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Abstract 

This document based on the concept of Dynamic Systems presents a compilation of singular 

signals and their applications for Control and Identification. The following paper moves away 

from the usual presentation of the topic -strictly mathematical- to bring it closer to the Systems 

Dynamics approach, which implies showing the signals importance in the development of 

operational character with the direct and inverse Laplace transform and the transfer functions 

calculation, as well as in the solution of models established by Ordinary Differential Equations 
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with constant coefficients, particularly in first and second order Dynamic Systems stimuli-

response that appear in Identification processes. 

Keywords: Applications, Control, Dynamic Systems, Identification, Operations, Singular 

signals.

Resumen 

Este documento a partir del concepto de Sistemas Dinámicos presenta una recopilación de las 

señales singulares y sus aplicaciones para el Control e Identificación. El presente artículo se 

aleja de la presentación usual del tema –estrictamente matemático- para acercarlo al enfoque 

de la Dinámica de Sistemas que implica mostrar la importancia de las señales en el desarrollo 

de carácter operativo con la transformada de Laplace directa e inversa y el cálculo de funciones 

de transferencia, así como en la solución de modelos establecidos por Ecuaciones 

Diferenciales Ordinarias con coeficientes constantes, particularmente en estímulo-respuesta 

de Sistemas Dinámicos de primer y segundo orden que aparecen en procesos de 

Identificación. 

Palabras clave: Aplicaciones, Control, Sistemas Dinámicos, Identificación, Operaciones, 

Señales singulares. 

1. Introduction 

The word dynamic refers, in essence, to the non-static; in the case of Dynamic Systems, then, 

it is possible to define as systems those that have related elements to each other in such a way 

that a change in one of them affects the set of all the others, therefore there are diverse 

behaviors, states or forms of response in time. These systems can be modeled in order to have 

a mathematical approach or a comprehensible and simplified description of the phenomenon 



 

that concrete reality cannot exhibit. In that sense, non-static physical systems are an example 

of a dynamic system [1-2] 

In Dynamic Systems the input, output and internal response variables are time signals (for 

continuous time systems) or time sequences (for discrete time systems) [3], [4], [1], [5]. The 

signals, thanks to their presence in diverse natural sources, and being physical phenomena the 

ones that generate them, must be widely known and if necessary manipulated. This gives reason 

to the need to understand their behavior, operativity, and superposition -among others of the so 

called singular signals- so that the field of the analogous Control and the analysis of systems is 

really understood [3], [4], [6]–[27].  

For this reason, in the researches that are made about how to teach correctly the signals theory 

and what subjects are essential so that the level of its comprehension is complete, the signals 

theory and its applications becomes important [28]–[41]. In this sense, the signal applications in 

Dynamic Systems and Control range from their use in the definition of Laplace's direct and 

inverse transform, to the practical concept of Identification of Dynamic Systems. In general, the 

signals are used in these fields in all mathematical or experimental analysis [4], [1], [6], [7], [20], 

[42]–[50].  

Given the above, the success of a good signal theory analysis is based on understanding certain 

signals and their properties. Consequently, the objective of this paper is to show a practical 

compilation of signals, their operations and applications in Dynamic Systems. It is expected that 

this approach will solidify the signal knowledge in continuous time, its operations, as well as 

some applications in Dynamic Systems and Control.  

This paper is organized as follows: In section 2 the signal relevance in Dynamic Systems is 

shown; in section 3 the signal operations are observed, as well as some examples of composite 



 

signals; in section 4 the model conceptualization is done and some examples of the application 

of the model theory in Dynamic Systems and Control are shown. 

2. Signal relevance in Dynamic Systems 

2.1 Typical Signals Relevance in Dynamic Systems 

The actual system excitations are almost always varied and strictly random signals. However, 

the engineer analyzes and designs based on simple signals -such as Senoids-, [3], [8], [11], 

[16], [18], [20], [22]–[24], [51]–[53].  

In the proposed direction, periodic signals are relevant to steady state studies in systems. For 

example, Fourier analysis can be used to obtain the frequency response to periodic and non-

periodic signals by Fourier series and integral resource – when the function period tends to 

infinity. In other cases, the form of a sudden or gradual change in excitation that produces effects 

on the response is of interest; these considerations motivate interest in the so-called Singular 

Signals [3], [15], [16], [18], [22], [51], [54], [55]. 

2.2. Signal 

A signal is a physical magnitude that may or may not give information on its own, coming from 

a generally physical or digital source. In the first case they are normally transformed to electrical 

signals through transducers [8], [10], [12], [16], [22], [30], [32], [40], [46], [51], [56]–[59]. The 

signals, in their most basic form, are classified according to the variable on which they depend 

(time, space, temperature, among others) [8], [10], [12], [16], [22], [30], [32], [40], [46], [51], [56]–

[59]. In discrete signals they only have values in a discrete number of points [8], [10], [12], [16], 

[18], [30], [32], [40], [51], [54], [56]–[58], [60]–[62]. These signals come in general from analog-

to-digital converters; or their equivalents: the signal continuous discretization [3], [24], [34], [52], 



 

[57]. In this context the efficient compression and handling of the theory behind the signals is 

fundamental for both industrial and academic applications: [9], [19], [46], [51], [52], [56], [59], 

[60], [63]. 

Figure 1. (a) Unitary Impulse, (b) Unitary Step, (c) Unitary Ramp, (d) Semi-Parabola, (e) 

Decreasing Exponential, (f) Increasing Exponential, (g) Sine, (h) Cosine. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Source: own. 



 

2.3. Singular Signals 

The main role in non-periodic impulse type signals is played by the so-called singular signals: 

composed by the unitary step and its derivatives and integrals [9], [13], [14], [21], [22]. 

2.3.1. Unitary Step 

It is a signal that is usually employed in the physical systems operation due to its state 

characteristics in low and then in high. In addition to being useful in Control system response 

tests, it simplifies the transfer signal characterization of a dynamic system. It is defined as 

follows:  

𝜇(𝑡) = {
   0  𝑤ℎ𝑒𝑛   𝑡 < 0 
   1  𝑤ℎ𝑒𝑛   𝑡 ≥ 0 

     (1) 

See figure 1 (b). 

The graph shows a continuous signal except at t=0; it is important because it characterizes every 

signal "that has an ignition or start". See Figure 1 (b). This can be a useful tool for testing and 

defining other signals. For example, the unitary step signal is operated with other signals to 

select a certain part of the signal. 

2.3.2. Unitary Ramp 

The first integral of the unitary step results in a signal called the unitary ramp described by: 

𝑟(𝑡) = ∫ 𝜇(𝑡)𝑑𝑡 = 𝑡 𝜇(𝑡) = {
0  𝑤ℎ𝑒𝑛  𝑡 < 0
𝑡  𝑤ℎ𝑒𝑛  𝑡 ≥ 0

 
𝑡

−∞

 (2) 

The graphical representation will allow you to observe its behavior better. See Figure 1 (c). 



 

Note how r(t) can be expressed as tμ(t) ; that is, the specific slope line multiplied by the unit step 

in this case starting at t=0. See Figure 1 (c).. 

2.3.3. Semi-Parabola 

Applying double integral to the unitary step signal results in the signal in time called semi-

parabola, which is described by the following equation: 

𝜌(𝑡) = ∫ 𝑟(𝑡)𝑑𝑥 =  ∫ 𝑡𝜇(𝑡)𝑑𝑡 =  {(
1

2
) 𝑡2   𝑤ℎ𝑒𝑛  𝑡 ≥ 0

  0        when   𝑡 < 0

𝑡

−∞

𝑡

−∞

 (3) 

Based on the above equation, the semiparabolic signal can be described as follows: 

𝜌(𝑡) = (
1

2
) 𝑡 𝑟(𝑡) = (

1

2
) 𝑡2𝜇(𝑡) (4) 

For a better signal visualization, see figure 1 (d). 

2.3.4. Unitary Impulse 

In order to obtain the unitary impulse signal, referring to the first derivative of the unitary step, a 

linear approximation to the step signal is defined. The approximation is expressed in terms of a 

parameter (ε) that can be made as close to 0 as desired, figure 2. 

Figure 2. Unitary step representation on a time scale tending to 0 [27]. 

 



 

In the unitary step derivative, in the generalized distributional sense, the length tends to 0 and 

the amplitude tends to ∞ In addition, the area between the signal and the abscissa axis remains 

constant when ε tends to 0, figure 3. 

Figure 3. Unitary step drift representation [27]. 

 

The derivative is the unitary impulse signal (Dirac delta) bearing in mind that ε tends to 0: 

𝛿(𝑡) = lim
𝜀→0

𝑑𝑢

𝑑𝑡
  (5) 

After obtaining the mathematical representation of what the signal would be, the signal behavior 

in time is noted in Figure 1 (a). 

2.4. Non-Singular Signals, Exponential Signal 

In what is called dynamic analysis, exponential signals that start and sometimes end in finite 

times are of interest. It will be increasing exponentials if it include a term 𝑒𝑎𝑡 with 𝑎 > 0  and 

decreasing if it include 𝑒−𝑎𝑡 with 𝑎 > 0. See Figure 1 (e), (f). 

 



 

The decreasing exponentials are characterized by: 

- Initiation time and initial value. 

- Time constant. 

- The asymptote in other cases, the completion time. 

Its general representation is presented as follows: 

𝑓(𝑡) = [𝐵 + 𝐴𝑒
−(𝑡−𝑡0)

𝜏 ] ∗ 𝜇(𝑡 − 𝑡0) (6) 

Where B refers to the asymptote of the signal, B+A to the initial signal value and  𝜏    time 

constant of the exponential signal. See Figure 1 (e), (f). 

2.4.1. Sine Signal 

The sinusoidal signal constitutes the periodic signal of importance in the study of systems since, 

for example, for Fourier analysis any periodic signal can be reduced to an overlapping of sinuses 

and cosines. 

The sinusoidal signal is characterized by: 

- Magnitude (A) 

- Frecuency (ω) 

- Phase (φ) 

The period of a sinusoidal signal is the distance between two successive and equal signal peaks: 



 

𝑇 = 2𝜋/𝜔 (7) 

2.4.2. Cosine Signal 

The cosine signals mathematical representation is, in general, in Dynamic Systems as follows: 

𝑓(𝑡) = [𝐴 cos(𝜔𝑡 + 𝜑)] ∗ 𝜇(𝑡) (8) 

For a better understanding of the behavior see Figure 1 (h). 

2.4.3. Sine Signal 

The sine signals mathematical representation is, in general, in Dynamic Systems as follows: 

𝑓(𝑡) = [𝐴 Sin(𝜔𝑡 + 𝜑)]. 𝜇(𝑡) (9) 

The signal is shown simply and clearly in Figure 1 (g). 

3. Signals basic operations in continuous time 

3.1. Signal Basic Operations 

An important element in the signal study are the basic operations that can be applied to a signal. 

Here are some of the basic operations. Each one of these implies a modification of the signal 

variables: either time or amplitude, [3], [8], [9], [16], [18], [19], [24]. 

 

 



 

Figure 4. (a) Original Signal, (b) Amplified Signal, (c) Inverted Signal, (d) Attenuated 

Signal, (e) Forward Displaced Signal, (f) Backward Displaced Signal, (g) Scaled Step 

Signal, (h) Reflected Signal. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

Source: own. 



 

3.1.1. Amplification 

The first operation is amplification, this operation maps the input signal 𝑥(𝑡) to the output signal 

𝑓(𝑡) which is the result of a modification in the original signal amplitude as well: 

𝑓(𝑡)  =  𝑎𝑥(𝑡) (10) 

Where a is the amplification constant, this constant is greater than 1, for a better representation 

see Figure 4 (a) and Figure 4 (b) being the signal resulting from the amplification twice of the 

original signal [9], [16], [17], [26]. 

3.1.2. Inversion 

Inversion is an operation that reflects or inverts the signal with respect to the x-axis or maps the 

input signal 𝑥(𝑡) to the output signal 𝑓(𝑡) that is the result of an inversion of the original signal 

as follows: 

𝑓(𝑡) =  −𝑥(𝑡) (11) 

To more clearly identify the behavior, see Figure 4 (c) with the signal resulting from the inversion 

in Figure 4 (a) [26], [27]. 

3.1.3. Attenuation 

The attenuation is an operation in which the input signal is 𝑥(𝑡)  and an output signal𝑓(𝑡) that is 

the result of a modification in the amplitude of the original signal reducing it in magnitude or 

attenuating it, the operation is represented by (12) where 𝑎  is the attenuation constant and in 

addition 0 < 𝑎 < 1, as an example it can be seen Figure 4 (d) that has 
2

3
  of amplitude with 

respect to the original signal of Figure 4 (a).  [3], [36], [51], [64]. 



 

3.1.4. Discplacement over time 

This is the transformation of a signal, mapping the input signal 𝑥 (𝑡) to the output signal 𝑓 (𝑡)  as 

specified by: 

𝑦 (𝑡)  =  𝑥 (𝑡 − 𝑡0) (12) 

Where 𝑡0 is the displacement constant, the output signal 𝑦 (𝑡) is formed by replacing 𝑡 with 𝑡 −

 𝑡0 in the input signal in other words this operation shifts the signal (left or right) along the time 

axis. If 𝑡0 is positive, 𝑦 (𝑡)  is the input signal shifted to the right with respect to 𝑥 (𝑡) that is, 

delayed in time, see Figure 4 (f). If 𝑡0 is negative, 𝑦 (𝑡) moves to the left with respect to 𝑥 (𝑡) that 

is, advanced in time, see Figure 4 (e) [9], [16], [19]–[21], [23], [24], [26]. 

3.1.5. Escalation 

Another type of signal transformation is called time scale, the time scale maps the input signal 

x (t) to the output signal y(t) modifying its representation in time can be compressing or 

expanding the signal along the time axis [16], [18], [21], [24], [26]. 

The scaling operation can be mathematically represented as: 

𝑦 (𝑡)  =  𝑥 (𝑎𝑡) (13) 

Where 𝑎 is the scaling constant, then if 𝑎 > 1 compresses the signal, and if 𝑎 < 1 expands the 

signal in time [16], [18], [21], [24], [26]. See Figure 4 (g). 

3.1.6. Reflection 

The reflection of a signal also known as time inversion maps the input signal 𝑥 (𝑡) to the output 

signal 𝑦 (𝑡) that can be described as follows: 



 

𝑦(𝑡)  =  𝑥(−𝑡) (14) 

Basically the output signal 𝑦 (𝑡)  is formed replacing 𝑡 with −𝑡 in the input signal 𝑥 (𝑡) which 

would indicate the signal inversion or the reflection in the domain axis in the case of signals in 

time. [8], [16]–[20], [23], [24], [26], [27]. See Figure 4 (h). 

3.2. Signal Composition and Operations 

In this section, some operation examples between step, ramp, sinusoidal and exponential 

signals will be dealt with, which will facilitate the application understanding of diverse operations 

with different continuous time signals. 

Figure 5. Sample signal 1. 

  

Source: own. 

Where the signal is described, in terms of the unitary step, by: 

𝑓(𝑡) = 2𝜇(𝑡) − 4𝜇(𝑡 − 2) + 𝜇(𝑡 − 4) + 3𝜇(𝑡 − 5) − 2𝜇(𝑡 − 6) (15) 

Figure 5 is a clear example of a composite signal and the use of signal operations, in this case 

unitary step signals. Figure 5 shows both the resulting signal and its components, which in this 



 

case are all unitary steps shifted in time, amplified, inverted or with different transformations 

applied to a single signal. 

Figure 6. Sample signal 2. 

 

Source: own. 

Representing the signal: 

𝑓(𝑡) = 2𝑟(𝑡 + 3) − 𝑟(𝑡 + 2) − 3𝑟(𝑡) + 𝑟(𝑡 − 1) + 𝑟(𝑡 − 3) (16) 

It can be seen in Figure 6 a signal that is a sum of ramp signals with different transformations, 

the signal has five components that are observed in more detail on the right side of Figure 6. 

Figure 7. Sample signal 3. 

 

Source: own. 



 

Being the graphic representation of: 

𝑓(𝑡) = 𝑟(𝑡 + 1) + 𝜇(𝑡 − 1) − 2𝑟(𝑡 − 2) − 2𝜇(𝑡 − 4) + 𝑟(𝑡 − 4) (17) 

Figure 7 allows to see a signal composed by signals both step and ramp, it is important to notice 

that the signals are operated between them point to point, the signal can be obtained analytically 

by means of analysis of its components and the behavior in time. 

Figure 8. Sample signal 4. 

 

Source: own. 

The signal is described by the equation: (18): 

𝑓(𝑡) = 𝑒−𝑡𝜇(𝑡) + (4 − 2𝑒−(𝑡−6))𝜇(𝑡 − 6) (18) 

The exponential signals are the most important in the topic of Dynamic and Control Systems 

due to their characteristics in time, since in certain cases they allow us to see how certain 

systems behave. In this case Figure 8 shows a signal that has as components exponential 

signals, these are generally expressed with a multiplied step since these signals like any other 

must have a defined beginning in time, in Figure 8 is seen both a growing exponential signal 

and a decreasing giving as a result a signal with a particular shape. 



 

 4. Model concept and applications 

The model is an object that tries to define a phenomenon, a process or in its defect a physical 

system; it is a tool that helps a person to answer questions related to the system's behavior. 

Generally the models are meant to serve as a solution or support to the solution of a specific 

problem which has motivated the development of the same model [1], [2]. 

Models can be built using three characteristic phases: 

- Conceptualization: It is based on having a basic and intuitive perspective as well as 

understanding of a real-world phenomenon. 

- Model formulation: This is where the elements obtained in the conceptualization phase 

are represented with a formal language. 

- Model evaluation: It consists of carrying out a validation and analysis of the model, 

resulting in its acceptance or not according to the acceptability criteria. 

4.1. First Order Systems Analysis 

- Conceptualization: 

It is known that a system that behaves like a first-order system has an exponential response 

when its input signal or stimulus is a unitary step signal. The typical form of the transfer signal 

of a first order system is: 

𝐺(𝑠) = 𝐺0

𝑒−𝑇𝑑𝑠

1 + 𝑇𝑠
 (19) 

- Model formulation: 



 

If this system is stimulated with a step signal, a typical time response is obtained. 

𝑦(𝑡) = 𝐺0 (1 − 𝑒
𝑡−𝑇𝑑

𝑇 ) 𝜇(𝑡 − 𝑇𝑑) (20) 

- Model evaluation: 

Where 𝐺0 is the System gain, 𝑇𝑑 is dead time and 𝑇 is the system time constant, if this system 

is stimulated with a step signal it gets, figure 9. 

Figure 9. First order system step response  [4]. 

 

As it can be seen, the response is a growing exponential signal that originates in 0 and stabilizes 

in 1. Based on this behavior, characteristics such as the time constant, the signal 𝑐(𝑡) that 

describes the response, the amplitude in which the system stabilizes and the stabilization time 

can be calculated depending on the criterion taken, which can be between 3𝑇 and 5𝑇. 

4.2. Second Order Systems Analysis 

- Conceptualization: 

The second order systems have a behavior that is expressed through a composition of 

exponential signals, sinusoidal and unitary steps so it can be characterized from its signal form, 

the typical transfer signal of this system is: 



 

𝐺(𝑠) =
𝐾𝐴 ∗ 𝜔𝑛

2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2
 (21) 

- Model formulation: 

If the system is stimulated with a step signal the time response is represented by: 

𝑌(𝑡) = 𝐾𝐴 {1 − 𝑒−𝜁𝜔𝑛𝑡 [cos (𝜔𝑛√1 − 𝜁2𝑡) +  
𝜁

√1 − 𝜁2
sin(𝜔𝑛√1 − 𝜁2𝑡)]} 𝜇(𝑡) (22) 

- Model evaluation:  

Where 𝐾𝐴 is the System gain, 𝜁 is damping factor, 𝜔𝑛 is the natural frequency of the system, 

𝑌(𝑡) is time response and 𝐺(𝑠) is the typical transfer signal of a second order system, graphically 

it can be seen with a unitary step input and having 0 < 𝜁 < 1   (sub damped system), figure 10:  

Figure 10. Response to the second order sub damped system step, [4]. 

 

It can be seen that the signal response is a signal used to calculate important characteristic 

values in second order systems as maximum on impulse (𝑀𝑃), stabilization time (𝑡𝑠), peak time 

(𝑡𝑃), delay time (𝑡𝑑) and rise time (𝑡𝑟). 



 

4.3. Response time calculation of a system 

- Conceptualization: 

Figure 11. Electrical System Example. 

 

Source: own. 

Based on the circuit in Figure 11, the analysis is performed, and the time response of this 

electrical system is found. To start the necessary calculations, the initial conditions are as 

follows: 

𝑉𝑐(0) = 0 ,         𝑖𝑙(0) = 1𝐴, 𝑉𝑖 = 𝜇(𝑡 − 20)   

Figure 12. Stimuli signal 𝑽𝒊(𝒕) = 𝝁(𝒕 − 𝟐𝟎). 

 

Source: own. 

- Model formulation: 



 

Analyzing the circuit in Figure 12, the following differential equations are obtained: 

𝑑𝑖𝐿

𝑑𝑡
=

(𝑉𝑐 𝑅1 − 𝑖𝐿𝑅1 𝑅2 + 𝑉𝑖 𝑅2)

(𝑅1 + 𝑅2)𝐿
 (23) 

𝑑𝑉𝑐

𝑑𝑡
=

(−𝑉𝑐 − 𝑖𝐿𝑅1 + 𝑉𝑖)

(𝑅1 + 𝑅2)𝐶
 (24) 

Performing the relevant calculations using the differential equations obtained, it was found that 

the answer in the system time is: 

𝑉𝑜(𝑡) = 𝑉𝑐(𝑡) = 

{
8

2 ∗ √7
𝑒

−3(𝑡−20)
8 sin (

√7

8
(𝑡 − 20)) 𝜇(𝑡 − 20)}  − 𝑒

−3(𝑡)
8 sin (

√7

8
(𝑡)) 𝜇(𝑡) 

(25) 

- Model evaluation: 

It is observed that the response in time is a signal composed of exponential signals, sinusoidal 

and unitary steps, hence the importance of theory knowledge of signals in continuous time to be 

able to analyze this type of system responses, figure 13. 

Graphically 𝑉𝑜(𝑡)  gives:  

Figure 13. System output. 

 

Source: own. 



 

4.4. Identification 

The systems identification deals with the estimation of models of dynamic systems from the 

data obtained in the analysis of the system, below is an example of application: 

- Conceptualization 

Figure 14. Cylindrical tank hydraulic system (laid). 

 

Source: own. 

The system to be identified is a non-linear hydraulic system. See Figure 14. In the first instance, 

a series of experiments are carried out to determine the system's linearity at different points of 

operation. To do this, the plant is stimulated with step type signals and the gain and time constant 

of the system is determined. 

In view of the above, 5 different unit steps have been chosen for the input signal, which have an 

amplitude of: 

• 0.5 Volts 

• 1.5 Volts 

• 2.5 Volts 

• 3.5 Volts 



 

• 4.5 Volts 

Figure 15. Input vs output. 

 

Source: own. 

Figure 15 shows the system's response to an input signal with a 2.5V step. 

In the experiment carried out, the following experimental data was obtained.  

Table 1. Experimental Data. 

Input Gain(K) Time Constant (τ(s)) 

Step 0.5 1 22 

Step 1.5 1 33 

Step 2.5 1 40 

Step 3.5 1 44 

Step 4.5 1 46 

Source: own. 



 

Once the previous procedure is done, the mathematical models are calculated based on the one 

which describes the behavior of the system when it is stimulated with the different step signals. 

Afterwards, its validation is done, and the approximation percentage is compared with the 

experimental data. First order models have been chosen for continuous time, TABLE II, where 

the parameters obtained during the validation process of the models can be visualized. 

- Model formulation: 

Table 2. First Order Models Validation Data. 

       Input 

G(S) 

0.5 1.5 2.5 3.5 4.5 

0.99322

1 + 22.182𝑠
 

91.92% 71.83% 61.34% 57.1% 57.68% 

0.98736

1 + 34.918𝑠
 

73.32% 93.12% 88.15% 84.74% 85.06% 

0.98719

1 + 41.377𝑠
 

65.05% 87.96% 94.2% 93.78% 93.19% 

0.9936

1 + 45.243𝑠
 

62.5% 84.92% 92.94% 95.39% 94.84% 

1.0097

1 + 47.287𝑠
 

63.98% 85.23% 91.75% 93.24% 96.45% 

Source: own. 

- Model evaluation: 

In this way it is observed how the signals are used for the systems stimuli, and from the response 

that the system has, make an approximation of its transfer signal. In the previous case the test 

was made with five different steps and based on the results, the models that can represent this 

system are generated and in what percentage of approximation they are found. 

In addition to the step signal, it is possible to make use of more elaborated signals. The typical 

ones in the Identification process are the step by step, square and pseudo random signals for 



 

the same process in Figure 16 the answer in the case of having an input of square type is the 

following one: 

Figure 16. Square stimulus signal and system response.  

 

Source: own. 

If the system is stimulated with a pseudo-random signal, it is obtained that: 

Figure 17. Pseudo random stimulus signal and system response.  

 

Source: own. 

The input signals used in Identification can change depending on the system to be identified, 

also in some cases the typical Identification signals will not work efficiently and a signal design 

will have to be done to evaluate all the operation points of the system to have a better 

identification of the system [7], [45], [47]–[50], [65].  



 

5. Conclusions 

Signal theory is a fundamental element in the field of system dynamics as it allows the 

understanding of the system's behavior in time, describing them and characterizing them in a 

rational and analytical way. 

Signal operations make it possible to look beyond signal theory and find feasible uses of signals 

in the field of system dynamics, understanding the application of both basic operations and the 

very composition and use of compound signals in branches of dynamics analysis such as the 

systems identification. 

Through what has been developed, the signal application in mathematical and experimental 

analysis of modeling, Control and Identification of Dynamic Systems is evident, as well as its 

importance in improving the understanding of how they behave in time. 

The paper allows the reader to become familiar with the theory of signals, to show the typical 

signals used such as singular, exponential, and sinusoidal signals, also is observed signal 

operations, examples of operations and composite signals by various basic signals. Finally, it 

simplifies the signal use in some of the applications of Dynamic Systems and control systems. 

In this paper, the concept of the central model is evident in the analysis of dynamic systems, 

since the model allows to unravel characteristics and helps to understand the system's behavior 

over time making use of three phases of model construction. 
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