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Abstract 

 

The study of human behavior allows the knowledge about people's behaviors, behavior 

determined by multiple factors: cultural, social, psychological, genetic, religious, among 

others, which affect the relationships and interaction with the environment. The infinity of data 

in our lives and the search for behavioral patterns from that data has been an amazing work 

whose benefit is focused on the determined patterns and intelligent analysis that lead to new 

knowledge. A significant amount of resources from pattern recognition in human activities 

and daily life has had greater dominance in the management of mobility, health and wellness. 

The current paper presents a review of technologies for human behavior analysis and use as 

tools for diagnosis, assistance, for interaction in intelligent environments and assisted 

robotics applications. The main scope is to give an overview of the technological advances 

in the analysis of human behavior, activities of daily living and mobility, and the benefits 

obtained. 
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Resumen 

 
El estudio del comportamiento humano permite el conocimiento sobre las conductas de las 

personas, conducta determinada por múltiples factores: culturales, sociales, psicológicos, 

genéticos, religiosos, entre otros; que inciden en las relaciones y la interacción con el entorno. 

La infinidad de datos en nuestras vidas y la búsqueda de patrones de comportamiento a partir 

de esos datos ha sido un trabajo asombroso cuyo provecho se centra en los patrones 

determinados y el análisis inteligente que conducen a nuevos conocimientos. Una cantidad 

significativa de recursos a partir del reconocimiento de patrones en las actividades humanas 

y de vida diaria ha tenido mayor dominio en la gestión de la movilidad, la salud y bienestar. 

El actual documento presenta una revisión de las tecnologías para el análisis del 

comportamiento humano y del uso como herramientas para el diagnóstico, asistencia, para 

la interacción en ambientes inteligentes y aplicaciones de robótica asistida. El alcance 

principal es dar una visión general de los avances tecnológicos en el análisis del 

comportamiento humano, actividades de la vida diaria y movilidad, y de los beneficios 

obtenidos. 

Palabras clave: Reconocimiento de actividades humanas, comportamiento humano, 

sensores. 

 

1. Introduction 
 
Human Activity Recognition (HAR) consists of predicting the physical activity of a person 

based on their recorded behavior or movement, the movements can be normal movements 

such as walking, standing, sitting, climbing stairs. Human activity recognition has become a 

very popular field of research, the goal is to assign an activity category to the signal provided 



 

by sources to create applications for improvement in different fields. HAR includes 

applications ranging from medical, sports, ambient intelligence to entertainment applications 

[1-2] The different sources of data used in the detection of human activities depend on the 

application, traditionally the discrimination of activity was performed by multimedia resources 

such as images or videos [3-4] by analyzing image sequences, then research incorporated 

portable sensors housed in the body of study or in the environment [5-6] and with the recent 

emergence of ubiquity and the Internet of Things (IoT - Internet of Things) has made use of 

sensors embedded in different devices [7-8] 

The development of the present work is to present the contributions made to date, to know 

the different technologies available from the recognition of human activities based on different 

sensors that lead to improvements in various fields of application. 

The article is structured as follows: unit 2 defines the research done on Human Activity 

Recognition, the modality of obtaining information and recognition methods, section 3 

explores various applications and the conclusions are described in section 4. 

2. Recognition of Human Activities 
 
The recognition of human activities involves the exploration of human activities in order to 

discover a corresponding pattern in their development, it is a technique that can be applied 

to many real-life problems and is human-centered. So far research is based on the recognition 

of simple human tasks, making recognition in complex activities represents a challenge in the 

area of research [9] The nature of human activities poses the challenges of recognizing 

activity and discovering activity patterns; recognition can be done by a predefined conceptual 

model and from sensor data without predefined assumptions. Therefore, in HAR research, 

an activity data acquisition system is first built and then data analysis to discover activity 

patterns [1] 

 



 

2.1. Modality of procurement systems 
 
To create a human activity recognition system researchers have prototyped systems that use 

acceleration, audio, video and other sensors to recognize user activity. Generally speaking 

HAR can be in two forms: camera-captured video-based and sensor-based [10-11] 

Computer vision research (when analyzing images or videos) can be described as the 

temporal evolution in space of different body postures. Early research focused on activity 

recognition of video sequences using color cameras [12-13] However, there was 

considerable loss of information when capturing articulated human movement with monocular 

video sensors, a possible solution is to capture stereo data from multiple views and 

reconstruct the information in 3D [14], the use of cameras that allow capturing color and depth 

information have been used as beneficial devices as they reduce the variations made by 

ambient light [15] 

Numerous works have demonstrated the recognition of human activity using data from 

sensors such as accelerometers, gyroscopes, proximity sensors, vital sign sensors and GPS, 

as they are not only less privacy invasive alternatives to visual systems, but have also been 

the most popular and widely used, especially from commonly used devices such as 

smartphones and various body-worn accessories such as watches, bands, glasses and 

helmets [16-17], the combination of various data sensor modalities can improve activity 

recognition, data such as heart rate and temperature along with acceleration can detect 

physical intensity [18], acceleration and angular velocity are modified as a function of human 

speed in body movements, widely have been used accelerometers located in multiple 

locations on the body [19-20-21] With the versatility that has acquired the use of the 

smartphone numerous studies take advantage of models that offer embedded multimodal 

sensors and require little structure to operate [22-23-24], the first studies worked offline and 



 

the data obtained were processed and classified offline currently the recognition of activities 

is performed by combining measurements of portable sensors with supervised learning 

algorithms and defined architectures [25] 

2.2. Recognition methods 
 
The objective of classification is the categorization of the obtained information, 

probabilistically the classification action is defined as a calculation of the activity, several 

classifier algorithms have had much popularity, the difference for the selection are the 

obtained results, besides considering the capabilities of the processing platform, as memory 

and response time are important factors to take into account. Some researchers generate the 

classification model on a workstation [26-27] other researchers can implement them on 

smartphones [28] 

The most popular algorithms for generating classification models are: Decision Trees [29], K-

NNs K-nearest neighbors, Naïve Bayes, Hidden Markov Models (HMMs), Support Vector 

Machine (SVM), Gaussian Mixture Models (GMMs) [30-31-32] Adapted methods have also 

been used as they represent a reduction in computational cost while maintaining the same 

accuracy compared to traditional methods [22] 

With traditional methods progress has been made in pattern recognition however not in all 

cases they are able to achieve satisfactory results, a limitation found is that features are 

extracted by heuristic methods based on human experience and some statistical information 

can be inferred in the recognition of high level activities, such as drinking coffee with respect 

to a low level activity such as walking [33] Implementing deep learning for HAR with different 

types of the networks allows defining features learned automatically through the network 

instead of being designed manually. In addition, the deep neural network can also extract a 

high-level representation which makes it more suitable for complex activity recognition tasks 

[34]



 

 

3. Applications 
 
There are many possible applications that can be developed from the recognition of human 

activities and many fields that can be explored, among them are: 

3.1. Video surveillance 
 
Visual monitoring and video surveillance despite having the disadvantage of requiring 

expensive hardware has attracted the attention of the community due to the increase in 

demand for security resulting in intelligent surveillance [32-33-34], researches use HAR for 

law enforcement verification, others study gait recognition for personal identification, and 

analyze behavior to ensure security in shopping malls, hospitals, bridges among others [35] 

3.2. Sports 
 
As for sports applications are used to recognize the sports activities done daily [36], others 

make calculations of energy expended by sports activity performed [37], some devices allow 

to make training history and can monitor group activities such as cycling [38] 

In martial arts, sequences of movements are detected for educational systems and video 

games [39], and there are also applications that help children learn Kung Fu [40-41] 

3.3. Home assistance 
 
It consists of smart home applications that facilitate and enable residential control by the 

inhabitants [42], others incorporate assistance service by measuring vital signs offering 

emergency help [43] 

3.4. Health 
 
It is the area that has diversified the most as it includes disease diagnosis, health care, care 

for children and the elderly. The PAMAP consists of a physical activity and heart rate monitor 

[44], for remote monitoring MEDIC offers health care services for movement and fall detection 

[45] In rehabilitation, the effect of medication on Parkinson's patients is investigated [46], in 



 

patients with rheumatoid arthritis, abilities and disabilities are evaluated [47] Recent 

proposals propose robotic assistance in adult care [48], the detection of falls before impact 

[52] constitutes an interesting aid in adult care, for children it facilitates monitoring under 

treatment or by diagnosis [50] In chronic disease management there is the possibility of 

monitoring sports activity to manage the disease for example in patients with chronic lung 

disease, others provide feedback for better management of their condition [54-55] Intelligent 

health system is the most explored field with the greatest use of activity recognition. 

The recognition of emotions also aims to give an assessment of the patient's well-being and 

his or her interaction with the environment, allowing an understanding of the health-comfort 

relationship [31-56] 

4. Conclusions 
 
It can be defined that in the medical field there is a greater diversification of advanced 

applications based on Human Activity Recognition, specifically health and wellness 

applications that seek to improve the living conditions of patients with chronic diseases, 

children and adults, likewise it is important to highlight that applications in the sports field 

monitor performance and facilitate the management of sports activity. Particular interest has 

been awakened in surveillance applications that seek to ensure the security implemented 

through intelligent surveillance. 

However, the selection of the traditional pattern-based recognition method, deep learning or 

an adaptation of them makes a difference in obtaining the results. 
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