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The empirical mode decomposition (EMD) decomposes a local and adaptive time series into a

finite set of intrinsic mode functions (IMF), AM-FM signals that allow to represent a non-linear

and non-stationary model with the advantage of not losing the underlying meaning. This study

examines time series of sEMG measurements for a case study of healthy individuals with carpal

tunnel syndrome. Due to the amount of multiple levels of detail, all around a central frequency

and evoked by the number of IMFs obtained through EMD, the informational contribution

of each at the intermodal and interindividual level is studied through Shannon entropy to

establish a general framework of spectral study given Hilbert Huang’s (HHT) transformation to

remarkable degrees of information. The results show that the latest IMFs have more disordered

states even when they engage in apparently regular behavior, agglomerate more time-frequency

information, and in the same way, concentrate more differentiable characteristics for a process

of individualization of patterns.
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Información.

Este estudio explora la descomposición emṕırica de modos (EMD), técnica local y adaptativa que

descompone una serie de tiempo en un conjunto finito de funciones de modo intŕınseco (IMF),

señales con amplitud y frecuencia variable que permiten representar un modelo no lineal y no

estacionario con la ventaja de no perder el significado f́ısico subyacente. Para el caso se examinan

series de tiempo provenientes de mediciones sEMG de un estudio de caso de individuos sanos

y con śındrome de túnel del carpo. Debida la cantidad de múltiples niveles de detalle, todos

alrededor de una frecuencia central y evocados a la cantidad de IMFs obtenidas a través de

la EMD, se estudia el aporte informativo de cada uno a nivel intermodal e interindividual a

través de la entroṕıa de Shannon, de manera que se logre establecer un marco general que

propicie un enfoque al estudio espectral dada la transformada de Hilbert Huang (HHT) a

grados de información destacables. Los resultados permiten evidenciar que sobre las últimas

componentes IMF se logran los estados más potenciales al desorden, aun cuando comprometen

un comportamiento más regular, aglomeran más información tiempo-frecuencia y del mismo

modo, concentran las caracteŕısticas más diferenciables para un proceso de individualización de

patrones.

1BSc. in Electronic Engineering, Universidad Distrital Francisco José de Caldas, Colombia. E-mail: rshernandezs@correo.udistrital.edu.co.
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1. Introduction

The dynamics coming from models that conserve
information from biological systems under signal
optics, are characterized by having non-linear and
non-stationary particularities in time. Various methods
of signal analysis and processing exist, most of which
are restricted to dimensional analysis in an attempt to
linearize [1], which biases the information and thus the
extraction of study characteristics.

Most of the signal processing methods rely on the
use of spectral methods, of which the most popular was
the short Fourier transform. Later on, time frequency
methods appear differentiated by different distributions,
among which we find Wigner-Ville, Kirkwoo-Rihaczek,
Levin, exponential, Choi-Williams, Sinc, Born-Jordan [2]
and the Wavelets Transform, which depends directly on
the selected function, and that leads to a search for
components generating a method that is not intuitive
but that allows a multiscale study. However, this and
in general all the previous ones include the problem
that they base their studies on approaches that assume
in different ways approximations to linearity and/or
stationarity [1–3]. This problem leads to the study of
time series with Hilbert Huang’s transform (HHT) under
the premise of generating a complete, orthogonal, local
and adaptive base, with the possibility of performing
multi-scale, high-resolution and time-frequency-power
spectral analyses [1, 4]. The basis of the HHT is the
Empirical Mode Decomposition (EMD), which generates
a set of time series, called Intrinsic Mode Functions
(IMF), these sums reconstruct the signal being studied,
giving the opportunity to have modes without mixed
information, i.e. with independent information between
them from the optics of frequency, so that orthogonality
is established, and each one is an analytical signal that is
exposed to the Hilbert’s transform to generate the HHT.

Given the current confusion about the correct method
of performing EMD, it was established that there is
no standard way to apply it, since it depends on
the general topology of the study phenomenon. It
was also determined that the variant called Çomplete
Ensemble Empirical Mode Decomposition with Adaptive
Noise”(CEEMDAN), which combines decomposition
under multiple realizations of the same time series each
one contaminated with WGN, is the most efficient in
terms of mode mixing mitigation for forearm sEMG
signals [1].

Regarding the use of HHT it is common to find
literature where its use to generate spectral studies
is exposed given the total assembly of IMFs. Clear

examples are [5] and [6] where the HHT is used to identify
muscle activation characteristics in myoelectric and
speech recognition signals respectively thanks to spectral
distributions, [7] to analyze seismic signals from temporal
frequency energy, [8] to identify six emotional states
through ECG signals, [9] to analyze cardiac variability
and [10] to differentiate temporal frequency in ECG
signals. The problem of performing a similar practice is
that there may be overlap between the spectral forms
as a result of the powers of each frequency component
in time, this hides information that may be relevant to
study since EMD does not ensure that the power of the
modes generated by the decomposition corresponds to
the instantaneous frequency that they contain [11].

The present work focuses on the uncertainty of
selection of relevant information that the HHT provides
depending on the scales that conform it for the
extraction of characteristics, for which the IMF are
studied under the measure of shannon entropy in
order to validate the set of components that retain
the greatest amount of information. The following
article begins with the reference framework, in which
the empirical decomposition of modes, CEEMDAN
variant, the Hilbert transform and Shannon entropy are
discussed. It continues with the application section of the
Hilbert Huang transform, where the set of time series
is specified, the intrinsic mode functions are found, and
the Hilbert spectrum is constructed. Later in the results,
the Shannon entropy is used in the IMF to construct
the Hilbert Huang’s spectrum and finally we have the
conclusions.

2. Reference Framework

2.1. EMD y CEEMDAN

The empirical mode decomposition [2] considers
signal oscillations at a local level, looking at the signal
dynamics from two consecutive extremes, in order to find
their IMF [1]. An IMF satisfies two conditions, first, it
must not be a monotonous signal, that is, it must have
frequency information, and second, the value of the local
average defined by a lower and upper envelope is zero.
The process of decomposition is detailed in Figure 1,
in which it can be seen that from an x(t) signal two
envelopes are defined, an upper and a lower one, these
thanks to a cubic spline that interpolates between the
points. Based on the envelopes is the local mean m(t),
which is subtracted from the signal to obtain the detail
d(t). If it meets the definition of IMF it is included in the
set of modes and subtracted from the original signal to
form a residual r(t) on which the process is repeated,
if not, it is subtracted from the signal again, and it
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is iterated until d(t) meets the definition of IMF. The
process ends when no oscillatory information is available
[1, 2]. The method decomposes the signal in such a way
that a set N of IMFs is obtained, representing these,
from the finest detail to the thickest in frequency, the
information contained in the original time series.

Figure 1: EMD process.

Source: own

The disadvantage of the EMD method is that the
IMFs can contain information that is mixed up with
each other, and therefore the HHT is discredited in
terms of orthogonality [1, 4, 12]. On the other hand,
the method called Çomplete Ensemble Empirical Mode
decomposition with adaptive noise.or CEEMDAN [4]
is an Empirical Mode Decomposition method that
uses noise to establish a uniform background in the
space-time-frequency to organize the components of the
study model and mitigate the mixing of modes [12].
The process finds one mode at a time as an average
among several realizations, each one differentiated by
the fact that it has been polluted with a different
distribution of WGN, so that by averaging all polluted
modes, uncorrelated information is eliminated and net
information is obtained and in general a set of IMFs in
which the mode mix has been mitigated.

2.2. Hilbert Huang Transform

The HHT combines Hilbert’s spectral analysis,
through which the complex envelope of a signal
modulated by a real carrier is found, and EMD. The
combination of these techniques produces a dynamic
characterization of the main oscillatory patterns in the
signals. It consists in expanding the time series in
IMFs and then applying the Hilbert transform to them
and in this way estimating the time-frequency-energy
distribution, called Hilbert Huang’s spectrum [11,13,14]
The Hilbert transform of a signal x(t) is defined [2]:

y(t) =
1

π

∫ ∞
−∞

x(t)

t− τ
dτ (1)

As shown in equation (2), a complex conjugate
pair is obtained that defines an analytical signal z(t),
which allows the acquisition of instantaneous frequency
information w(t), and instantaneous power a(t).

z(t) = x(t) + i ∗ y(t) = a(t)eiθ(t)

a(t) =
√
x(t)2 + y(t)2 ; θ(t) = tan−1 y(t)

x(t)

w(t) =
dθ(t)

dt
(2)

The local and adaptive information exploitation
capacity of the HHT implies that the characteristics that
it extracts through its individual components and the
spectrum it generates, enjoy high resolution, a fact that
is evidenced in Figure 2, through which the robustness
of the Wavelets transform is differentiated, which is not
intuitive, versus Hilbert’s spectrum for an example of the
Stokes wave [2].

2.3. Entropy measurement

Entropy from various points of view can be
understood as the variation of unusable energy in a
system, the number of potential states or disorder and
chaos in a system, or the expected value or uncertainty of
the information, a value that corresponds to the inverse
of the probabilities of the events [11,15]. Given a discrete
random variable X, Shannon entropy, H, is determined
as the average information of the set of different values
that the variable can take, and this is calculated:

H = −
n∑
i

pi logb(pi) (3)
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Figure 2: Wavelet spectrum and Hilbert Huang spectrum for Stokes wave. [2]

Figure 3: Study time series.

Source: own

Knowing that data with lower probability provide
more information, under the framework of Shannon
entropy, an increasing H value means more uncertainty,
and therefore, more average information [14].

3. Use of HHT

The Hilbert Huang transform was used in order to
extract analysis characteristics from sEMG signals taken

from the forearm, which are time series that, having a
biological character, have non-linear and non-stationary
dynamics [1, 2].

3.1. Test signals

The set of test signals with surface electromyography
is obtained from six subjects, three with carpal tunnel
syndrome (Ind. 1-3) and three healthy subjects (Ind.
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4-6). This, in order to study differential behaviors. The
study pathology is generated by damage to the median
nerve, characterized by paralysis of the superficial flexor
muscle of the fingers (FMF) due to compression in
the wrist area [16, 17], which is usually diagnosed with
the sign of Phalen (sustained wrist flexion movement)
[18]. Because of this, flexion-extension movements of
the fingers (Mov. 1) and flexion of the wrist (Mov. 2)
are studied; this from the FMF and ulnar carpal flexor
(UCF) muscles, since they are jointly responsible for
allowing these dynamics [19, 20]. The movements were
measured according to SENIAM standards [21], with
transversal measurement to the forearm in the case of
FMF muscle measurement, and longitudinal for UCF
muscle. Figure 3 shows the 24-time series acquired for
the study.

3.2. Intrinsic mode functions

The intrinsic mode functions (IMF) were found
through the CEEMDAN method of decomposition,
establishing 500 noise realizations, each one
contaminated with a noise amplitude corresponding
to 20 % of the standard deviation of each signal [1],
obtaining on average for each signal a computation
time t=89.77s and 67410 iterations. The RMSE of
reconstruction given the sum of components compared
to the original signal for all cases did not exceed 1E-15.

As shown in Figure 4, the decomposition results show
the decay in frequency from the first IMF to the last,
having a total of 10 for the case of the fourth individual’s
signal, performing the finger flexion-extension movement
measured on the FMF muscle. After the last IMF, a
residue is obtained, which, since it does not provide
frequency information, is discarded.

From the total of 24 signals, 240 IMF were obtained,
10 for each signal, each one representing different scales
of the study phenomenon, so it is simple to find the
instantaneous frequency and power with the Hilbert’s
transform to generate spectrum for each IMF, or some
IMFs together.

Spectres of Hilbert

Applying Hilbert’s transform to each obtained IMF
and therefore shaping the HHT, a spectral view is
generated that is implicitly characterized by local
and adaptive exploitation given the empirical mode
decomposition, so that it is evident with high resolution
the frequency and instantaneous energy in time. Figure

5 shows the potential of the transform making use again
of the time series of the individual 4 performing the
movement 1 measured on the FMF muscle. There,
10 spectra are contemplated, each one of a IMF that
contains different information time- frequency-energy,
set that, in assembly composes the study phenomenon.

As shown in the Figure 5, the first components,
specifically the first one, contain information of high
persistence in time and frequency, which infers the
noise content in this level of components. On the other
hand, the last IMFs are cleaner, containing more regular
information. Otherwise, it is evident that from spectrum
one to spectrum ten, the frequencies are lower and
lower. Evidenting a general spectrum with all the IMFs
together, this frequency drop would not be so visually
intuitive, and therefore, the need to establish a general
spectrum arises but that limits the information shown so
that the most representative is observed, that is, joining
only some IMF spectra.

The problem of information content in general,
given the HHT, lies in the selection of the most
relevant information for the study in question, in
order to synthesize the most representative content
and distinguish characteristics efficiently. To this end,
Shannon entropy is applied to each IMF in each time
series. The residues of each case are also included.

Results

Shannon entropy application

Equation (3) was applied to obtain the Shannon
entropy of the IMF for all-time series. In the following
Figures 6 and 7, each point represents an MFI, except
the last one which for each case is the residue, and
each line represents an individual, the first three healthy,
and the last three those with carpal tunnel. Figure 6
shows those that comprise the finger flexion-extension
movement. It can be seen that the informational levels
for both cases, measured from the FMF and UCF
muscle, increase towards the latter IMFs and decrease
in the former and in the residue, a fact that confirms
the low informational levels and therefore, the favoring
of eliminating them. It is important to emphasize
that the differential perspective between healthy and
sick subjects, the view of the data obtained by the
measurements on the UCF muscle allows differentiation
by positioning with higher H the healthy subjects in
general. In the case of the FMF muscle the same thing
happens except for the fourth subject, which is shown
with high values towards the end.
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Figure 4: IMF of the fourth individual’s Mov. 1 signal over the FMF.

Source: own

Figure 5: Hilbert’s spectra of the signal of the fourth individual from Mov. 1 on the FMF.

Source: own
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Figure 6: Shannon’s Entropy. Mov 1. Left on FMF, right on UCF.

Source: own

Figure 7: Shannon’s Entropy. Mov 2. Left on FMF, right on UCF.

Source: own

The results of the wrist flexion movement under
the perspectives of measurement of the FMF and UCF
muscles are presented in Figure 7. There it is again
impetuous the fact of evidencing low levels of information
in the first components, with fall in the second IMF for
all cases, as well as in the residue, observing in addition
a tendency to growth from the seventh and tenth IMF.

With the distributions in Figure 7, more certainty is
obtained regarding the differentiation between healthy
and sick subjects thanks to entropy. Again subjects 5
and 6 are shown with the lowest levels in general, while
subject 4 has high H levels, even higher than those of
the three healthy subjects, a fact that becomes clearer
towards the latter modes.

Hilbert Huang’s Spectrum bounded

Evidenting the different levels of information input
depending on the IMF level of decomposition, it
generated a spectral view that included only the highest
H modes, i.e., the last four modes. With this, in addition,
as observed above, the most relevant information is

extracted to generate a differential study. Figure 8
shows the final results obtained with a limited Hilbert
spectrum, which contains the fundamental information
for the study of time-frequency-energy components. The
Figure 8 shows that except for individual 4, subjects 5
and 6 with carpal tunnel, are differentiated from healthy
subjects by the absence of high frequency components
together with low frequency components with relevant
energy levels. On the other hand, subject four presents
relevance in low frequency components with persistence
in time, however components beyond 10 Hz are not very
observable, fact that individualizes this case in general.

Conclusion

The shapes presented through the Hilbert-Huang
transform given the intrinsic mode functions, concentrate
different degrees of information in which the frequency,
energy and temporal distribution of these are included.
To characterize this behavior, the Shannon entropy
measure was used on each of the IMFs. The purpose of
this study was not only to look for metrics to extract
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Figure 8: Hilbert Huang’s spectra bounded, movement 1 over FMF.

Source: own

characteristics and therefore patterns, but also to
establish a balance of the informative level of
components, in order to cross with the information
obtained from the frequency-energy representations of
each mode to study compact and efficient spectral forms.

It was possible to evidence differential behavior
between subjects seen as a group and individually, this
being based on the informative level of their IMF. With
these, a space was established to search for limited
patterns in the spectrum, which is more focused on
the last IMF components, in general, from the seventh
to the tenth, since they are where more information is
condensed. With respect to the high scales discarded, it
can be concluded that part of their discarding is caused
by the noise content implicit in the signals.
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de Hilbert-Huang a señales biológicas en el
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