

VISIÓN ELECTRÓNICA VOL. 17 NO. 1 (2023) • JANUARY-JUNE • P.P. 11-18 • ISSN 1909-9746 • ISSN-E 2248-4728 • BOGOTÁ (COLOMBIA)

VISIÓN ELECTRÓNICA

Visión Electrónica

https://revistas.udistrital.edu.co/index.php/visele

Vulnerability analysis of an emulated SDN network by flooding
HTTP and TCP packets

Análisis de vulnerabilidades de una red SDN emulada mediante la
inundación de paquetes HTTP y TCP

1 Universidad M ilitar Nueva Granada, Colombia. E-mail: est.dairon.ramos@unimilitar.edu.co

2 Telecommunications Engineer, Universidad M ilitar Nueva Granada, Colombia. M aster in Electronic Engineering, Pontificia Universidad Javeriana,
Colombia. Universidad M ilitar Nueva Granada/Telecommunications Engineering Program. E-mail: edith.estupinan@unimilitar.edu.co

3 Electronic Engineer, Universidad Manuela Beltrán, Colombia. Specialist in Physical and Computer Security, Escuela de Comunicaciones M ilitares,
Colombia. M aster in Automatic Production Systems, Universidad Tecnológica de Pereira, Colombia. Universidad M ilitar Nueva
Granada/Telecommunications Engineering Program. E-mail: juan.quinteroq@unimilitar.du.co

A RESEARCH VISION

Dairon Javier Ramos Suavita 1, Edith Paola Estupiñán Cuesta 2,
Juan Carlos Martínez Quintero 3

INFORMACIÓN DEL ARTÍCULO

Historia del artículo:
Enviado: 20/11/2022
Recibido: 02/12/2022
Aceptado: 12/02/2023

Keywords:
Attack
Controller
Mininet
RTT
Software Defined Networks
Vulnerabilities

Palabras clave:
Ataque
Controlador
Mininet
RTT
Redes definidas por Software
Vulnerabilidades

Citar este artículo como: D. J. Ramos Suavita, E. P. Estupiñán Cuesta, J. C. Martínez Quintero, “Vulnerability analysis of an
emulated SDN network by flooding HTTP and TCP packets”, Visión electrónica, vol. 17, no. 1, pp. 11-18, january-june 2023,
https://doi.org/10.14483/22484728.21187

ABSTRACT

This article implements a topology of an SDN network in the Mininet emulator
where a web server is implemented in one of the devices in order to execute a denial-
of-service attack by sending mass packets with the aim of analyze what
vulnerabilities can be found in the data and control plane of the SDN network
architecture. The results were captured with the Wireshark tool to analyze the
packets that enter the controller and command line to obtain data such as RTT
(Round-Trip Time) and the connection speed with the server, as a result, a decrease
in performance was evidenced. of the network in terms of the connection speed with
the server was less than 40Mbps and the RTT with values up to 352ms that takes
a packet to go and return when the flood of packets is executing in the network.

RESUMEN

En este artículo se lleva a cabo la implementación de una topología de una red SDN
en el emulador Mininet, donde se implementa un servidor web en uno de los
dispositivos con el fin de ejecutar un ataque de denegación de servicio mediante el
envío masivo de paquetes con el propósito de analizar que vulnerabilidades se pueden
encontrar en el plano de datos y de control de la arquitectura de la red SDN. Se
capturaron los resultados con la herramienta Wireshark, para analizar los paquetes
que ingresan al controlador y línea de comando para obtener datos como el RTT
(Round-Trip Time) y la velocidad de conexión con el servidor, como resultado se
evidencio una disminución en el rendimiento de la red en cuanto a la velocidad de
conexión con el servidor fue inferior a 40Mbps y el RTT con valores hasta de 352ms
que es el tiempo que toma un paquete de ida y vuelta cuando se está ejecutando la
inundación de paquetes en la red.

https://orcid.org/0000-0003-0254-8742
https://orcid.org/0000-0002-4100-4943
https://orcid.org/0000-0001-9893-6592

D. J. RAMOS SUAVITA, E. P. ESTUPIÑÁN CUESTA, J. C. MARTÍNEZ QUINTERO

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

12

1. Introduction

Software Defined Networking is an emerging
technology in which the software is decoupled from the
hardware, offering better advantages in network
management by allowing programming and controlling
the entire network from a single point of control
instead of doing it device by device and traditional
networks have a decentralized design in which each of
its components is configured, having in the same
computer the control plane and data plane. [1] (Figure
1). Its architecture is divided into three (Figure 2):
Application plane, control plane and data plane, this
structure provides fast access and better use of network
resources, as the architecture is designed to streamline
IT management and help organizations keep pace with
today's growing traffic [2].

Figure 1. Traditional network vs SDN network.

Source: own.

Figure 2. SDN architecture.

Source: own.

SDN networks arise from the separation of the
planes (between 2001 and 2007) allowing to manage
growing networks, between 2007 and 2010 the
OpenFlow protocol was developed in order to control
the forwarding behavior and communication between
the two planes. [3] (Figure 3). Previous studies have
analyzed that SDN networks, due to their architecture
design, have different threats that can affect network
performance and the possible attacks with the greatest
threat are related to packet flooding in the network
that aim to saturate or wear out the network resources
[4][5][6][7].

Figure 3. Evolution of Data Networks.

Source: own.

In this paper a topology is implemented to perform
the analysis of its vulnerabilities by means of packet
flooding. This paper is divided into three main chapters
which covers the study of the SDN network: 1)
Proposed scenario with tests, 2) Implementation of the
topology and 3) Results and Analysis.

 VULNERABILITY ANALYSIS OF AN EMULATED SDN NETWORK BY FLOODING HTTP AND TCP PACKETS

Visión Electrónica Vol. 17 No. 1 (2023) • January-June • P.P. 11-18 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

13

1.1 Methodology

The following methodology was established, which
consists of three phases for the development of the
activities of this study, as shown in Figure 4:

 Proposed scenario: This phase proposes an
SDN topology to be implemented and
establishes tests to evaluate the network
performance.

 Implementation: This phase implements
the proposed topology in an emulator with the
integration of a controller and runs the tests
designed to test the SDN network.

 Results and analysis: This phase captures
the data from each of the tests and performs the
respective analysis of possible vulnerabilities in
the emulated SDN network.

Figure 4. Phases of the methodology.

Source: own.

2. Scenario

For this study the following scenario is established
consisting of six (6) hosts distributed in the network,
three Open vswitch switches, the integration of the
OpenDayLight driver and a Simple Web server as
shown in Figure 5, implemented in the Mininet
emulator with the objective of applying two evaluative
tests to analyze which vulnerabilities can be discovered
according to the results obtained from the Wireshark
tool and command line. Details of the tests are given
in section 2.1 and 2.2.

Figure 5. Proposed scenario implemented in Mininet.

Source: own.

2.1 Evaluation: Slowhttptest

In this first test, the Slowhttptest tool is used to
send HTTP GET requests from the H1 device
(10.0.0.1) to the web server (10.0.0.3), this test allows
to identify the capacity of the number of connections
that the server can maintain before the service
collapses.

2.2 Evaluation: Package Variation

The second test consists of sending TCP packets
through port 80 used by the Web Server, these packets
have different sizes as shown in Table 1, which varies
the packet size in three cases to identify the behavior
of the network by capturing the RTT metrics for the
time taken by the packet, the number of packets/sec
in the controller (127.0.0.1) to request new flow rules
and the connection speed between the client and the
server.

Table 1. Variation in package size.

Attack Packet size
(bytes) Metrics

Test 1 54 Packets/sec
RTT

Connection speed
Test 2 554
Test 3 1454

Source: own.

D. J. RAMOS SUAVITA, E. P. ESTUPIÑÁN CUESTA, J. C. MARTÍNEZ QUINTERO

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

14

3. Implementation

The topology emulation is performed on an Ubuntu
operating system on which the Mininet software for
network implementation is installed and the
OpenDayLight driver for traffic management is linked.
The device characteristics are listed in Table 2 below.

Table 2. Equipment and software requirements.

Requirements Data
Operating System Ubuntu 16.04 LTS

RAM memory 6 GB
CPU Intel Core i3, 2Ghz

Mininet 2.3.0
OpenDayLight 0.3.0 Lithium

Source: own.

4. Results and Analysis

The following are the results and analysis of the
data obtained in the different tests applied to evaluate
the network.

4.1 Evaluation: Slowhttptest

In this test the HTTP server is implemented in the
H3 computer to execute the test with the Slowhttptest
tool from the H1 computer (10.0.0.1) sending 100 GET
requests to the Web server (10.0.0.0.3). Figure 6 shows
the test performed, where it is identified that out of the
100 connections only 7 managed to connect to the
server before the Web server collapsed, the remaining
93 requests were pending and after a while they were
closed because the server could not process the
requests.

Figure 6. Connection test with Slowhttptest.

 Source: own.

Figure 7 shows the connections successfully
established with the web server (10.0.0.3) where the
type of HTTP GET requests, the IP address of the
attacker H1(10.0.0.1) that establishes the connection
and the HTTP protocol are identified. The last
connections made in the test are evidenced where it
was identified that the server (10.0.0.3) maintained
only 7 requests before the web server crashed.

Figure 7. Connection history on the Web server.

Source: own.

4.2 Evaluation: Variation of
packages

As a second test, three packets were sent, which
consisted of increasing the size to observe its behavior
in terms of the controller and the connectivity in the
Web server. The size of the three packets sent were:
54Bytes, 554Bytes and 1454Bytes. With the help of the

 VULNERABILITY ANALYSIS OF AN EMULATED SDN NETWORK BY FLOODING HTTP AND TCP PACKETS

Visión Electrónica Vol. 17 No. 1 (2023) • January-June • P.P. 11-18 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

15

Wireshark tool we observed that the packets that
arrived at the controller present an increase in the
length of the message of 108bytes that corresponds to
the OpenFlow protocol that is identified in Figure 8,
also the messages are of type "Packet_In" that has the
function of requesting a new flow rule for each packet
that is arriving at the switches to be forwarded.

Wireshark allows to visualize the traffic of the
controller as shown in Figure 9, it is identified that the
number of packets/sec decreases as the packet size
increases which shows that the larger the packet size
the less packets are generated to attack while with the

size of 54bytes up to 25000 packets/sec of "Packet_In"
messages are obtained in the controller.

Now we proceed to analyze the RTT in
communication with the server from the H5 equipment
(10.0.0.5) which is a legitimate user located at one end
of the network. For this test, a series of data is taken
at different times with the three types of packets and
also the time of the traffic of an initial test when there
is no packet flooding in the SDN network as a reference
point for the analysis, as a result the following analysis
is obtained (see Figure 10 and Table 3).

Figure 9. Packages in the Controller according to the test.

Source: own.

Figure 8. Packet_In messages in the controller.

Source: own.

D. J. RAMOS SUAVITA, E. P. ESTUPIÑÁN CUESTA, J. C. MARTÍNEZ QUINTERO

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

16

For the initial test traffic the RTT did not exceed
0.852ms, once started with the packet flooding, the
time increase for the three cases increased as the attack
progresses, in time 5 the first packet obtained 14.8ms
as maximum, the second packet was 42.6ms and the
third packet of 1454 bytes presented a greater impact
on the packet times reaching 352ms round trip
considering that it is the case with less packets
generated per second.

In addition, the analysis of the bandwidth taken
from the H5 client (10.0.0.5) establishing connection
with the web server (10.0.0.3) is performed, the data
obtained are shown in Figure 11. It is evident that the
best bandwidth is obtained when the server is not being
flooded with forged packets being higher than 120
Mbps, but as the size of the packets increases it
decreases becoming less than 50 Mbps for the case of
the 1454 bytes packet.

Figure 10. RTT of the packets to the server.

Source: own.

0,852 0,562 0,764 0,428 0,526 0,3873,619 5,72 11,8 10,59 14,2 14,84,52 15,7 23,4 25,7 32,1 42,6
11,3

76,4
139

208

282

352

0 1 2 3 4 5

TI
M

E
(M

S)

PACKET SIZE (BYTES)

RTT FROM HOST 5 TO THE SERVER

Initial Test Test 1 Test 2 Test 3

Figure 11. Connection speed with the server.

Source: own.

0

50

100

150

0 1 2 3 4 5

SP
EE

D
 (M

bp
s)

CONNECTION SPEED

Initial Test Test 1 Test 2 Test 3

 VULNERABILITY ANALYSIS OF AN EMULATED SDN NETWORK BY FLOODING HTTP AND TCP PACKETS

Visión Electrónica Vol. 17 No. 1 (2023) • January-June • P.P. 11-18 • ISSN 1909-9746 • ISSN-E 2248-4728 • Bogotá (Colombia)

17

4.3 Vulnerabilities

According to the results and analysis of the data
obtained, we proceed to identify the possible
vulnerabilities of the network emulated in Mininet,
which shows that the control plane is a critical point
since it is located in the controller that makes the
decisions of the entire network (see Figure 12), it is
vulnerable because the attacker sends a large number
of packets observed in Wireshark that will request the
controller a new flow rule for each one in order to
exhaust the performance of the network, as evidenced
in the results of the tests applied.

Figure 12. Saturation of the controller with Packet_In
messages.

Source: own.

The link that communicates the control and data
plane is another point, since this is used to send the
"Packet_In" messages that are generated from the
switches to the controller, by sending packets with IP
spoofing, a message is generated for each new IP
received by the switch.

Figure 13. Link congestion.

Source: own.

5. Conclusions

The implementation of the topology and execution
of the tests has allowed observing the behavior of the
SDN network against these types of packet flooding
attacks that seek to take advantage of the decoupling
of the planes to overload the network with packets in
order to reduce its performance, affecting legitimate
users on the network.

It is evident that in the data plane the packet
flooding attack causes the switches to generate flow
rule requests to the controller by means of "Packet_In"
messages, as a consequence, the control plane is
overloaded by the requests generated to create a new
flow rule. As a result, there is a decrease in the
connection speed with the Web server with values
below 40Mbps for packet flooding of 1454 bytes and in
the RTT there was an increase in times of up to 352ms

Table 3. Times of each test.

 Initial Test Test 1 (54bytes) Test 2 (554bytes) Test 3 (1454bytes)
0 0.852 3.619 4.52 11.3
1 0.562 5.72 15.7 76.4
2 0.764 11.8 23.4 139
3 0.428 10.59 25.7 208
4 0.526 14.2 32.1 282
5 0.387 14.8 42.6 352

Source: own.

D. J. RAMOS SUAVITA, E. P. ESTUPIÑÁN CUESTA, J. C. MARTÍNEZ QUINTERO

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

18

compared to the initial test which was 0.852ms when
there was no packet flooding.

Acknowledgments

This work was developed within the GISSIC
research group. Product derived from the Maxwell
research group funded by the Vice-Rectory of Research
of the Universidad Militar Nueva Granada.

 References

 [1] VMware, "¿Qué son las redes definidas por
software (SDN)? | Glosario de VMware | ES."
https://www.vmware.com/es/topics/glossary/co
ntent/software-defined-networking.html

[2] Citrix, "¿Qué son las redes definidas por software
(SDN)? - Citrix México."
https://www.citrix.com/es-mx/solutions/app-
delivery-and-security/what-is-software-defined-
networking.html

[3] M. Marchetti, "The road to riches," Sales Mark.
Manag., vol. 150, no. 10, p. 128, 2013.
https://doi.org/10.2307/j.ctvc77cz1.22

[4] M. Dabbagh, B. Hamdaoui, M. Guizani, and A.
Rayes, "Software-Defined Networking Security:
Pros and Cons," IEEE Commun. Mag., vol. 53,
no. September, pp. 48-54, 2015.
https://doi.org/10.1109/MCOM.2015.7120048

[5] A. Feghali, R. Kilany, and M. Chamoun, "SDN
security problems and solutions analysis," Int.
Conf. Protoc. Eng. ICPE 2015 Int. Conf. New
Technol. Distrib. Syst. NTDS 2015 - Proc., 2015.
https://doi.org/10.1109/NOTERE.2015.7293514

[6] J. Singh and S. Behal, "Detection and mitigation
of DDoS attacks in SDN: A comprehensive review,
research challenges and future directions,"
Comput. Sci. Rev., vol. 37, 2020.
https://doi.org/10.1016/j.cosrev.2020.100279

[7] A. Pradhan and R. Mathew, "Solutions to
Vulnerabilities and Threats in Software Defined
Networking (SDN)," Procedia Comput. Sci., vol.
171, no. 2019, pp. 2581-2589, 2020.
https://doi.org/10.1016/j.procs.2020.04.280

https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/es/topics/glossary/content/software-defined-networking.html
https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html
https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html
https://www.citrix.com/es-mx/solutions/app-delivery-and-security/what-is-software-defined-networking.html
https://doi.org/10.2307/j.ctvc77cz1.22
https://doi.org/10.1109/MCOM.2015.7120048
https://doi.org/10.1109/NOTERE.2015.7293514
https://doi.org/10.1016/j.cosrev.2020.100279
https://doi.org/10.1016/j.procs.2020.04.280

