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The Ball & Beam system is one of the most complete case studies in control engineering, 
because it is a non-linear and naturally unstable system. In this article we propose to 
make an optimal LQG controller for Quanser’s Ball & Beam system, composed of a linear 
quadratic regulator (LQR) and a linear quadratic estimator (Kalman filter) with which 
the noise of the system’s ball position signal was eliminated, managing to mitigate the 
problems generated by the high sensitivity to sensor noise. Starting from the state space 
representation of the Quanser Ball & Beam system and using the Matlab/Simulink 
software and its QUARC module, an optimal LQG controller was designed, simulated 
and implemented in the Quanser Ball & Beam system. Finally, the simulation results 
and implementation show that the LQG controller is effective in controlling the Ball & 
Beam system despite the noise presented by the feedback signal.

El sistema Ball & Beam es uno de los casos de estudio más completos dentro la inge-
niería de control, debido a que es un sistema no lineal y naturalmente inestable. En el 
presente artículo se propone realizar un controlador optimo LQG para el sistema Ball & 
Beam de Quanser, compuesto por un regulador cuadrático lineal (LQR) y un estimador 
cuadrático lineal (filtro de Kalman) por medio del cual se estimaron todos los estados 
del sistema, logrando mitigar las problemáticas generadas por la alta sensibilidad al 
ruido del sensor. Partiendo de la representación en espacio de estados del sistema Ball 
& Beam de Quanser y utilizando el software Matlab/Simulink y su módulo QUARC se 
diseñó, simulo e implemento un controlador optimo LQG en el sistema Ball & Beam 
de Quanser. Finalmente, los resultados de la simulación e implementación muestran 
que el controlador LQG es efectivo para controlar el sistema Ball & Beam a pesar del 
ruido que presenta la señal de realimentación. 
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1.	 Introduction

In the process of controlling dynamic systems, it 
is common to find several complications due to the 
instability of the systems, the presence of nonlinear 
components or the high sensitivity to noise of the 
measuring instruments that integrate them. The Ball 
& Beam system is one of the most complete case studies, 
since it presents all the mentioned complications, and 
whose objective is to stabilize the position of a ball 
around an operating point, by means of the variation of 
the inclination angle of a beam. Within the academy it 
is common to find several authors who have developed 
and applied different control techniques for this system, 
some of the documented cases will be described below.

With the objective of contemplating all the dynamics 
of the system, the nonlinearity presented by the friction 
between the ball and the beam has been included in 
the mathematical modeling of the Ball & Beam system 
[1]. The direct Lyapunov method has also been used to 
describe the unstable behavior of the system [2]. Along 
with this, classical control loops were developed such as 
PID controllers in series or in cascade [3] proportional 
feedback in state space and Lag/Lead compensators, 
which, since they do not have any criteria for the control 
of the system, have been developed. [2] which, not having 
optimal design criteria, generate inefficiency and limit 
the operating conditions of the system.

These drawbacks generated those different authors 
raised various solutions from modern control theories, 
such as optimal controllers which improved the efficiency 
of the system. The optimal controller most named in 
the literature is the linear quadratic controller, which 
from weight matrices established both heuristically 
and by optimization methods, minimizes the energy 
required to control the system [4-5]. Parallel to this, 
quasi-optimal control techniques were developed in 
time, which start from the transformation of the system 
to the Jordan model [6]

On the other hand, it is common that the signals of 
the variables to be controlled present noise components 
that directly affect the performance of the controller, 
for this reason the LQG controller was developed 
alternatively [5] was developed, where a Kalman filter 
is used, constructed from the state equations of the 
system or using the nonlinear differential system written 
in Brunovsky’s canonical form [4]. Through this filter 
the system states are estimated, eliminating the noise 
of the associated signals and improving the system 

performance. In addition to this, variants of this control 
technique were developed, such as the robust LQG/LTR 
controller, which presents a better performance against 
disturbances or uncertainties that may occur in systems 
such as Ball & Beam, or in rotary positioning systems [1] 
or in direct drive rotary positioning systems [7].

The particular characteristics of the LQG controller 
have generated that it is used in external control loops for 
the Ball & Plate system [8] system, and as a control strategy 
for much more complex systems such as the Ballbot robot. 
[9]. Even this control technique has been integrated with 
the feedforward controller for the development of control 
loops for NASA network antennas [10].

Figure 1. Methodology used for research 
development

Source: own.

The focus of this work is to carry out the design, 
simulation and implementation of the LQG control 
technique for the Quanser Ball & Beam system, in order 
to validate its operation in a nonlinear dynamic system, 
naturally unstable and also has high sensitivity to noise 
in their measuring instruments. In this order of ideas, 
the methodology used in this work is presented in the 
following sections as follows: section II emphasizes the 
dynamic model of the system, then in section III, the 
linear model of the Ball & Beam system will be taken 
and the design of the LQR, LQG and Kalman filter 
controller will be detailed; in section IV the simulation 
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of the different control loops will be developed, and 
the results obtained in the implementation of the LQG 
control loop in the Ball & Beam system of Quanser 
will be shown. Figure (1) shows in more detail the 
development of each of the above sections.

2.	 Mathematical model of the Ball & Beam 
system

To develop a model-based controller it is necessary 
to obtain a mathematical model that describes the 
behavior of the system over time, this model can be 

obtained both from physical laws and from the system’s 
own measurements. As mentioned in the previous 
section, the platform to be analyzed is the Quanser Ball 
& Beam system, which is composed of two subsystems, 
the first one describing the dynamics of the servomotor 
and the second one describing the dynamics between 
the servomotor and the servo motor.  and the second 
one that comprises the dynamics between the ball and 
beam. . Figure 2 shows a general diagram of Quanser’s 
Ball & Beam system, where the lengths and relevant 
variables of the system are defined, which were taken 
into account within its mathematical model.

Figure 2. General diagram of the Quanser Ball & Beam system [11]. 

2.1.	 Mathematical model 

The dynamic model of the ball and beam is derived 
from Newton’s second law of motion. [11]. Taking as a 
starting point the free body diagram of the subsystem, 

shown in Figure 3, the forces acting on the ball are 
deduced, where Fx,t is the translational force generated 
by gravity and the force  Fx,r is the inertia of the ball. 

Figure 3. Free body diagram of the ball girder subsystem. [11]
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Starting from equation (1) given by Newton’s second 
law, equation (2) related to the nonlinear dynamic model, 
which describes the motion of the ball along the beam, 
is derived; the parameters used for the modeling of the 
system are shown in Table 1.

               mb  = Fx,t � Fx,r
x�t� d2

dt2� �          	      (1)

x�t��= d2

dt2

mb g sin α�t�rb
2

mbrb
2        + Jb

                      (2)

On the other hand, for the servomotor subsystem, 
the identification made in Quanser’s Workbook SRV2 
was taken up again [11]. This transfer function is given in 
equation (3) and describes the behavior of the servomotor 
with no load and with the highest gear configuration.

 Ps�s��= = 
θl�s�
Vm�s�

1,53
s �0.0248 s + 1��                  (3)

Finally, by finding the relationship between the 
beam inclination angle α and the angular position of 
the gear θ1, equation (4) is obtained, which is linearized, 
defining that for angular variations of θ1, close to 0°, it 
can be approximated that sin(θ1) ≈ θ1.

 x�t��= d2

dt2

mb g sin θl�t�����rb
2

Lbeam�mbrb
2        + Jb�

                (4)

x�t��= d2

dt2

mb gθl�t�����rb
2

Lbeam�mbrb
2        + Jb�

                  (5)

Table 1. Physical parameters of the Quanser Ball & 
Beam system.

Parameter Und. Description

Lbeam =42.55 cm Beam length

rarm= 2.54 cm
Distance between the 

servomotor gearing and 
the coupled joint

rb= 1.27 cm Ball radius
mb= 0.064 Kg Ball mass

g= 9.8 m/s2 Gravitational acceleration

Jb=0.000004129 Kgm2 Moment of inertia of the 
ball

Source: own.

2.2.	 State-space representation of Quanser’s Ball & 
Beam system 

For the design of the LQG controller it is necessary 
to have a state space representation of the system; for 
this reason, the anti-Laplace transform was applied to 
equation (3), and the constants of equation (5) were 
simplified, obtaining the two differential equations 
of the same order, which were the starting point to 
define the state vector of the system, which is composed 
of the positions and linear and angular velocities 
x�t��=[xp; ] ;θl; 

dxp

dt
dθl

dt
. Next, equations (6) and (7) 

show the state space representation of Quanser’s Ball 
& Beam system.

ẋ�t��= x�t��+ Vm

0
0
0
0

1
0
0
0

0
0.4179

0
0

0
0
0

-40.32

0
0
0

61.69

        (6)

y�= [ 1   0   0   0 ] x�t�                              (7)

3.	 LQG controller design

The LQG controller is composed of a linear quadratic 
regulator (LQR) and a linear quadratic estimator or 
Kalman filter; this section presents the design of these 
two subsystems, using the state space representation 
of the linear system, to later validate the proposed 
methodology in the nonlinear system.

3.1.	 LQR Control

The main objective in this control loop is to 
find a feedback matrix K that minimizes the energy 
performance index  J  [5] given in the cost function 
described in equation (8), where and � are symmetrical 
weight matrices R, defined for this research according 
to the degree of penalty to be established for the states 
and inputs of the system, thereby minimizing the energy 
used by the controller and by each of the states.

                                                    J�= ∫� xT Qx + uT Ru�dt 
0

∞

                    (8)

To obtain the matrix K, an analysis of the problem is 
made from the Euler-Lagrange equations and application 
of the Variational Calculus, resulting in the control law 
in the form of state feedback given in equation (9).
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K�= �R -1 BTP                                (9)

Where P is the algebraic solution of the Riccati 
equation, described in equation (10).

ATP+PA�PBR-1BTP+Q=0                   (10)

Based on the above, the Kalman filter was designed, 
which is an algorithm derived from the optimal 
state estimation, where it is stated that the random 
components and wd(k) vd(k) have a Gaussian distribution 
with zero mean and non-zero covariance. Therefore, for 
this research the matrices �E associated to the process 
noise covariance and RM associated to the measurement 
noise covariance were defined. 

   vd�k� ~ N�0,RM�

wd�k� ~ N�0,QE�

                           (12)

(13)

Then, as a first step, the prediction and covariance 
equations were established, which are stated in equations 
(14) and (15) respectively.

 xk = Adx�k-1� + Bdu�k-1�
 Pk = AdP�k-1��Ad

T +QE

                      (14)

(15)

Finally, an optimal state feedback was performed 
according to the control law u= ˗̶ Kx, where is K the 
optimal gain matrix found previously. 

3.2.	 Kalman Filter

The Kalman filter is widely used in fields such 
as digital image processing, computer vision, pattern 
recognition and state estimation for stochastic systems.

The Ball & Beam system has a variable resistance 
sensor that allows measuring the position of the ball 
along the beam, however, the measurement of this state is 
affected by the high sensitivity to noise that the measuring 
instrument presents, causing the measurement of the 
state to xp become a stochastic process. Therefore, it was 
necessary to define a state space representation of the 
system, where the components w(t) associated to the 
process noise and v(t) associated to the noise present in 
the measurement of the output variable were added to the 
dynamics of this state, as shown in equations (10) and (11).

 ẋ�t��= Ax�t�+Bu�t�+w�t�

y�t��= Cx�t�+v�t�

               (10)

(11)

Then, since the analysis, design and implementation 
of the Kalman filter is simplified by using the dynamic 
equations of the system in the discrete domain, it was 
decided to use a zero-order retainer to discretize the 
system given by equations (10) and (11); obtaining as a 
result the system described in equations (12) and (13), 
where the matrices Ad, and Bd are wd related to the 
equation of states of the system in the discrete domain, 
and the matrices Cd and vd are related to the output 
equation of the system in the discrete domain.

  x�k+1��= Ad x�k�+Bdu�k�+wd�k�
y�k��= Cd x�k�+vd�k�

           (12)

(13)

Secondly, the update equations for both the 
prediction and the error covariance, described in 
equations (17) and (18), were declared.

 k�k� = P�k�Cd
T  

��Cd P�k�Cd
T  

�+RM�-1

 P�k� = ������k�k�Cd� P�k���

 x�k-1�= x�k�+k�k���y�k��Cd x�t���

            (16)

  (17)

(18)

The term k(k), described in equation (16), is the 
optimal gain matrix of the Kalman filter, which minimizes 
the covariance of the updated error P(k).

Finally, integrating the Kalman filter within 
the LQR control loop, the LQG control technique 
is designed, where the cost function for the Ball 
& Beam system, given by equations (12) and (13), 
is minimized. Figure 4 shows the interconnection 
between the Ball & Beam system, the Kalman filter 
and the set of optimal gains within K the LQG control 
loop in the discrete domain.
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Figure 4. General connection diagram for the LQG control loop.

Ad , Bd 
x�k��� y�k��� Cd

Filtro de Kalman
x�k��� 

r�k��� 

KLQR

Source: own.

4.	 Simulation and Results

This section shows the design and simulation 
process of the LQR and LQG controllers in the linear 
Ball & Beam system, then the simulation of the LQG 
controller within the nonlinear system is presented; 
finally, the results obtained in the implementation of 
the LQG controller in the Quanser Ball & Beam system 
are shown, a process that was carried out by means of 
the Matlab/Simulink software and its QUARC module.

Before starting the design process of the LQG and 
LQR controllers, it was validated that the linear system 
was both observable and controllable, corroborating 
that the range of the controllability and observability 
matrices was equal to the degree of the system. After 
that, the design of the LQR controller was carried out, 
where the weight matrices Q and R were configured, as 
shown below.

Q�=

R = [10];

100
0
0
0

0
10
0
0

0
0

100
0

0
0
0

10
 

noise component in its output state Xp, before a step 
input of magnitude 0.1. The results of this simulation are 
shown in Figure 5 , under which it was determined that 
the system response for this control loop has a settling 
time of 9.64 sec and a steady state error of 68.38%.

Since the system with the LQR controller presented 
a high error in steady state, even without integrating the 
noise component in the optimal state feedback, it was 
decided to design and integrate a Kalman filter to the 
control loop, thus forming the LQG control technique for 
the Ball & Beam system, including with this an integral 
action to the dynamics of the system, achieving that the 
response of this to a step input had an error in steady 
state equal to 0. 

Figure 5. LQR control loop, ball position control.

By solving the algebraic Riccati equation, the optimal 
K feedback gain matrix, described below, was obtained.

K=[3.1623  8.1243  4.2963  0.5980]

Then the optimal state feedback for the LQR 
controller was generated in Simulink, where the response 
of the linear Ball & Beam system was obtained, without 

Source: own.

For the design of the Kalman filter, the covariance 
matrices and QE RM, associated with the covariance of 
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the process noise and the covariance of the noise of the 
system output equation, respectively, were declared.

QE�=

RM = 0.01;

0.1
0
0
0

0
0.1
0
0

0
0

0.1
0

0
0
0

0.1

Using the Kalman filter algorithm, the matrix k, 
which corresponds to the set of optimal gains of the 
linear quadratic estimator, was calculated.

For the development of the simulation of the 
LQG control loop in the linear Ball & Beam system, a 
random signal of Gaussian distribution with mean 0 and 
covariance of 0.01 was added in the state feedback 
xp, in order to replicate the high sensitivity to noise 
presented by the linear position sensor of the system. 
The figure 6 shows the response of the LQG control 
loop in the linear system and the measurement of the 
state feedback xp behavior, once the noise component 
described above has been added.

Figure 6 (a). LQG control loop for linear system, ball position control.

Source: own.

Figure 6 (b). LQG control loop, state feedback xp with noise.

Source: own.

k�= [ 1.1756  0.6410  0.3163  0.0000]T
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Then, with the objective of making a closer 
approximation of the response of the LQG controller 
in the real Ball & Beam system, this control strategy was 
implemented in the nonlinear Ball & Beam system, as 

shown in the figure 7, obtaining as system response, the 
dynamics of the ball position described in the figure 8, 
which stabilized in a time of 29.79 sec and presented a 
steady state error of 0.28 %. 

Figure 7. Simulink implementation of the LQG control loop for Quanser’s Ball & Beam nonlinear system.

Source: own.

Figure 8. LQG control loop for nonlinear system, ball position control.

Source: own.
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As could be evidenced, the LQR and LQG control 
strategies manage to stabilize the Quanser Ball & Beam 
system, with the difference that the LQG controller 
minimizes the negative effects of the noise inherent to 
the linear position sensor of the system, and generates a 
much lower steady state error than the LQR controller. 
In order to perform a quantitative analysis of the results, 
the settling times and steady state errors obtained in each 
of the simulations performed were organized in Table 2.

Table 2. Quantitative characteristics of the 
responses of each control loop.

Controller State Settling time 
[sec]

Steady state 
error [%].

LQR xp
9.6446 68.38

LQG 
(Linear system) xp

12.3262 0.1523

LQG 
(non-linear system)  xp

29.789 0.2836

Source: own.

Finally, using the QUARC module of Matlab/
Simulink, the LQG control loop was implemented in 
the Quanser Ball & Beam system, obtaining as system 
response the dynamics described in figure 9, where 
the step function is the reference imposed to the Ball & 
Beam system, and the other function is the dynamics 
of the ball position before that reference.

Figure 9. Quanser Ball & Beam LQG control loop.

Based on the response of the LQG control loop 
implemented in the real Quanser Ball & Beam system 
and analyzing the state dynamics xp described in Figure 
9, it was evidenced that the position of the ball along the 
beam presents a settling time around 12 seconds and a 
steady state error close to 0%; it is important to highlight 
the similarity of these data with the results obtained in 
the design and simulation of the LQG controller for the 
linear Ball & Beam system, which are present in Table 2. 

This allows us to affirm that due to the correct 
mathematical modeling and linearization of the system 
around the selected operating point, it was possible to 
describe with great accuracy the behavior of the real 
system around its operating point. This, in turn, shows 
that the LQG control loop designed under this linear 
model manages to stabilize the system states both in 
the simulation and in the real implementation.

5.	 Conclusions 

An LQG controller was designed, simulated and 
implemented for the Quanser Ball & Beam system, 
achieving to stabilize the position of the ball along the 
beam. Additionally, by means of a comparative analysis 
between the LQR and LQG controllers, it was validated 
that only the LQR controller is not efficient to control the 
Ball & Beam system, because the response of this control 
loop presents a high steady state error, even without 
the presence of noise in the state feedback xp , which is 
associated to the measurement of the linear position of 
the ball. On the other hand, it was validated that the LQG 
controller is efficient to control the Ball & Beam system, 
since it manages to stabilize the system states with a 
steady state error close to 0%, both in the presence and 
in the absence of noise in the measurement of its output 
state; This is due to the fact that during the design of 
the LQG controller, both the noise associated with the 
process and the noise associated with the measurement 
of the output state are taken into consideration, thus 
generating an optimal estimation of all the states of the 
system, allowing to improve both the performance of 
the controller and the response of the system. For this 
reason, it can be stated that the LQG control technique 
is effective to control the Ball & Beam system, even when 
there is noise in the measurement of its output state.
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