
Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 146-151 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

Visión Electrónica
Más que un estado sólido

http: revistas.udistrital.edu.co/ojs/index.php/visele/index

VISION ELECTRONICA

A RESEARCH VISION

Combinatorial optimization NP-Hard problem solved by using
the quadratic assignment problem (QAP) solution through a

parallel genetic algorithm on GPU

Problemas de optmización combinatorial NP-Hard solucionados a partir del problema de
asignación cuadrática (QAP) solución através de un algoritmo genético paralelo sobre

GPU
Eduardo Cárdenas Gómez1, Roberto Poveda Chaves2 Orlando Garćıa Hurtado3

información del art́ıculo abstract

Historia del art́ıculo:

Enviado: 25/09/2016

Recibido: 12/03/2017

Aceptado: 02/09/2017

Keywords:

Combinatorial Optimization

NP-Hard Problem

Compute Unified Device

Architecture (CUDA)

Graphics Processing Unit (GPU)

Parallel Genetic Algorithms (PGA)

Quadratic Assignment Problem

(QAP)

In this article, some instances of well known combinatorial optimization NP-Hard

problems are solved by using Koopmans and Beckmann formulation of the quadratic

assignment problem (QAP). These instances are solved by using an Embarrassingly

Parallel Genetic Algorithm or by using an Island Parallel Genetic Algorithm;

in both cases, the implementation is carried out on Graphics Processing Units

(GPUs).

resumen

Palabras clave:

Problemas de Optimización

Combinatorial NP–Dif́ıciles

Arquitectura Unificada de

Dispositivos de Cómputo (CUDA)

Unidades de Procesamiento Gráfico

(GPU)

Algoritmos Genéticos Paralelos

Problema de Asignación Cuadrática

(QAP)

En este documento se resuelven algunas instancias de problemas bien conocidos

de optimización combinatorial de tipo NP-Hard a partir de la formulación de

Koopmans y Beckmann del problema de Asignación Cuadrática (QAP). Dichas

instancias son solucionadas mediante un Algoritmo Genético Embarasosamente

Paralelo o mediante un Algoritmo Genético Paralelo de Islas, en ambos casos, la

implementación se hace sobre unidades de procesamiento gráfico (GPU’s).

1BSc. In Mathematics, Universidad Nacional de Colombia, Colombia. MSc. in Systems Engineer, Universidad Nacional de Colombia,
Colombia. Current position: Professor at Universidad Nacional de Colombia,. E-mail: ecardenasg@unal.edu.co.

2BSc. In Mathematics, Universidad Nacional de Colombia. MSc. in Systems Engineer, Universidad Nacional de Colombia. PhD (c). in
Systems Engineer, Universidad Nacional de Colombia Current position: Professor at Universidad Distrital Francisco José de Caldas, Colombia.
E-mail: rpovedac@udistrital.edu.co.

3BSc. In Licensed in Mathematics, Universidad Distrital Francisco José de Caldas, Colombia. PhD (c). in Mathematics Education,
Universidad Antonio Nariño, Colombia. Current position: Professor at Universidad Distrital Francisco José de Caldas, Colombia. E-mail:
ogarcia68@gmail.com.

Citar este art́ıculo como: E. Cárdenas G., R. Poveda C., O. Garćıa H. “ Combinatorial optimization NP-Hard problem solved by using
the quadratic assignment problem (QAP) solution through a parallel genetic algorithm on GPU” . Visión Electrónica, algo más que un
estado sólido, Vol. 11, No. 2, 146-151, july-december 2017. https://doi.org/10.14483/22484728.13130

Combinatorial optimization np-Hard problem solved by using the quadratic assignment problem (qap) solution through a parallel
genetic algorithm on gpu 147

1. Introduction

Some NP-Hard type combinatorial optimization
problems end up being particular instances of the
Koopmans and Beckmann Quadratic Assignment
Problem [0].

The QAP consists of finding the optimal assignment
of facilities to n locations, knowing the n distances
between facilities and the flow between locations. The
QAP is considered a ‘strongly NP-Hard’ problem. Sahni
and Gonzalez (1976) show that this problem is not only
an NP-Hard problem but that it is also impossible to
find a solution by using an ε-approximate polynomial
algorithm unless P = NP . To this day, there is no exact
algorithm that can solve in a reasonable computational
time problems of size n > 40. The Traveling Salesman
Problem is an approximation in polynomial time within
ε = 3/2 in the case that the distance matrix is symmetric
and satisfies the triangle inequality [2]. Metaheuristics
methods have emerged in the last 20 years to approach
the problem; in particular Genetic Algorithms, as a
robust and flexible alternative to solve these complex
optimization problems; modern hardware architectures
like GPU offer the possibility to execute those algorithms
in parallel, thus diminishing significantly execution time.

2. Preliminaries

2.1. Quadratic Assignment Problem (QAP)

QAP consists of assigning a set of n facilities in a set
of n locations; cost is a function of the distance between
locations and the flow between facilities. The objective
is to assign each facility to each location so that the cost
is minimized.

The mathematical model (that corresponds to the
Koopmans & Beckmann’s original formulation) is:

minσ∈Sn

n∑

i=1

n∑

j=1

fijdσ(i)σ(j). (1)

where D = (dkl) is a distance matrix, F (fij) is a flow
matrix (D and F both size n× n) and Sn = {σ|σ : N →
N}, where N = {1, 2, . . . , n} (it is often said that n is
the QAP size). Each individual product fijdσ(i)σ(j) of the
previous formula is the cost to assign facility i to location
σ(i) and facility j to location σ(j).

2.2. Combinatorial Optimization Problems Formulated
as QAPs

Many outstanding NP-hard problems like LAP
(Linear Arrangement Problem), MCP (Maximum Clique
Problem) and TSP (Travelling Salesman Problem) are
just particular QAP instances [3]. In fact:

2.2.1. The Traveling Salesman Problem (TSP) [4]

This problem can be stated as follows: How an agent
should visit a set of cities returning to the starting city
in such a way that each city is just visited once and the
cost of the tour is the minimum?

Taking for the QAP a D = (dij) as the TSP matrix
distances and a F = (fij) as an adjacency matrix of a n
vertices Hamiltonian cycle, F can be the matrix:

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

TSP :

(
minσ∈Sn

n−1∑

i=1

dσ(i)σ(i+1)

)
+ dσ(n)σ(1)

=

(
minσ∈Sn

n−1∑

i=1

fi(i+1)dσ(i)σ(i+1)

)
+ fn1dσ(n)σ(1)

= minσ∈Sn

n∑

i=1

n∑

j=1

fijdσ(i)σ(j) : QAP (2)

2.2.2. The Linear Arrangement Problem LAP [5]

This problem consists in finding an ordering of the
nodes of a weighted graph on n} nodes, such that the
sum of the weighted edge lengths is minimized.

Taking for the QAP a D = (dij) given by dij = |i−j|,
for all i, j the flow matrix F = (fij) is the (weighted)
adjacency matrix of the given graph G = (V,E).

LAP : minσ∈Sn
∑

(i,j)∈E
wij |σ(i)− σ(j)|

= minσ∈Sn

n∑

i=1

n∑

j=1

fijdσ(i)σ(j) : QAP (3)

Where wij is the weight of the edge (i, j).

Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 146-151 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

148 E. Cárdenas G., R. Poveda C., O. Garćıa H.

2.2.3. Maximum Clique Problem MCP [6].

Given a graph G = (V, E) with |V | = n, this problem
consists in finding the maximum number k ≤ n such
that there exists a subset V1 ⊆ V with k vertices which
induces a clique in G.

Taking for the QAP a D = (dij) equal to the
adjacency matrix of the given graph G, and flow matrix
F = (fij) given as adjacency matrix of a graph consisting
of a clique of size k and n−k isolated vertices, multiplied
by -1. It is easy to show that G has a k-size click if the
optimal value of the QAP problem is −k2 + k

2.3. Parallel Genetic Algorithms (PGA)

Parallel Genetic Algorithms come to existence in
a natural manner, since each individual (of a simple
Genetic Algorithm) is considered an independent unit
from the processing viewpoint [7]. Parallel Genetic
Algorithms, in essence, have the same function
as traditional genetic algorithms but ease problem
solving by distributing workloads and operating in a
simultaneous manner on the domain of the problem
by allowing an agile solution with respect to time and
computational effort [8].

There are different types of PGA; they are classified
according to the way population individuals interact and
of how their size is defined; the embarrassingly parallel ,
the master-slave, fine grain and coarse grain models are
outstanding [8], this document uses the embarrassingly
parallel model and coarse grain (Island Parallel Genetic
Algorithm) to implement a QAP solution.

2.3.1. Embarrassingly Parallel Algorithm (EPA)

The same evolutionary algorithm is run under
different initial conditions in a parallel way. When all
the different configurations have been executed, the
configuration showing the best behavior is chosen.

2.3.2. Island Parallel Genetic Algorithm (Coarse Grain)

The population is divided in several sub-populations
of some relative size, each one being evolved in a different
processor. Each sub-population is geographically
separated from other sub-population. Individuals’
migration from one subpopulation to another one is
allowed if such sub-populations are neighbors. The
migration operation is used in order to introduce
diversity in the population and is carried out by
following some predetermined patterns. The original

Island algorithm is shown in Algorithm 1.

Algorithm 1 Island Model

Produce P subpopulations of size N; generation
number: = 1

WHILE termination condition not met
For each subpopulations DO in parallel
Evaluate and select individuals by fitness
IF [(generation number) mod (frequency) = 0] then
Send K (K < N) best individuals to a neighboring
subpopulation
Receive K individuals from a neighboring
subpopulation
Replace K individuals in the subpopulation
End IF
Produce new individuals
Mutate individuals
End DO in parallel
Generations number: = generation number + 1

End WHILE.

2.4. Graphics Processing Unit (GPU)

Parallel multiprocessing architectures like Graphic
Processing Units (GPU) [9] have significantly evolved
in the last 9 years, to increase the graphic processing
capabilities in the game industry and to make them faster
and much more realistic. Such multiprocessing have been
used in science for solution of problems in the real world
(computational biology, cryptography, among others)
with the help of APIs like CUDA (Compute Unified
Device Architecture), OPEN CL, or Direct Compute
that exploit those GPU advantages. At present, the term
(General Purpose Graphic Processing Units) GPGPU is
well known.

Additionally, the main advantage of a GPU is its
structure, each GPU contains up to hundreds of cores
grouped in multiprocessors of SIMD (single instruction,
multiple data) architecture. Genetic algorithms are
inherently parallel in nature, so they are favored to
be implemented on GPU, but considering the challenge
of how to handle adequately the access to the device
memory.

3. Implementation

Two PGA models (Embarrassingly Parallel and
Island Parallel) were implemented independently to solve
two different instances of each of the three combinatorial
NP-hard problems cited in section 2.2. The chosen
instances correspond to prominent benchmark problems
found in the literature, they are:

Universidad Distrital Francisco José de Caldas - Facultad tecnológica

Combinatorial optimization np-Hard problem solved by using the quadratic assignment problem (qap) solution through a parallel
genetic algorithm on gpu 149

• For the TSP [10]

√
burma14 (14 cities in Burma (geographical
coordinates)).

√
bays29 (29 Cities in Bavaria (street distance)).

• For the LAP [11]

√
can 24 (structure symmetric, graph Size: 24),
figure 1.

√
ibm32 (structure unsymmetric, graph Size:
32), figure 2.

• For the MCP [12]

√
MANN a9 (graph Size:45)

√
Johnson8-4-4 (graph Size:28)

Figure 1: can 24 [11].

Figure 2: ibm32 [11].

For each PGA model five blocks with 64 GPU
threads were used, each thread corresponds to a
simple GA individual, and each block corresponds to
a subpopulation. In each block a simple elitist GA
is executed independently of the other blocks. The
Embarrassingly Parallel Algorithm (EPA) implemented
is shown in figure 3.

Figure 3: Embarrassingly Parallel model in GPU.

Source: own.

In the Island Genetic Parallel Algorithm, the best
individual of each block, after three iterations (iterations
in device), is sent to the CPU and the best of all is
returned to each GPU block, figure 4.

Figure 4: Island model in GPU.

Source: own.

The genetic operators considered in the PGA are the
basic selection, crossover, mutation and transposition
operators.

A whole coding was used. If A is the chain
(chromosome) that represents this coding, then, the
position i of the A chain corresponds to the i installation
and the A[i] content of the chain (gen A[i]) corresponds
to the σ(i) location.

The selection is Tournament. This method compares
individuals of the population (confronting them by the
fitness) and choose the most apt, the comparison is made
by couples of individuals (a binary tournament).

Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 146-151 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

150 E. Cárdenas G., R. Poveda C., O. Garćıa H.

Table 1: Obtained results.

Source: own.

The crossover is a Modified order crossover (MOX). A
crossover point common for the two parents is randomly
selected, the genes to the left of the crossover point are
kept and then the remaining genes of the other parent
are copied in the order in which they are, figure 5.

Figure 5: MOX.

Source: own.

The mutation is an Exchange Mutation (EM). This
type of mutation selects two genes and exchanges them,
figure 6 as follows.

Figure 6: EM.

Source: own.

Transposition simply reverts the chromosome genes
between two points randomly generated, as in figure 7.

Figure 7: Transposed.

Source: own.

On account of the crossover probability rate is 0.6
in all GPU blocks, and the mutation probability rate
is 0.1 in three blocks and 0.9 in the other two; it is
important to note that in conjunction with the elitist
model used, it is productive to consider a high mutation
probability (0.9) in the Island model for all individuals
in at least one block, to gain diversity. The rate used in
the transposition operator is 0.5 in all blocks.

4. Results and conclusions

In table 1 below, we can see the best solution for each
benchmark problem reported by the literature; the best
solution found for each one of the two parallel models
used (including the quality of iterations in host (#itr)
and the time elapsed to reach such response (time)), and
the gap between the found solution and the best reported
solution, according to the formula:

gap =
Best solution found - Best solution repordet in la literatura

Best solution reported in la literatura
(4)

Universidad Distrital Francisco José de Caldas - Facultad tecnológica

Combinatorial optimization np-Hard problem solved by using the quadratic assignment problem (qap) solution through a parallel
genetic algorithm on gpu 151

Table 2: Best Tour obtained in QAP.

Source: own.

The best solution reported by our algorithms is the
best solution found in 20 executions for each problem.
The algorithms were executed in an Intel R© CoreTM i7
- 4700HQ CPU @ 2.40GHz, RAM 8 GB y GPU Nvidia
GeForce GTX 760M.

Furthermore, the implementation of the algorithms
did not consider the types of constant memory or texture
memory, with a combination of them there could surely
have been better results in a lesser number of iterations
and/or executions.

Consequently, it can be concluded that using a fine
grain or coarse grain parallel model or a hybrid between
the two, as Grisland did [13] it is possible to tackle greater
problems than those considered, in addition to the use of
local search heuristics would surely help find good results
for these greater instances of the problem.

References

[1] T Koopmans and M Beckman, “ Assignment
problems and the location of economic
activities.,” Econometrica, vol 25, no. 1, pp. 53-76,
1957. pp. 53-76.

[2] N Christofides, “ Worst-case analysis of a
new heuristic for the travelling salesman
problem,”Technical Report 338, 1976.

[3] R.E. Burkard, “ The Quadratic Assignment
Problem,” Pardalos P.M. Handbook of Combinatorial
Optimization, 2013, https://doi.org/10.1007/

978-1-4419-7997-1_22

[4] E Lawler and J Lenstra, “ The Traveling Salesman
Problem,” Wiley, Chichester, 1985.

[5] M Garey and D Johnson, “ Computers and
Intractability: A Gude to the Theory of NP-

Completeness,” W.H.Freeman and Company, New
York, 1979.

[6] P Pardalos and J Xue, “ The maximum clique
problem.,” J. Global Optim 4, pp. 301-328, 1994,
https://doi.org/10.1007/BF01098364

[7] K. De Jong, W. Spears, and D. Gordon, “ Using
genetic algorithms for concept learning.,” Machine
Learning, vol. 13, no. 2, pp. 161-188, 1993, https:
//doi.org/10.1007/BF00993042

[8] M Tomassini., “ A Survey of Genetic
Algorithms,” Volume III of Annual Reviews of
Computational Physics, World Scientific., vol. 3,
pp. 87-118, 1995, https://doi.org/10.1142/

9789812830647_0003

[9] Nvidia CUDA. May 12 th 2016 [Online]. Available :
https://developer.nvidia.com/cuda-gpus

[10] University, Heidelberg. May 12 th 2016 [Online].
Available: http://comopt.ifi.uniheidelberg.de/
software/TSPLIB95/

[11] University of Florida The Harn Museum. “ The
SuiteSparse Matrix Collection” May 12 th 2016
[Online]. Available: http://www.cise.ufl.edu/

research/sparse/matrices/

[12] University of Glasgow School of Computing Science.
(2012) DIMACS. May 12 th 2016 [Online]. Available:
http://www.dcs.gla.ac.uk/~pat/maxClique/

distribution/DIMACS_cliques/

[13] E. León, J. Gómez, and R. Poveda, “ Grisland:
A parallel genetic algorithm for finding near
optimal,”GECCO, Montreal, Canada, pp. 2035-2040,
2009.

Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 146-151 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

