop, What if?, FMA, fault tree analysis,
event tree analysis and cause-consequence analysis (or
bowtie). For the second, there are procedures such
as: Preliminary Hazard Analysis (PHA), safety review,
relative ranking and checklists. Some of these analyzes
are brie y explained below.

Hazop provides a systematic way of identifying
hazards using a number of guide works as an aid.
Just how the words are interpreted depends on the
circumstances, but for example ‘None of’ could lead to
a consideration of the possibility of no liquid flow in one
case or no electrical current or no pressure in others.
Other guide words and some applications are present in
Table 1.

Table 1: Hazop table

Guide words Description

More of
Liquid flow too high, pressure or electrical

current too high.

Less of
Liquid flow too low, temperature, pressure

or electrical curren too low.

Part of
Chemical component missing, composition

wrong.

More than
Impurities present, extra phase present (gas

in liquid, for example)

Source: own

In each case the guide word is used to concentrate
attention on to one particular fault (no liquid ow,
for example). Possible causes of lack of flow are then
examined and the effects of it are enumerated. The
complete set of guide words is applied in this way to
each component or process in turn. The design can be
modified to avoid the associated hazards and consequent
operational problems. This technique is commonly used
in the chemical industry and is particularly effective if
applied by a mixed team providing expertise in design,
instrumentation, commissioning and operation. Zonal
analysis is a method used to examine possible cascade
and common mode failures in aircraft.

In this case, the aircraft is sub-divided into zones and
for each zone all actuators and other items of equipment
within the zone are itemized. The mutual interactions
within the zone are then examined as are the interactions
with similar devices outside the zone. The interactions
may be anything from electrical interference to leakage
of hydraulic uids or water, or undesirable mechanical
interactions. Both normal and fault conditions are

Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 222-232 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)
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considered. As in the case of Hazop, zonal analysis
provides a systematic framework for the investigation
of a particular type of failure.

Checklist is another tool, which is used to check
compliance with standard industrial procedures. Its
main objective is to identify simple hazards and ensure
compliance with regulations / operational standards.
Their evaluation is of qualitative type from the
implementation of a checklist, which can be applied in all
stages of production. DOW / MOND indexes consists of
the identification and classification of risks through the
use of performance indexes and the state of the internal
processes of the plant or physical characteristic. These
indexes are relative and are assigned in a subjective
in the form of a bonus or penalty. For the first
case, and it includes the characteristics that allow to
mitigate the occurrence of an accident, whereas the
penalties correspond with situations that can lead to
the occurrence of an accident. The results obtained are
of semiquantitative type, since they allow a classi cation
and realize a subjective assignment of values for its
calculation [17].

In Preliminary Hazard Analysis (PHA), the main
objective is to identify hazards in the initial stages of
industrial plant design. This analysis is directed to the
management of hazardous substances associated with the
raw material, nished product, and intermediate products.

As a result, a list of possible hazards is obtained with
their respective recommenda- tions to prevent / mitigate
them. It is a qualitative analysis that strengthens the
design of a process plant to make an inherently secure
system [17].

Analysis What if? it is an analysis that focuses on
the identification of unwanted consequences caused by a
possible initiating event; analysis performed by a group of
experts. It is a non-formal method, but it has shown to be
useful in the definition of potential scenarios, identifying
sequences of events leading to the occurrence of the fault.
Also, it can be used to examine possible deviations from
the design, construction, operation, or modifications to
the plant. The result is of qualitative type, corresponding
with a list of possible scenarios and the strategy to reduce
its possible consequences [17]. Similarly, the ”What
if?/Checklist is a technique whose purpose is to identify
hazards by considering general types of incidents that
may occur in a process or activity, qualitatively assessing
the effects of the same, and determining when safeguards
against of this potential hazard seem appropriate [18].

Fault Mode Analysis (FMA) is a methodology

aimed at industrial equipment. Its analysis consists
in the evaluation of possible fault mechanisms of each
equipment, defining possible fault scenarios and their
respective consequences. Its result is qualitative in that
it classifies each of the situations obtained according to
their consequences [17].

Fault tree analysis (FTA) is a deductive technique
that focuses on a particular incident or major cause of
failure, and provides a method for determining the causes
of such an event.

The purpose of the FTA is to identify the combination
of operational type failures, design material or process
disturbances that could result in the incident. The
strength of this analysis is to identify qualitatively
the combinations of basic faults that could lead to
the incident. What serves for the hazard analyst to
take preventive measures in basic causes to reduce the
probability of occurrence of the event (event in safe
process is refereed to an accident).

Event Tree Analysis (ETA) is an event tree
graphically that shows the possible outcomes following
the success or failure of a protection system, given the
occurrence of a specific initial cause. It is used to study
the possible events that can happen in case there is a loss
event. After these sequences of events are identified, the
specific combinations of faults that lead to the incident
are obtained [18].

Cause-consequence analysis / Bowel analysis: A
cause-and-effect analysis is a mixture of a fault and event
tree, where its purpose is to identify the root causes
and consequences of potential incidents. A particular
case of this type of analysis is the one of Bowel, which
correlates the existing security barriers, and evaluates
their suitability. Subsequently, additional protection and
recommendations are determined if necessary. Causal
events are presented to the left of the diagram and
consequences to the right. An attribute of the Boundary
method is that it is a visual form that clearly represents
risk.

The selection of the technique to be implemented
for the evaluation of hazards follows a process that
takes into account the type of information available,
the response time of the analysis, the different stages of
the life of the process facilities, among others. To carry
out the above, there are methodologies that suggest the
most appropriate technique to implement as reported by
CCPS (Center for Chemical Process Safety) [18].
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3. Control and safety systems

Process control systems had been developed to
monitor data and control the variables and equipments
on the industrial plant. Slight installations may
use electric, hydraulic or pneumatic control systems;
however, larger plants with up to 50,000 signals to and
from the process require a dedicated distributed control
system. The purpose of this system is to read values
from a large number of sensors, run programs to monitor
the process and control valves, motors, switches etc.
to maintain under control the process. Values, alarms,
reports and other information are also presented to the
operator and command inputs accepted. Nowadays, a
modern Process control system basically include of the
following components [19]:

• Field instrumentation: sensors and switches that
sense process conditions such as temperature,
pressure or flow. These are connected over single
and multiple pair electrical cables (hardwired)
or communication bus systems called fieldbus,
modbus, profibus.

• Control devices, such as actuators for valves,
electrical switchgear and drives or indicators that
can be also hardwired or connected over an
industrial net of communications.

• Controllers: Equimpents that execute the control
algorithms and desire actions that can be taken.
The controllers will also generate events and alarms
based on changes of state and alarm conditions
and prepare data for operators and information
systems.

• Servers that perform the data processing are
required for data presentation, historical archiving,
and alarm processing including engineering
changes.

• Clients such as operator stations and engineering
stations are provided for human interfaces. Which
means customers can communicate to a human
being.

• The communication can be exhibited in
many different configurations, often including
connections to remote facilities, remote operations
support and similar.

The principal activity of the control system is to
ensure a safe production, maintaining the components
and element working efficiently within design constraints
and alarm limits in the different variables. The control
system is commonly determined in programs as a
mix of logic and control elements such as AND, OR,

NOT, PID, FUZZY. From a Central Control Room
(CCR), the system is operated with a combination
of graphical process displays, alarm lists, reports and
historical data curves. In this platform, new models of
fault diagnosis can be implemented, the problem is to
validate and to confirm the reliability of this theoretical
models of diagnosis. Otherwise, with modern systems,
the information in the desk screens is available to
remote locations such as an onshore corporate operations
support center. Field devices in most process areas must
be protected to prevent them becoming ignition sources
for potential hydrocarbon leaks. These equipments are
explosive hazard classified e.g. as safe by pressurization
(Ex.p), safe by explosive proof encapsulation (Ex.d)
or intrinsically safe (Ex.i). All areas are mapped into
explosive hazard zones from Zone 0 (inside vessels and
pipes), Zone 1 (risk of hydrocarbons), Zone 2 (low
risk of hydrocarbons) and Safe Area. Beyond the basic
functionality, the control system can be used for more
advanced control and optimization functions.

3.1. Safety instrumented systems SIS

A Safety Instrumented System (SIS) is a new term
used in the standards that has also been known by the
majority as: Emergency stop system (ESD), System
of safety stop, system of interlocks, emergency ring
system, security systems, etc. It could also be defined
as the ultimate preventive security layer if the control
system and operator performance are insufficient. In
this case, there must exist a system that automatically
takes the appropriate actions (partial or total stops
of equipment and plants) in order to avoid the risk.
These safety instrumented systems are normally separate
and independent from control systems, including logic,
sensors and valves on field. Unlike control systems, which
are active and dynamic, SIS are basically passive and
”sleepy”, so they usually require a high degree of safety
and fault diagnosis, as well as to prevent inadvertent
changes and manipulations and good maintenance [20].
Therefore, to involve fault diagnosis methodologies is
one important aspect of safety process that needs to be
developed continuously.

When an accident occurs, it is usually due to a
number of causes or their combinations that produce
a dangerous event. In the industry are implemented the
Emergency Stop Systems (ESD) for the protection of
humans, the environment and equipment. Therefore, it
is not a new concept, the novelty is the way to treat it.
In other words, emergency shutdown systems will have
a life cycle, which we will call Security Life Cycle. This
cycle will begin in its de nition phase and will end in the
dismantling. The variety of names assigned to Emergency
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Stop Systems seems unlimited: Interlocking System (IS),
Instrumented Security System (SIS), Emergency Stop
System (ESD), etc. Within the Process Industry, the
debate continues on the meaning of each one of them.
Even in the ISA SP84 Committee there were ongoing
discussions of the terminology, definition and meaning
of each of these terms. Nonetheless, the confusion in
the industry goes beyond its own meaning, it affects
own design, installation, commissioning, maintenance,
modifications, etc. There are many examples and
questions that do not are easy to answer or the answer is
not the same, depending on the standard or the person
who gives it. Some typical doubts are set out as an
example:

• Selection of the technology to use

√
What technology should be used: relays, solid
state, microprocessor (PLC)?

√
Does that selection depend on the
application?

√
Relays are still used in small applications but
would you design a system with 500 relay
inputs / outputs?

√
Is it economical to design a system of 20
inputs/outputs with redundant PLCs?

√
Some prefer not to use software-based
systems in security applications. Is it a good
recommendation?

• Selection of redundance

√
How redundant should a safety instrumented
system be designed?

√
Does it depend on the technology or the level
of risk?

√
If most relay-based systems are simple, why
are programmable triple redundancy systems
so popular today?

• Field elements

√
Should the initiating elements be transmitter
type or switch type?

√
If we use transmitters. Which type, analog or
digital?

√
Redundancy or not in the eld elements?

√
Can the same eld elements be used for
interlocks and for control?

√
Which is the best frequency of proof of these
elements?

4. Fault diagnosis techniques

The knowledge that we can acquire about the
behavior of a physical system is based primarily on the
acquisition and valuation of two types of information:
Quantitative, which is acquired through various
measuring instruments variables that characterize the
system operation. Qualitative, which is acquired by
humans through the sensory organs and processed by
the brain, usually provided in the form of linguistic
information [21, 22]. In fault detection process we
cannot neglect any kind of information because both
are essential for the generation of fault indicators.
This summary of fault detection techniques had been
constructed based into two types of procedures: Data –
driven techniques and Model - based techniques.

4.1. Data – driven techniques

In diagnosis theory, there exists promising methods
of fault diagnosis in technical systems described by linear
and nonlinear models; methods noted as “model-free” or
“data-driven” methods [23, 24]. The basic philosophy of
the model-free approach for fault detection and diagnosis
is to collect as many measurable information from the
process as possible. This means, that only are considered
continuous measurements, and a set of measurements
of the process by using sensors is represented as a
pattern [25, 26]. A list of the most popular data-driven
techniques is presented below.

1. Data – driven techniques

a) Quantitative techniques

I. Statistical [27, 28]:
• PCA (Principal Component Analysis),
SPC (Statistical process control charts),
FDA (Fisher Discriminating Analysis), GDA
(Generalized Discriminating Analysis).

II. Neuronal networks (Multivariable models
built from a set of I/O data) [29]

b) Qualitative techniques

I. Expert systems (Rule-based feature
extraction) [30]:
• Neuronal networks: Pattern classification
approach. Fuzzy logic [31, 32]. Genetic
algorithm [33]

II. Qualitative trend analysis (QTA)
(Abstraction of trend information):
• Triangulation [34], Finite difference method
[35], Syntactic pattern recognition approach
[36], Gaussian filter [37].
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4.2. Model - based techniques

Different approaches for fault detection use
mathematical and graph models. The mission correspond
to the detection of faults in the processes, faults in the
actuators and sensors by using the dependencies between
different measurable signals. These dependencies are
expressed by mathematical process models. The basic
structure of a model-based fault detection is based on
measured input signals and output signals. The detection
methods generate residuals, parameter estimates or state
estimates, which are called features. By comparison with
the normal features, changes of features are detected,
leading to analytical symptoms. A list of the most
popular model-based techniques is presented below.

1. Model - based techniques

a) Quantitative techniques

I. Residual generation methods:
• Analytical redundancy [38–40], Residuals
and parameterization of residual generators
[41], Fault detection filter (Observer) [42]

II. Parity space [43]

III. EKF Kalman lters [44]

b) Qualitative techniques

I. Causal models:
• Diagraph (Graph with directed arcs between
the nodes) [45] • Bond graphs [46] •
SDG - Signed direct graph [47] • ESDG
- Extended SDG [48] • PCEG - Possible
cause and effect graph models [49, 50] •
HDG - HAZOP-digraph models [51] • SCC -
Strongly Connected Component [52] • MSCC
- Maximal strongly connected component [53]
• Causal Graphs [54] • Chronicles [13, 55, 56]
• Fault trees [57]

II. Qualitative physics:
• Qualitative behavior from the ordinary
differential equations (ODEs), Qualitative
differential equations (QDEs) [58], QSIM
(Qualitative simulation) [58]

III. Abstraction hierarchy
• Structural [59] • Multilevel Flow Models
(MFM) • Functional [60]

As the alarms and the procedural actions in an
industrial process are assumed as discrete events,
the model-based technique used in the methodology
(CBAM) are the Chronicles.

5. Conclusions

In this paper was presented an analysis of the
diagnosis in industrial processes in which reliability and
risk management were studied including the intrinsic
safety and the identication of the hazards. In addition, it
was considered the control and safety systems with the
description of the Safety Instrumented Systems SIS. By
concluding with the different fault diagnosis techniques
were exposed, taking into account the data-driven and
model-based techniques.
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Sabatier, 1994.
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