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There are certain difficulties in differentiating between children’s facial expression related 
to pain and other stimuli. In addition, the limited communication ability of children 
in the preverbal stage leads to misdiagnosis when the child feels pain, for example, 
post-surgical conditions. In this article, a classification approach of facial expression of 
child pain is presented based on models of pre-trained convolutional neuronal networks 
from the study carried out in a Colombian hospital of level 4 (Hospital Universitario San 
Vicente Fundación), in the recovery areas of child surgery services. AlexNet and VGG 
(16, 19 and Face) networks are evaluated in the own dataset using the FLACC scale and 
their performances are compared in three experiments. The results show that the VGG-
19 model achieves the best performance (92.9%) compared to the other networks. The 
effectiveness of the model and transfer learning for the classification of facial expression 
of child pain shows a promising solution for the assessment of post-surgical pain. 

Existen ciertas dificultades para diferenciar entre la expresión facial infantil relacionada 
al dolor con la de otros estímulos. Además, la limitada capacidad de comunicación de 
los niños en la etapa preverbal conlleva a un error de diagnóstico cuando el niño siente 
dolor, por ejemplo, afecciones posteriores a las cirugías. En este artículo, se presenta 
un enfoque de clasificación de la expresión facial de dolor infantil basado en modelos 
de redes neuronales convolucionales pre-entrenadas a partir del estudio realizado en 
un hospital colombiano de nivel 4 (Hospital Universitario San Vicente Fundación), en 
las áreas de recuperación de los servicios de cirugía infantil. Se evalúan las redes Alex-
Net y VGG (16, 19 y Face) en el conjunto de datos propio utilizando la escala FLACC 
y se comparan sus rendimientos en tres experimentos. Los resultados muestran que 
el modelo VGG-19 logra el mejor rendimiento (92.9%) en comparación con las demás 
redes. La eficacia del modelo y el aprendizaje por transferencia para la clasificación 
de la expresión facial de dolor infantil muestran una solución prometedora para la 
evaluación del dolor postquirúrgico. 
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1.	 	Introduction

The manifestation of pain has a great impact on 
the patient’s environment and on him or herself, even 
more so when the pain is not well controlled. For this 
reason, optimum communication is needed between 
the treating personnel and the patient to make the 
correct interpretation of the pain at the time of the 
medical intervention, thus evaluating the intensity 
of the pain to provide analgesics and formulate the 
respective diagnosis. This is a starting point that 
cannot be replaced by advances in pharmacology and 
technology [1], [2].

The painful experience of each person depends 
on their personal and subjective value based on 
age, culture, previous experience, context-derived 
senses, among other factors. For this reason, no two 
people experience pain under the same physiological 
conditions and mechanisms. This is a problem for 
the health personnel involved in pain management, 
since the evaluation of pain intensity depends on 
their criteria as well as on the patient’s verbal report, 
and there are not strictly objective and precise 
measures to establish the degree of pain suffered 
by the patient. Such an assessment is complicated 
when dealing with children or people with limited 
ability to communicate.

The main problem that arises in the management 
of pediatric pain is the assessment and self-perception 
of it [3], [4]. Pain in children has been associated 
with physiological changes and behavioral patterns, 
which are indicators of pain that can be recorded 
and therefore quantified [5] - [7]. In that sense, it is 
evidenced in the literature, the development of several 
traditional scales of pain assessment to estimate the 
intensity of this.

Patient self-assessment is the most reliable and 
valid measure for assessing pain. The patient can express 
the intensity of his or her pain and the location of the 
pain. However, it is not possible to use it in people 
with communication or neurological impairments or in 
infants [8], [9], since they cannot quantify its severity 
and inform medical personnel about the effectiveness 
of the analgesia [4], [5]. To evaluate pain in children, 
the indicators summarized in Table I, which are related 
to pain, were defined. It is necessary to emphasize that 
changes in the child’s facial expression in response to 
pain are considered the most reliable and consistent 
indicator [10].

Table 1. Indicators that determine the presence of 
pain in children [4], [10]–[12].

Children’s response to pain

Physiological Changes Behavioral Patterns
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Blood pressure
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Changes in facial expression

Heart rate Movement of the legs

Breathing rate Crying

Oxygen saturation Frequent body movements

In young children, verbal skills remain limited and 
quite inconsistent. Pain-related behaviors are the main 
indicator for assessments in this age group. Nonverbal 
behaviors, such as facial expression, limb movement, 
grasping, and crying, are considered more reliable and 
objective measures of pain than self-evaluation. The 
most used pain assessment scales for this age group are 
[12]: The Children’s Hospital of Eastern Ontario Pain 
Scale (CHEOPS), Face Legs Arms Cry Consolability 
(FLACC), COMFORT Scale, The Observational Scale 
of Behavioral Distress (OSBD), Observational Pain 
Scale (OPS), y The Toddler-Preschooler Postoperative 
Pain Scale (TPPPS).

One possible way to provide an objective and 
continuous assessment of pain is to develop an automated 
system that observes and analyzes different behavioral/
physiological indicators related to pain [13], [14].

It is for these reasons that there is interest in having 
new techniques and strategies that allow doctors and 
nurses to better diagnose postoperative pain and identify 
its levels.

Recent innovations in the field of computer 
vision have facilitated the development of automated 
approaches to evaluating facial expressions. In order to 
minimize errors in the recognition of facial expressions 
given by complex image backgrounds, techniques such as 
the background subtraction technique are used in [15], 
where authors explore the potential of this technique, 
which allowed them to design and implement a motion 
detection algorithm. Some other works have considered 
the use of the image segmentation technique [16].

The increase of computing power in GPUs and 
the creation of large image data sets have allowed 
convolutional neural networks (CNN) to show an 
outstanding performance in the challenges of computer 
vision, as evidenced in [17]. 
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Thus, the present study was based on the premise 
that the incidence of severe pain in post-surgical patients 
of moderate to severe intensity is high, and that facial 
expressions are considered the fundamental pillar in 
the evaluation of pain since they constitute one of the 
most significant pain indicators [18]. Therefore, it is 
proposed to evaluate different architectures of 
convolutional neural networks (CNNs), widely 
used in the recognition of emotions, for the 
classification of facial expression of child pain.

The paper is organized as follows. In the second 
chapter, the methods used for the construction of the 
data set are described. The implementation is described 
in detail in the third chapter. The experimental results are 
discussed in the fourth chapter. Finally, the conclusions 
are presented in the fifth chapter.

2.	 	Methodology

2.1. Definition of the population

A proprietary data set was built with images of 
pediatric patients from the Hospital Universitario San 
Vicente Fundación (HUSVF) in Medellín, Colombia. This 
study was approved by the Ethics and Research Committee 
of the HUSVF and by the Biomedical Committee of the 
University of Antioquia (UdeA), Medellín, Colombia.

The sample size was defined for 50 pediatric patients 
(39 boys and 11 girls), who were registered after undergoing 
surgical procedures such as general pediatric surgery, 
orthopedic surgery, or plastic surgery. The average age 
of the children is 16.84 months, which varies from 1 to 
36 months (standard deviation = 10.58). Any child who 
received surgery and whose age was within the range was 
eligible for data recording, after obtaining the respective 
informed consent of the child’s parents and/or guardians. 
Children with neurological diseases and facial dimorphism 
or with a facial handicap were excluded.

2.2. Image acquisition

The integrated camera of an iPad Mini 4 was used 
to record videos of the children’s facial expression and 
the FLACC (Face, Leg, Activity, Cry, Consolability) pain 
assessment scale was used to record changes in body 
movement. All recordings were made in the HUSVF 
postoperative clinical setting.

Each child was recorded for four time periods: 
1) Right after the surgical procedure for the first 

observation (take ZERO); 2) Ten minutes after the 
surgical procedure (take ONE); 3) Twenty minutes 
after the surgical procedure (take TWO); and 4) Thirty 
minutes after the completion of the painful procedure 
(take THREE). Each period was observed by trained 
Nurse Practitioners and Anesthesiology Residents to 
provide pain assessment using the FLACC scale and to 
perform vital sign measurements (variation in blood 
pressure, heart rate and oxygen saturation), which 
helped to supplement the assessment.

2.3. FLACC Pain Assessment Scale

There is no universally accepted standard 
measurement instrument for assessing and 
measuring childhood pain. The basic principle of pain 
measurement is to choose the right instrument for the 
right patient, which means that it should be based on 
developmental age and the type of pain or medical 
condition (i.e., procedural pain versus postoperative 
pain) [12]-[14], [19]-[21].

For these reasons, the FLACC pain assessment scale 
was used since according to the literature [14], [19], [20], 
[22]-[23] it is the recommended and best validated scale 
for assessing postoperative pain in infants because it is 
reproducible and simple to use in a clinical setting and 
it assesses the child’s face, leg movement, body activity, 
crying, and whether he is easy to comfort, which are all 
observable variables associated with pain.

Each component of the FLACC scale is scored 
between 0 and 2 points, with 0 being an overall indicator 
that the child is calm, 1 being very restless, and 2 being 
desperate. A total of 1 to 3 points represents mild pain, 
4 to 6 points represents moderate pain, and 7 or more 
points represents severe pain.

The scores obtained (0, 1, 2, 3, 4 and 5) for each of 
the recorded shots in this study were used as the label 
for the evaluation of the models. It should be noted, the 
exclusion of the records labeled with the scores from 
6 to 10, since the number of valid records and images 
was too small.

3.	 	Implementation 

The proposed process for the classification of pain 
expression consists of two main stages: 1) pre-processing 
of the images and 2) adjustment and training of pre-
trained CNN architectures. Each stage is described in 
detail below.
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3.1. Image pre-processing

Before starting to pre-process the images, the 
OpenCV Library [26] was first used to extract the 
frames from each of the 200 videos purchased with 
the iPad Mini 4’s built-in camera. The next step was to 
implement the Oriented Gradient Histogram (HOG) 
descriptor offered by the DLIB library [27], [28], in each 
of the extracted images to detect the face. Images where 
faces are not detected by the algorithm were excluded 
from further analysis. In addition, a correlation analysis 
was performed to verify the matching of the images 
and to process only the relatively different images, 
thus selecting only the key frames of each video. Using 
again the DLIB library [29], 68 facial reference points 
were obtained which allow to identify the sketch of 
the face, eyebrows, eyes, nose, and mouth. From the 
information of the coordinates of the sketch of the face 
and the eyebrows, a mask was created to segment the 
face from the background of the image.

Since the total number of frames is too small (i.e., 
2730 frames) to retrain a CNN and to make the model 
robust to the characteristics that the set of images might 
have, such as the angles of the shots, the illumination, 
the similarity of the images, among others, a series of 
transformations to the set of training and validation 
images were performed as follows.

First, the images were flipped horizontally 
at random with a 50% probability. These types of 
transformations are optimal for the data set since the 
facial expressions, in these cases, of the babies and 
children, are quite symmetrical. Following this, the 
images were resized to a size of 256xN, with N being 
the ratio of dimensions of the images. And finally, each 
image was cropped to the size 224x224 and normalized 
([0.0996611, 0.0800176, 0.06390216], [0.16571397, 
0.14057845, 0.12316495]) to scale the image values 
in the range of [0.1].

3.2 Adjustment and training of pre-trained CNN 
architectures

Four CNNs architectures were used for pain 
classification in the relatively small data set (50 
subjects, 2730 images). The first three architectures, 
as seen in Figure 1, AlexNet, VGG16, and VGG19, were 
previously trained on the ImageNet dataset [30] which 

contains more than 1.2 million images for the 1000 
class classification.

The AlexNet architecture, which has five 
convolutional layers and three fully connected layers, 
has promoted the development of deep learning in 
the field of facial expression recognition, specifically, 
emotion recognition. In the present study, the last 
connection layer was modified to change from 
classifying 1000 classes to 6 classes corresponding 
to the scores obtained by the FLACC scale (0, 1, 2, 
3, 4, and 5).

The fourth architecture is the VGG-FACE 
descriptor. The VGG family of architectures, as shown 
in Figures 1 and 2, have the same structure in the first 
three sets of convolutional layers, and the overall 
structure contains five sets of convolutional layers. 
The VGG16 and VGG19 networks are also widely used 
for the task of emotion classification. In the present 
study, the last connecting layer of both networks was 
modified from 1000 to 6 classes. The VGG-FACE 
network was previously trained on a large set of face 
images [31], which contains approximately 2.6 million 
face images to classify 2622 identities in the face 
recognition task. The output neurons of the last layer 
(fc8 layer) were also replaced by 6 classes.

The choice of these pre-trained CNNs allows to 
investigate the difference between using networks 
trained on a relatively similar data set (i.e., VGG-FACE, 
Face Dataset) and networks trained on a relatively 
different data set (i.e., AlexNet, VGG16 and VGG19, 
ImageNet) to one’s own data set.

The image set was randomly divided into training 
set, validation set, and test set. The test data set was 
used to select the best classifier, where the loss function 
would reach the minimum.

The challenge that arose in the development of 
this study was the limited number of face images. The 
proposed solution was to use learning by transfer [32], 
[33] to address the problem of limited availability 
of tagged data. By making use of this technique, 
it is possible, as a first option, to preserve all the 
previously trained layers before the last output layer 
and to connect these intermediate layers to a new layer 
designed for the new classification problem.
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Figure 1. Architectures AlexNet, VGG-16 and VGG-19.

Source: own.

Figure 2. Architecture VGG-Face.

 Source: own.

The second option is to adjust more layers, or even 
the entire set of pre-trained network layers. It is also 
possible to keep the first convolutional layer fixed, as this 
layer is often used for edge extraction, which is common 
for generic image processing problems.

In this study, it was decided to adjust all the 
parameters of each of the pre-trained models. In addition, 
to obtain an unbiased evaluation in the ratings, three 
experiments were used to evaluate the performance 
of the model by adjusting the hyperparameters. The 
selection of the hyperparameters was based on several 
studies [34]-[40] focused on the area of facial expression 
recognition, emotions, and pain. In these studies, the 
policy of updating the stepwise learning rate is developed, 
specifying the values for each of the hyperparameters 
and the combination of these.

The total number of times for training was 100. The 
training algorithm applied was the stochastic gradient 
descent with the hyperparameters defined in Table 2 
(momentum, weight decay, initial learning rate). The 
learning rate was reduced by a specific gamma factor 
every certain number of times established by the size of 
the steps. A lot size of 32 and 16 was used for the training 
and validation set, respectively.
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Table 2. Hyperparameters established by each proposed experiment.

Hyperparameters \ 
No Experiments

Initial 
learning rate Gamma factor Momentum Step size Decay of weights

Experiment 1 0.000001 10.0 0.99 5.0 0.0005
Experiment 2 0.001 10.0 0.9 5.0 0.0005
Experiment 3 0.001   0.1 0.9 5.0 0.0005

Source: own.

The entire data set was randomly divided into a 
training set (±50%, 1388 frames), a validation set (±20%, 
529 frames), and a test set (±30%, 813 frames).

4.	 	Analysis of results 

To classify the facial expression of pain of babies and 
children, a total of 2730 facial images were entered as input 
to the four CNNs architectures mentioned above for the 
final classification. All the networks were implemented in 
the Google Collaboratory environment using the Python 
programming language and the PyTorch library. Training 
performance was reported using accuracy and loss.

The first column of results in Table 3, reports 
the performance of the pain assessment by applying 
the hyperparameters established for experiment #1 
(Initial learning rate: 0.000001, Gamma factor: 10.0, 
Time: 0.99, Step size: 5.0, Weight Decay: 0.0005). 
The evaluation of the networks was carried out in this 
way because we wanted to evaluate how the choice 
of the hyperparameters affects the performance 
of the classification. The AlexNet network, for 
experiment #1, had the best performance, obtaining 
good accuracy and relatively low loss.

Table 3. Pain Assessment Performance with 
AlexNet, VGG-16, VGG-19 and VGG-FACE.

Experiment #1 Experiment #2 Experiment #3
Accuracy Loss Accuracy Loss Accuracy Loss

AlexNet 0.641 0.238 0.679 0.199 0.583 1.106
VGG-16 0.171 2.355 0.937 1.075 0.623 0.342
VGG-19 0.344 1.612 0.929 0.062 0.536 1.223
VGG-FACE 0.295 3.126 0.836 0.178 0.468 1.136

Source: own.

the hyperparameters established for experiment #2 
(Initial learning rate: 0.001, Gamma factor: 10.0, 
Time: 0.9, Step size: 5.0, Weight Decay: 0.0005). 
Comparing the performance of the first and second 
column the hyperparameters chosen for experiment 
#2 significantly improved the overall performance for 
each of the models. The accuracy of the pain assessment 
was improved for the VGG16, VGG19 and VGG-FACE 
networks. However, the loss obtained for the VGG-16 
network was too high. Therefore, it can be concluded 
that the VGG-19 and VGG-FACE networks achieved the 
best overall performance, since they have high accuracies 
and low losses, with VGG-19 being the best option.

The last column of Table 3 provides the performance 
of the networks using the hyperparameters chosen for 
experiment #3 (Initial learning rate: 0.001, Gamma 
factor: 0.1, Time: 0.9, Step size: 5.0, Weight Decay: 
0.0005). The VGG-16 network, for experiment #3, had 
the best performance, obtaining good accuracy and 
relatively low loss.

The next step was to evaluate the VGG-19 model, 
in the test phase, on each of the classes in the data set, 
the statistical accuracy metrics, given in equation (1); 
sensitivity (True Positive Rate - TPR), equation (2); 
specificity (True Negative Rate - TNR), equation (3); false 
positive rate or 1-Sensitivity (False Positive Rate - FPR), 
equation (4) and false negative rate (False Negative 
Rate - FNR), shown in equation (5).

•	 Accuracy: Represents the overall performance 
of the model through the total percentage of hits.

                   Accuracy   = TP + TN
TP + TN + FP + FN 	  (1)

•	 Sensitivity (TPR): Represents the fraction of 
positive tests that are correctly labeled.

                                  TPR   = TP 
TP + FN

	     	        (2)
The second column of Table 3 shows the 

performance of the pain assessment by applying 
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•	 Specificity (TNR): Represents the fraction of 
negative tests that are correctly labeled.

                           TNR   = TN 
TN + FP

  		         (3)

•	 False positive rate (FPR): Represents the 
fraction of negative tests that are incorrectly labeled 
as positive.

		       FPR   = FP 
FP + TN    		        (4)

•	 False negative rate (FNR): Represents the fraction 
of positive tests that are incorrectly labeled as negative.

                     	      FNR   = FN 
FN + TP

		         (5)

Where the values of TP, FP, FN, TN are explained 
graphically with the confusion matrix, which can be 
seen in Table 4.

Table 4. Confusion matrix for classification.

Manual classification (reality)

Positive Negative

Automatic 
classification 
(predictions)

Positive True positive 
(TP)

False positive 
(FP)

Negative False negative 
(FN)

True negative 
(TN)

Source: own.

Table 5 presents the performance of the VGG-19 
network under experiment #2 in the test phase. The 
purpose of examining these metrics was to evaluate how 
the selected hyperparameters affect the performance of 
the classification along with the true positive rate (TPR) 
and the false positive rate (FPR). As shown in Table 5, 
particularly good accuracy values are obtained for each 
of the classes to be predicted by the model. The TNR and 
FPR values are generally good, however, the TPR values 
are low and the FNR is remarkably high. It is important 
to clarify that the purpose is to obtain high values for 
accuracy, TPR and TNR and to achieve low values for 
FPR and FNR. Analyzing these last two metrics is crucial 
in the case of pain assessment, since, in the literature, 
there are many pediatric studies where overtraining 
(associated with TPR) and undertraining (associated 
with NRF) are present. Therefore, it is concluded that 
the CNN VGG-19 model achieved a good performance 

in a general way obtaining good specificity, however, it 
could have suffered from mismatch. In addition to this, it 
can also be observed that the results obtained for classes 
3, mild pain, and 4, moderate pain, are not optimal.

The possible reasons for these results were:

1.	The fact of having 50 patients, which is a weakness 
of the project

2.	The pain assessment by the Anesthesiology 
nurses and resident doctors was not independent, 
therefore, the categorization of the images could 
have been biased.

Table 5. Confusion matrix for classification.

Accuracy TPR TNR FPR FNR
0 vs All 85.4% 56.1% 94.1% 5.9% 26.1%
1 vs All 86.7% 55.3% 96.3% 3.7% 18.0%
2 vs All 79.5% 34.6% 95.5% 4.5% 26.7%
3 vs All 72.7% 43.7% 12.2% 25.5% 90.28%
4 vs All 89.9% 0% 91.4% 8.6% 100%
5 vs All 99.5% 97.5% 1% 0% 0%

Source: own.

3.	Much of the bias may also have occurred because 
of the design of the data set.

4.	The images categorized in classes 3, mild pain, and 
4, moderate pain, probably cannot be differentiated 
well, so the model cannot distinguish between 
these classes.

5.	 Conclusions 

Assessment of childhood pain can be inconsistent 
since it depends largely on medical judgment, and 
medical personnel are required to be well trained 
to ensure proper use of the assessment scales. This 
can result in late intervention and inadequate pain 
management. Because pain assessment is crucial to pain 
management, automatic tools need to be developed to 
allow optimal pain assessment.

This work evaluates different convolutional neural 
network architectures, widely used for the classification 
and detection of emotions, in the task of automatic 
pain classification in three different experiments. All 
networks, AlexNet, VGG16, VGG19 and VGG-FACE 
were evaluated using the proprietary dataset. The 
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experimental results showed that the selection of 
hyperparameters influences the performance of the 
models. The selected hyperparameters for experiment 
#2 (Initial learning rate: 0.001, Gamma factor: 10.0, 
Momentum: 0.9, Step size: 5.0, Weight Decay: 0.0005) 
influenced to obtain the best results with respect to the 
other two experiments. With the VGG-19 network, the 
best performance was obtained in comparison with the 
other networks, achieving an accuracy of 92.9% and a 
loss of 6.2% for the validation phase. However, when 
analyzing the accuracy, precision, TPR, TNR, FPR and 
FNR metrics in the test phase, it could be observed 
that the model, despite having a good performance 
at a general level and achieving good specificity, did 
not achieve good sensitivity and possibly presented 
training mismatch. The reasons for this are considered 
to correspond to the distribution of the images in the 
different classes and/or in the divisions of the training, 
validation, and test sets. To solve this problem, it is 
proposed, before improving the technique, to improve 
the data set, and to make an exhaustive analysis of the 
error in a manual way, analyzing image by image, taking 
advantage of the fact that it is a relatively small data set, 
and to confirm that the labeling of the data has been 
correct and to carry out the necessary measures, such 
as merging classes that may not be differentiable. This 
will possibly help to improve the performance of the 
model and not suffer from either over- or under-training.

These results are encouraging and suggest that 
automatic recognition of childhood pain is a viable and 
more efficient alternative to the current standard of pain 
assessment. By following the proposed improvements, it 
is expected to have a robust system capable of classifying 
the level of child pain with particularly good results, 
thus solving the problem of biased pain assessment that 
occurs every day.
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