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la transformada de Fourier
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Given a sampled signal, in general, is not possible to compute its period, but
just an approximation. We propose an algorithm to approximate the period,
based on the Discrete Fourier Transform. If that transformation uses data
length for multiples of the true period, some of its harmonics have null value.
Thus, the best candidate to be a multiple of the period minimizes the value
of those harmonics. The validation for noiseless data shows an upper bound
in the error equal to a quarter of the time between two consecutive samples,
whereas the result for noisy data demonstrates robustness. As application,
the algorithm estimates the period of physiological signals, and tracks the
frequency of the power grid in real time, which evidence its versatility.
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Dada una señal muestreada, en general, no es posible calcular su periodo,
sino solo una aproximación. En este art́ıculo se propone un algoritmo para
aproximar el periodo, basado en la Transformada Discreta de Fourier. Si
esa transformación utiliza datos por un múltiplo del número de periodos,
algunos de sus armónicos resultan nulos. Aśı, el mejor candidato a ser un
múltiplo del periodo es el que minimiza el valor de esos armónicos. La
validación para datos sin ruido muestra un ĺımite máximo para el error de un
cuarto del tiempo entre dos muestras consecutivas, mientras que el resultado
para señales con ruido demuestra robustez. Como aplicación, el algoritmo es
utilizado para estimar el periodo de una señal fisiológica, y el seguimiento de
la frecuencia de un sistema de potencia, en tiempo real, lo cual evidencia la
versatilidad del algoritmo.
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1. Introduction

Signal processing requires computing the period of
a function, for instance to reconstruct a signal, which
finds applications in fault detection, physiological signal
analysis, and astronomy, among other areas. However, in
general, is impossible to know the true period, because
the sampling process carried out to record data loses
information of the signal, which worsens given conditions
such as noise and quasi- periodicity, as is the case in real
life. Thus, instead of looking after the true period, the
best strategy corresponds to pick up a candidate period
(an estimate) using an algorithm.

Some estimation algorithms address the case of
sinusoidal waves. For instance, authors in [1] use a
method called phase unwrapping. This method uses a
linear regression, applied to the phase of a signal, in
order to estimate its frequency. But the time required
to come up with an approximation makes the algorithm
inadequate for real-time applications. Authors in [2]
guarantee an estimation for noiseless signals, given a
method that computes the Discrete Fourier Transform
(DTF) at two instants in time, followed by the solution
of a linear system of equations. Another method, in [3],
provides an approximation trough an iterative procedure
applied to two unitary vectors.

Other proposals, besides the pure sinusoidal wave,
allow signals with harmonic content. For instance,
authors in [4] minimizes the mean quadratic error
between a signal and its mathematical idealization
in order to estimate the frequency of a power
grid. Unfortunately, that proposal does not contrast
the algorithm performance with other estimators.
Authors in [5] suggest the sinusoidal representation
of a dynamic signal in order to approximate the
frequency of an audio signal. Results show that the
algorithm, though computationally intensive, surpasses
the approaches based on Fourier Transformation for
dynamical scenarios.

Finally, a broader family of algorithms uses DFT to
estimate the frequency. One of them, the method in [6],
deal with complex exponential signals. Authors assure
that the estimation process provides accurate estimations
for slow or medium sampling rates, but say nothing about
fast sampling rates. Authors in [7] propose a method to
run in two steps. The first, a coarse estimation, and then
a fine estimation.

On the other hand, the proposed algorithm in this
paper handles signals with harmonic content. The
algorithm starts with a set of candidate periods. The

best approximation among those candidates minimizes
an index that comes from the application of DFT for
data covering multiples of an initial estimation. The
evaluation of the performance for the algorithm includes
a comparison with three algorithms, one of them the
periodogram, which may be the most common algorithm
to approximate a period to the point that has become a
standard estimator.

The rest of the paper is organized as follows. Section
2 presents the algorithm, including the pseudo code.
Section 3 shows the analysis of the error for noisy and
noiseless data. Section 4 details two applications: the
estimation of physiological signals, and the tracking of
frequency for a power grid. Finally, Section 5 presents
conclusions and future work.

2. Algorithm definition

This section presents the intuitive idea of the
algorithm, followed by a formal definition, the pseudo
code, and finally an example of application. The proposed
algorithm -denoted ∆H - approximates a period for
signals formed by a finite number of harmonics. The
core of the method resides in the observation of some
of those harmonics, when its computation includes data
for multiple periods instead of one.

2.1. Algorithm approach

The periodical functions in this paper, f(t + T ) =
f(t), allow sampling at constant rate, Ts, as well as
the computing of its Discrete Fourier Transform. Given
this set of functions, the explanation of the intuitive
idea implies the analysis of four observations. The
first observation starts by looking at the value of the
first harmonic, x1, for data covering one period, which
reappears at the second harmonic, x2, when the data
covers two periods, as shown in Figure 1. This figure
also shows that the value of x1 reappears in the third
harmonic when data covers three periods. Thus, the value
of x1 reappears in the xn harmonic if the data covers n
periods. Similarly, the second harmonic, x2, reappears in
the position 2n when data covers n periods. In general,
the harmonic xi reappears at the position n × i when
data covers n periods.

The second observation emphasizes the appearance
of gaps in the DFT, which result from the jumping
of the harmonics. For instance, a first gap in x1 show
up when the data length equals two periods, because
the value of x1 moves to x2 leaving an empty place
at x1(2T ). This gap corresponds to a dashed rectangle
in Figure 1. The interesting result of this fact is that
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DFT fills each gap with a zero. In other words, and for
an integer ratio T/Ts, looking at the pattern of zeros
that come from the application of DFT would be enough
to find the true period. For instance, if the pattern
equals 0 0 x1 0 0 x2 0 0..., then the true period equals the
greatest time in the data divide by three. Unfortunately,
this process demands an integer ratio T/Ts, which in
general is impossible to guarantee.

Figure 1: Effect of the data length in the harmonics
value.

Source: own.

Third observation regards the value of the gaps for
data covering a time length different from, but close to,
a multiple of the true period. The DFT for this scenario
fills the gap with a number different from zero; however,
approaching zero as the time comes to a multiple of the
period. Thus, the value of a harmonic around a multiple
of the period forms a valley (a “V” shape) with minimum
at the multiple of the true period, as shown in Figure 1.
This last feature establishes the essence of the proposed
algorithm: the way to select the best candidate to be a
multiple of the period consists in choosing the candidate
that minimizes the value of the harmonic when looking
at a valley.

The fourth and last observation stands that instead
of looking for a best candidate around a single valley,
may be better to combine some of them before the
minimization stage. The addition of valleys preserve
both the location and the value of a minimum, but
increases the steepness of the resulting valley facilitating
the minimization. Adding up valleys has a double effect:

the positive that the influence of the errors in a particular
valley decreases, the negative that the algorithm requires
more computations.

2.2. Initial estimation and zone of search

The ∆H algorithm requires three parameters from
the user: an initial estimation of the period, T0; the data
length expressed in number of periods, n; and the number
of valleys to compute the best approximation, nH. This
section starts by defining the rank of values for the first
parameter, T0, which find its base in Figure 2. That
figure shows a typical valley starting at (n − 1/2)T and
finishing at (n+ 1/2)T , which guarantee the uniqueness
of the minimum, around nT , if the search is confined
to that region. Thus, the searching process analysis the
candidate periods, where nT should be included, at both
left and right of a particular value of nT0.

Figure 2 shows the rank of values for nT0, in
particular for its extremes. For instance, the search of
candidates for the end nT0 = (n − α)T will go from
(n− 1/2)T to nT , where α corresponds to an undefined
new parameter. In other words, that search goes from the
left end of the valley to the multiple of the true period, as
indicated by the dashed lines in Figure 2. The search for
the best estimate at the right end of nT0, which equals
(n+α)T , goes from nT to an open end, which is not fixed
yet in order to find a unique value of α.

Figure 2: Definition of the zone of search in a valley as
a function of T0.

Source: own.

Computing α requires the definition of a new factor,
kL, which multiplied by nT0 generates the left end of the
zone of search. Equation (1) shows the values for both
ends of nT0.

kL(n− α)T = (n− 1

2
)T (1)

kL(n+ α)T = nT
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The value of α in equation (2) comes from eliminating
k L in equation (1).

α = 4n− 1 (2)

Given the rank for nT0, (n− α)T ≤ nT0 ≤ (n+ α)T ,
as seen in Figure 2, and given the value of α in equation
(2), the rank of values for T 0 is the indicated in equation
(3).

(4n− 2)

4n− 1
T ≤ T0 ≤

4n

4n− 1
T (3)

In particular, when searching around two periods,
then 6

7T ≤ T0 ≤ 8
7T . In other words, the error in

initial estimation, T0, should not go beyond ± 1
7T , which

equals a maximum error of 14,3 %. Using more data (i.e.
increasing the value of n), forces the algorithm to start
with better initial estimates.

The determination of the zone of search, zos,
follows the already explained definition of T0. This zone
corresponds to the rank of values from left to right of nT0

where to look for the best candidate, nT ′, were T ′ is the
estimation of the period. The left end of the zos is kLnT0,
were kL comes from equation (1). The right end of the zos
is kRnT0, where kR holds that kR(n− α)T = nT . Thus,
the zone of search equals the expression in equation (4).

(n− 1

4
)T0 ≤ zos ≤

4n− 1

4n− 2
nT0 (4)

The result in equation (4) depends on the initial
approximation, T0, and the number of periods under
observation, n. For instance, if n = 2 the zone of search
goes from 7

4T0 to 7
3T0, and increases in n shrinks the

zone of search as happens with T0.

Instead of defining the zone of search as function
of the time, as described in equation (4), the
implementation of the algorithm identifies the index of
the ends for the zos in relation with the data vector.
Thus, the search for the best candidate starts at the
element with index Ni and finishes at the element with
index Nf . For instance, if n = 2, the left end of the
zos matches Ni = | 74 T0

Ts
|, whereas the right end equals

Nf = | 73 T0

Ts
|. The floor and ceiling functions serves to

guarantee an integer number for the indexes.

2.3. Minimization process

The search for a minimum inside the zos starts by
defining a section of the data, which will be called D,
from the first data point to the N data point, where Ni ≤
N ≤ Nf , (at least for now). Then, the decomposition of
each D(N) in harmonics, carried out using DFT, serves

to compute the functional ∆H, which gives the name to
the proposed algorithm. This ∆H functional, as defined
in equation (5), add up nH valleys, where xi represents
the valley number i.

∆H(N) =
nH∑

i=1

xi (5)

The best candidate to be nT ′ corresponds to the
time at which ∆H finds its minimum (i.e. t(N ′)), this
according to the intuitive idea already explained. Thus,
nT ′ = t(N ′) = Ts(N ′ − 1). The subtraction of one in
the last expression makes the initial time equal to zero,
t(1) = 0.

2.4. Subsampling

Searching across the whole zos may make the ∆H
algorithm slow for real-time applications. For instance
if T0 = 1, n = 2, and Ts = 1 × 10−4s, then
Ni = 17,500 and Nf = 23,334, which means running
5,834 computations of the functional ∆H. Instead of all
those computations, the algorithm starts by subsampling
the zos (a coarse-to-fine approach). Experiments with
the subsampling rate showed the greatest reduction in
computational time when the zos passes to 14 data
points. It is important to remark that each of those 14
computations uses a whole section D, which means that
the data remains whole.

The subsampling for the example in the previous
paragraph means that the search starts at Ni = 17,500,
followed by N = 17,949, then N = 18,398, and so on,
until Nf = 23,334. One of those candidates minimizes
∆H, and then the algorithm continuous using a iterative
process. A new zos goes from the left of the previous
candidate to the right of it. For instance, if the best
candidate was N = 17,949, then the new zos corresponds
to Ni = 17,500 and Nf = 18,398. This new zos omits
cases from 18,399 to 23,334, in other words, a saving
of 4,935 out of 5,834 computations. The processes of
subsampling and searching continues until the minimal
different among the elements in zos reaches 1. This
example passes from 5,834 required computations to a
number of about 50. Details of the iterative procedure,
including especial cases, are shown in Table 3.

2.5. Pseudocode

In addition to the data, D, and the sampling time,
Ts, the proposed algorithm has three inputs: an initial
estimation of the period, T0; the number of periods, n;
the number of valleys, nH. The output of the algorithm is
an estimation of the true period, T ′. Given those inputs,
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the algorithm defines an initial zone of search, by Ni and
Nf as shown in Table 1. Then, an according to the size
of the (Nf −Ni), what may follow is the subsampling.

Table 1: Core of the Algorithm.

Source: own.

If the zos has less than 28 points, the algorithm runs
the code in Table 2. The output of this part of the code
corresponds to the index of best candidate, N ′ = zos(j).

Table 2: F1, Minimization.

Source: own.

If the zos has more than 28 points, the algorithm
runs the subsampling process in Table 3. The result of
the subsampling is again N ′ = zos(j).

Table 3: F2, Subsampling.

Source: own.

2.6. Example

Consider a function f(t) = sin(t) + 0,5sin(2t),
whereas Ts = 0,5s, T0 = 6 s, n = 2, and nH = 2.
The graphical application of the ∆H algorithm is shown
in Figure 3. The value of the harmonics at t = T is
x1 = 1, x2 = 0,5, x3 = 0, as expected given f(t). In
addition, the value of x1(T ) reapears at x2(2T ) and
x3(3T ), as indicated by the arrows. On the other hand,
the continues and vertical lines bound the zone of search,
which result in 12,5 s as the best candidate, therefore
T ′ = 6,25 s. Thus, the relative error equals er = 0,06.

3. Error analysis

This section analysis the error in the period
estimation when using the proposed algorithm for
noiseless and noisy signals. The main goal of this section
consists in finding bounds for the error in comparison
with the bounds for other three algorithms.

The first of those algorithms is the periodogram.
This algorithm assumes as the estimated period the
inverse of the frequency for the harmonic with the highest
amplitude. Thus, uses DFT to decompose a signal into
harmonics. Although popular to estimate periods, it
requires data for several periods. The second algorithm,
∆f , compares two consecutive sections of a signal with
length tN , and chooses as the estimated period the tN
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Figure 3: Application example of the ∆H algorithm.

Source: own.

that produces the smallest variation among sections. The
third algorithm, ∆S, similar to the previous algorithm,
also compared two sections, but proposes as period
the tN that maximizes the number of data points
shuffling data points of the first section, according to
the explanation in [8].

The Discrete Fourier Transform, base of the proposed
algorithm, assumes that a data point matches the
period, but in practice a distance (always smaller than
Ts) separates the period from the closest data point.
Thus, T = ti + ∆NTs, where ti equals the data
point at the left of the period, whereas ∆N equals the
fraction of Ts necessary for ti to become T . Therefore,
∆N = T−ti

Ts . This ∆N fraction causes errors in the
estimations for algorithms based on the DFT, because
this transformation assumes ∆N = 0, when actually
0 ≤ ∆N < 1. Given that rank of change for ∆N
this fraction results ideal to analyze the error, which
denotes the distance between the real period, T , and
its approximation, T ′, relative to the sampling period,

namely er = |T−T ′|
Ts .

Experiments show that the behavior of the error
found in this section applies for all the tried functions;
however, in order to provide a guarantee in the bound
of the error, the results will be limited to functions
described by a number smaller or equal than 11
harmonics. This, given computation limits. In addition
to the restriction in the number of harmonics of a signal,
the amplitude of each harmonic will be also limited: from
-1 to 1 for the first harmonic, whereas the second has

smaller amplitudes, decreasing linearly, until the 12th
(and successive harmonics,) with zero amplitude. The
first harmonic has 11 values evenly distributed, 10 for the
second, 9 for the third, and so on. Thus, the combination
of all harmonics totals around 40 million functions.

3.1. Error for noiseless signals

The ∆N fraction influences the error, er, but the
biggest cause of error for a periodogram resides in the
data length, n, and in the number of data points per
period, N , as shown in Figure 4. That figure shows the
error er for one of the functions with harmonic content
described above, where ∆N = 0,5. The left part of the
figure, where N = 18, shows an error er falling under 0,25
when n ≥ 46. The bound 0.25, added for comparison,
is the maximum error using the proposed algorithm as
will be shown. The right part in the figure 4 shows the
error for data length equal to two periods, n = 2, when
the number of data points per period, N , changes from
16 and 64. Instead of decreasing, the error increases in
relation to N .

Figure 4: Error characterization for a periodogram.

Source: own.

In contrast to the error caused by a periodogram,
the error for ∆f and ∆s algorithms solely depends on
the value of ∆N , and has a bound equal to 1/2, as
shown in Figure 5. That bound means that the worst
approximation provided by those algorithms falls below
Ts
2 , regardless of the function, period, or the number of

data points per period.

The error for the proposed algorithm also depends
exclusively on ∆N , but if n = 2 the maximum error
for ∆H equals 14 (half the value for ∆f and ∆s).
Another advantage of the proposed algorithm consists in
the reduction of the maximum error 1 merely increasing
the length of data, n, which results in a bound equal
to 2n . This expression comes from the observation
of the experimental results, such as the behaviors in

Visión Electrónica Vol. 11 No. 2 (2017) • July-December • p.p. 152-160 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)
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Figure 5. On the other hand, increasing n requires higher
precisions in the initial approximation, T0, according to
the expression in equation (3).

Figure 5: Relative errors for ∆f , ∆s, and ∆H
algorithms.

Source: own.

We anticipated that the number of valleys nH
influences the error behavior, but nH does not have any
effect for noiseless signals. This is because all the valleys
have the minimum at the same location. Thus, using
one or several valleys produces the same estimations;
however, nH does affect the error value for noisy data,
as shown in the application section.

3.2. Error for noisy signals

The evaluation of the error’s behavior for noisy signal
uses the Monte Carlo method. Its application starts
by defining the Signal Noise Ratio, SNR which equals
20log10

Signal Amplitud
Noise Amplitud in decibels. Thus, cleaner signals

have higher values of SNR. Each SNR requires the
running of 1×105 experiments. During each experiment,
and randomly, the method changes the value of N , ∆N ,
T ,T0 , f(t), whereas nH = 1. Thus, 70 ≤ N ≤ 300;
0 ≤ ∆N < 1; T adopts one of ten possibilities:
3
2 , 3

4 , 1
2 , 4

5 ,1,π,
√

2,
√

3,e1, 1+
√

5
2 ; T0 takes a random value

according to equation (3); and finally, f(t) corresponds
to one of the functions from the previous section. Then,
the Root-Mean- Square-Error (RMSE) compacts the
errors for the 1× 105 experiments in a single value.

High values of SNR in Figure 6 match the results in
the previous section for noiseless signals:er = 12 for ∆f
y ∆s, er = 14 for n = 2 for ∆H, and er = 18 for n = 4.
Contrary, the error for the periodogram rounds er = 100,
because N adopts a random value, whereas the algorithm
expects multiples of 2. The proposed algorithm, ∆H,
keeps its performance even until SNR = 40, and then the

error grows, but the same happens for all the algorithms.
The best result for extremely noisy signals (SNR =
−20), corresponds to ∆H, when n = 4, which shows
robustness of the algorithm.

Figure 6: Effect of the noise content in the performance
of four algorimths.

Source: own.

4. Applications

Another way to test the proposed algorithm
corresponds to apply it to solve real problems. For
instance, this section uses the algorithm to approximate
the period of physiological signals and the frequency
of electrical signals. The challenge with physiological
signals resides in its quasi-periodic nature, whereas the
challenge with electrical signals rests in the speed of
these signals.

4.1. Physiological signals

This section uses three signals from Physionet [9].
The first from the database “Apnea-ECG Database
(apnea-ecg)”, record a02. The second from the database
“AF Termination Challenge Database (aftdb)”, record
test-set-a/a02, signal ECG (second wave). The third
signal also from “AF Termination Challenge Database
(aftdb)”, but record test-set-a/a06, signal ECG (first
wave). The first signal belongs to the family of apnea
(temporary cessation of breathing during sleep). The
other two signals belong to the family of auricular
fibrillation (an abnormal heart rhythm). The main
feature of these signals relates its quasi-periodic nature,
with variations in amplitude, shape and period; in
addition, they have high noise content that represents a
challenge for any algorithm to estimate the period [10].

Evaluating the quality of an estimation for these
databases emerges as a problem, because the high
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variability of the signals left the data without a reference
to contrast estimations. The definition of a method to
contrast results starts by assuming the first point of the
database as the first data point of the signal. Once the
algorithms produce their approximations, the measure
of error corresponds to summing up the magnitude
of the first nine harmonics for the difference between
two consecutive sections: first, from 0 and T ′, and the
second, from T ′ to 2T ′. The experimentation shows that
those nine harmonics contain most of the information;
also, that higher similarity among sections produces less
harmonic content, and thus smaller errors.

If the evaluation of the error finishes there, any
algorithm would be the best, given random variations
in the signals. T0 eliminate that effect, the contrast
procedure continues by changing the signal. The second
time, the first data corresponds to the second point of
the database, whereas the initial estimation, T0, equals
previous T ′ . This procedure continues until exhausting
data. The contrast process finishes by adding up the
errors for all trials, and normalizing them in such a way
that the worst result turns into 1, whereas the other
results changes proportionally, as shown in Figure 7.

Figure 7: Normalized error for three physiologinal
signals.

Source: own.

The periodogram repeats as the worst approximation
in Figure 7, because n = 2, which is few data for a
periodogram. On the other hand, ∆H has the smallest
error among the remaining algorithms, but not far from
∆f and ∆s. This trial, in contrast with the analysis in
previous section, shows the effect of changing the number
of valleys, nH. The result in Figure 7 corresponds to
nH = 4, smaller values of nH results in ∆f as the best
approximation.

4.2. Frequency of an electrical signal

The frequency of the power grid changes as a function
of the size of incoming or outgoing loads in comparison
with the size of the generators. Maintaining the quality
of the electric service implies restricting that frequency
under certain limits. Thus, frequency estimation becomes
essential to keep quality under the limits imposed by
regulations.

The experiment with alternating voltage consists
on approximate its frequency (f ′ = 1

T ′ ) using ∆H,
while measuring the same signal, as comparison, with
a power quality and energy analyzer Fluke 435 series
II. This device provides estimations every 0,5 s. The
approximation process starts by recording data every
Ts = 5µs, which corresponds to the limit of the data
acquisition card, the PCI 6024E of National Instruments.
The recording of data last 85 ms (about 5 periods if
f = 60 Hz), and then the algorithm approximates the
frequency, which last around 100 ms in a pentium IV.
Same process happens every 0.5 s and last for an hour.
The acquisition also requires changing the voltage from
120 V to 5 V with a conventional transformer.

The initial approximation equals T0 = 60 s . In
addition, trials with the number of valleys comes up
with nH = 4, because the approximations through time
describe a smoother curve, as shown in the higher part of
Figure 8. Smaller values generates peaks, whereas higher
do not improve the estimation any more. The experiment
in Figure 8 was carried out in October 13 , 2016 , from
16: 17: 18 and 17: 17: 18 in Bogota, Colombia.

Figure 8: Estimation of the frequency for a power grid.

Source: own.

The higher part of the Figure 8 shows the estimation
of the specialize device, using a thick black line, and over
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that line, in white, the result for the proposed algorithm.
The estimation coming from ∆H matches the frequency
of the power grid given by the analyzer. The lower part
of the figure presents the difference between estimations,
which falls under 10 mHz.

5. Conclusions

In this paper, we present an algorithm based on
the Discrete Fourier Transform to estimate the period
of a signal given samples at a constant sampling rate.
The initialization of the algorithm requires data and
the definition of three parameters: an initial estimation,
T0; a number of periods n where to look for the
estimation; and the number of harmonics to analyze,
nH. Results for noiseless signals, or low noise content,
shows a bound of the relative errrelative error depends
only on the parameter n, regardless of the function,
period, or sampling rate. The proposed algorithm, in
the applications section, serves to estimate the period of
physiological human signals, which became a challenge
because the high variability of the signals left the data
without a reference to contrast estimations. The second
application consists in estimating the frequency of a
power grid; the main difficulty in this case corresponds
to the real time requirements. This paper proposes a
subsampling method aiming to make estimations faster,
but future work may look for using the data smartly in
order to reduce the computational time even more. For
instance, given the valley shape in the zone of search, it
would interesting to study the application of a predictive
algorithm to come faster with the minimum in that
zone.or in the estimation equal to 1

2n . Thus, the relative
error depends only on the parameter n, regardless of
the function, period, or sampling rate. The proposed
algorithm, in the applications section, serves to estimate
the period of physiological human signals, which became
a challenge because the high variability of the signals left
the data without a reference to contrast estimations. The
second application consists in estimating the frequency of
a power grid; the main difficulty in this case corresponds
to the real time requirements. This paper proposes a
subsampling method aiming to make estimations faster,
but future work may look for using the data smartly in
order to reduce the computational time even more. For
instance, given the valley shape in the zone of search, it
would interesting to study the application of a predictive
algorithm to come faster with the minimum in that zone.
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