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Visión Electrónica
Más que un estado sólido
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This paper presents the optimization of a linear controller for a DC
motor using the dynamic back-propagation algorithm. This algorithm is
commonly employed for neural networks training; however, it can be used for
optimization of a linear controller. The results show a satisfactory controller
optimization.
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En este documento se presenta la optimización de un controlador lineal
para un motor DC mediante el algoritmo “ Dynamic Back-Propagation” .
Este algoritmo es comúnmente utilizado para el entrenamiento de redes
neuronales, sin embargo, puede ser empleado para la optimización de
un controlador lineal. Los resultados muestran que la optimización del
controlador es satisfactoria.
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1. Introduction

In general, many applications like robotics,
servomechanisms, control, and automation normally
use motors with Direct Current (DC). For instance, an
application for implementing a solar tracker with a DC
motor can be found in [1] and [2]. On the other hand,
the dynamic back-propagation (DBP) algorithm is used
for training neural networks by incorporating the same
characteristics as those of dynamic systems [3, 4]. Such
an algorithm is suitable in the application of the chain
rule of the descending gradient method characterized for
having a fast convergence rate [4].

In addition to using the DBP algorithm, [5] presents
an adaptive processing system consisting of a digital
filter based on a neural network. This work focuses on
the online training algorithms to achieve an association
between the characteristics of the input signal of the
neural network and the dynamic responses of the digital
filter. For this, a DBP algorithm is developed to train
the closed loop network between the output of the digital
filter and the inputs to the neural network.

In contrast, [6] describes a single input-output
adaptive neuronal network controller scheme and
the training algorithm. For the implementation
of the system, a modification of the traditional
back-propagation algorithm is developed. The proposal is
made considering applications for time-variant systems.

A paper that considers the dynamic Lyapunov
stability of the neural network during the training
process is [7]. In this work, to avoid unstable phenomena
during the learning process, multiplier and restricted
rate learning schemes are proposed. With the multiplier
method, explicit stability conditions are introduced in
the iterative error index and the update equations
contain a set of inequality constraints. With the
restricted learning rate algorithm, rates are updated
at each iterative instant by an equation derived from the
stability conditions.

According to [8], adaptive control with reference
model is commonly used in the design of controllers based
on traditional neural networks, where it often requires a
plant emulator when the neural controller is connected
to the plant. In this work, the authors propose a plant
emulator using a neuro-fuzzy system and a variation
of the DBP algorithm to train the neuronal controller.
The system is employed to the control of a DC-to-DC
converter.

On the other hand, [9] presents a general framework
for dynamic neural networks by reviewing two general
algorithms for the calculation of gradients and Jacobians
for these dynamic networks: backward propagation
through time (BPTT) and real time recurrent learning
(RTRL). The results show that the BPTT algorithm is
more efficient for gradient calculations, while the RTRL
algorithm is more efficient for Jacobian calculations.

Finally, [10] reviews the different techniques for
the training of neural networks, particularly the DBP
algorithm for recurrent neural networks.

This paper presents linear controller optimization
for a DC motor through the DBP algorithm. A model
of the plant is obtained as a transfer function that
later is transformed into discreet time by implementing
the optimization algorithm to determine the result of
the process, where the simulation shows a satisfactory
controller optimization.

This document is organized as follows: first, the
dynamic model for DC motors and the DBP algorithm
theory are revised; second, the architecture of the
implemented controller is also reviewed. The subsequent
section is related to the model for the motor in discreet
time which is used for implementing the DBP algorithm.
Lastly, results and conclusions are discussed.

2. DC motor model

The model of the motor mainly consists of a
mechanical and an electrical part [11], as shown in Figure
1.

Figure 1: DC Motor scheme. Source: adapted from [11].

For the model in Figure 1, the motor torque is
proportional to the armature current as presented in
equation (1).

TM = KT ia(t) (1)
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The counter-electromotive force is proportional to the
motor angular velocity, according to equation (2).

e(t) = Keω(t) = Ke
dθ

dt
(2)

Equation (3) represents the electrical component.

Va(t) − e(t) = La
dia(t)

dt
+Raia(t) (3)

The mechanical component is given by equation (4).

TM (t) − TL(t) = J
d2θ(t)

dt2
+B

dθ(t)

dt
(4)

A complete plant dynamic model may be impractical
in some applications given the difficulty in establishing
the parameters. An alternative approach consists of a
simplified model via plant parameter identification [12].

Equation (5) describes the plant simplified transfer
function corresponding to a first-order system with an
integrator, where the variable s is associated with the
Laplace transform.

G(s) =
K

s(τ · s+ 1)
(5)

The parameter identification to this plant is
performed considering time and velocity average values
as shown in [1] and [12].

In equation (5), K corresponds to the input-output
relation in stable state that for the specific case
corresponds to K = ∆ω/∆V , where ω is the angular
velocity; with a 12- voltage power supply, the average
time taken by the system to rotate an angle of π/2 is
0.06 seconds; thus, the corresponding K parameter value
is 0.005 rad/(Vsec) [12].

The parameter τ can be defined as a quarter part of
the time to obtain a steady-state output, which is 1.53
seconds; thus, for τ , 0.38 seconds are taken [12]. In this
way, the model of the plant is given by equation (6).

G(s) =
0,005

s(0,38s+ 1)
(6)

3. Dynamic Back-Propagation Algorithm

This algorithm is used in neural networks
for identification and control of dynamic systems,
specifically when having a parallel-type scheme [13].
Figure (2) provides a representation of this architecture
for identification process.

Figure 2: Parallel identification scheme. Source: adapted
from [13].

The parallel identification scheme uses plant inputs
and the output feedback from the network itself.

In control applications, one of the schemes of neural
networks uses one network to model the plant and
another to model the controller. This approach allows the
plant identification first, and later the controller training
is performed by aiming the output of the system to
follow the reference [3]. Figure (3) displays the two neural
networks used in this process.

Figure 3: Control scheme using neural networks. Source:
adapted from [3].

Thus, for the plant model, there is an input u[n] and
output y[n] such that the result is a structure given by
equation (7).

y[n] = fp(y[n− 1], y[n− 2], . . . , y[n− p], u[n], u[n− 1], (7)

. . . , [n− q])

Meanwhile, the inputs for the controller are given by
the reference r[n] and the process signal is measured by
y[n], while the output is given by the control action u[n]
as shown in equation (8), where p, q and m corresponds
to the number of outputs, inputs and reference delays,
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276 H. E. Espitia-Cuchango, I. Machón-González and H. López-Garćıa

respectively. Typically, the number of delays increases
according to the order in the plant [3].

u[n] = fc(y[n], . . . , y[n− p], r[n], ..., r[n−m], u[n], (8)

..., u[n− q])

4. Controller architecture

Figure (4) represents the considered control scheme;
both the plant and the controller are discrete-time
models.

Figure 4: System simplified architecture.

Source: own.

In discrete time, the transfer function of the controller
is given by equation (9).

C(z) =
U(z)

E(z)
=
B0 +B1z

−1 +B2z
−2

1 +A1z−1 +A2z−2
(9)

The controller difference equation is (10). Under this
approach, the general action of the controller corresponds
to equation (11).

u[n] = B0e[n] +B1e[n− 1] +B2e[n− 2] − (10)

A1u[n− 1] −A2u[n− 2]

u[n] = fc(e[n], ..., e[n−Ne], u[n− 1], ..., (11)

u[n−Nu], Hc)

Similarly, the output for the controller training is
given by equation (12).

y[n] = fp(y[n− 1], ..., y[n−Ny], u[n], (12)

..., u[n−Nu], Hp)

Here, Ny corresponds to the total number of output
samples, Nu the number of samples in the inputs, and Hp

the parameters vector of the plant model. Meanwhile, the
controller parameters set is given by equation (13).

Hc = [B0, B1, B2, A1, A2] (13)

The adaptation (optimization) of parameters in the
controller is given by equation (14) using a learning rate
η.

Hc(k + 1) = Hc(k) − η
∂J(k)

∂Hc(k)
(14)

The adjustment function J used in equation (14) is
defined by (15). The variation of J with respect to the
controller parameters can be calculated using equation
(16).

J =
1

2
P (r[n] − y[n])2 +Q(u[n])2 (15)

∂J

∂Hc[n]
=

∂J

∂y[n]

∂y[n]

∂Hc[n]
(16)

5. Plant implementation in discreet time

The transfer function of the plant is described by
equation (17).

G(s) =
0,005

s(0,38s+ 1)
(17)

Thus, transforming this transfer function to discreet
time considering a sampling time of Ts = 0,1s, and
using the method of bilinear transformation, equation
(18) is obtained. In general, this transfer function can be
represented using equation (19).

G(z) = 10−5 2,907z2 + 5,814z + 2,907

z2 − 1,767z + 0,7674
(18)

G(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(19)

Finally, expression (20) represents the difference
equation of the plant, which is utilized to establish the
parameter expressions to perform the controller training.

y[n] = b0u[n] + b1u[n− 1] + b2u[n− 2] − (20)

a1y[n− 1] − a2y[n− 2]

6. Equations in discrete time to optimization
algorithm implementation

Implementing the DBP algorithm requires the
difference equations of each parameter to be used in
equations (14), (15), and (16). In [14], the application of
this algorithm for the training of neural networks can be
seen.

First, using (20), the error equation is (21).
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e[n] = r[n] + a1r[n− 1] + a2r[n− 2] − a1e[n− 1] − a2e[n− 2] − b0u[n] − b1u[n− 1] − b2u[n− 2] (21)

Meanwhile, the controller difference equation is (22).

u[n] = −A1u[n− 1] −A2u[n− 2] +B0e[n] +B1e[n− 1] +B2e[n− 2] (22)

Consequently, the training equations of the parameter A1 correspond to (23).

du

dA1
[n] = −u[n− 1] −A1

du

dA1
[n− 1] −A2

du

dA1
[n− 2] +B0

de

dA1
[n] +B1

de

dA1
[n− 1] +B2

de

dA1
[n− 2] (23)

de

dA1
[n] = −a1

de

dA1
[n− 1] − a2

de

dA1
[n− 2] − b0

du

dA1
[n] − b1

du

dA1
[n− 1] − b2

du

dA1
[n− 2]

Similarly, for parameter A2, the training equations are given by (24).

du

dA2
[n] = −u[n− 2] −A1

du

dA2
[n− 1] −A2

du

dA2
[n− 2] +B0

de

dA2
[n] +B1

de

dA2
[n− 1] +B2

de

dA2
[n− 2] (24)

de

dA2
[n] = −a1

de

dA2
[n− 1] − a2

de

dA2
[n− 2] − b0

du

dA2
[n] − b1

du

dA2
[n− 1] − b2

du

dA2
[n− 2]

For parameter B0, the training equations are (25).

du

dB0
[n] = e[n] −A1

du

dB0
[n− 1] −A2

du

dB0
[n− 2] +B0

de

dB0
[n] +B1

de

dB0
[n− 1] +B2

de

dB0
[n− 2] (25)

de

dB0
[n] = −a1

de

dB0
[n− 1] − a2

de

dB0
[n− 2] − b0

du

dB0
[n] − b1

du

dB0
[n− 1] − b2

du

dB0
[n− 2]

For parameter B1, the training equations are given by (26).

du

dB1
[n] = e[n− 1] −A1

du

dB1
[n− 1] −A2

du

dB1
[n− 2] +B0

de

dB1
[n] +B1

de

dB1
[n− 1] +B2

de

dB1
[n− 2] (26)

de

dB1
[n] = −a1

de

dB1
[n− 1] − a2

de

dB1
[n− 2] − b0

du

dB1
[n] − b1

du

dB1
[n− 1] − b2

du

dB1
[n− 2]

Finally, the training equations of the parameter B2 correspond to (27).

du

dB2
[n] = e[n− 2] −A1

du

dB2
[n− 1] −A2

du

dB2
[n− 2] +B0

de

dB2
[n] +B1

de

dB2
[n− 1] +B2

de

dB2
[n− 2] (27)

de

dB2
[n] = −a1

de

dB2
[n− 1] − a2

de

dB2
[n− 2] − b0

du

dB2
[n] − b1

du

dB2
[n− 1] − b2

du

dB2
[n− 2]

Table 1: Controller parameter values.

Source: own.
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7. Results

The reference of the system is taken for 45◦ which
is an angular position of π/4 radians. The learning rate
used is η = 0,01 and 35 iterations are performed for
the training process of the controller parameters. A
proportional controller behavior is considered as initial
configuration; therefore, its parameters are assigned
values of zero excluding B0, which, following previous
experimentation, is set to 10. Initial and final (optimized)
values of the controller parameters can be seen in Table
1.

Figure (5) presents different responses of the control
system during the training process. This figure also
shows the system output getting closer to the reference.
Meanwhile, Figure (5) displays the values obtained
from the objective function for each iteration; this
demonstrates that the objective function tends toward
no variation after iteration 20.

Figure 5: Responses of the system during the training
process.

Source: own.

8. Conclusions

It is clear that the DBP algorithm, which is
conventionally used for the training of neural networks,
can also be used to optimize a linear controller. This
mechanism offers an alternative for controller tuning in
both linear and non-linear controllers and can also be
used for schemes of supervised control. The obtained
results are satisfactory in showing the response of the
system during the training process as well as the
evolution of the objective function. This technique for a

neuro-fuzzy type controller training will be implemented
in a follow-up paper.

Figure 6: Objective function values during the training
process.

Source: own.
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