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Abstract 

The subjectivity and agility in the review and quality classification of cervical cytology images 

represents a significant challenge due to the individual observer's criteria, as well as the high 

volume of samples requiring analysis. The project aims to develop two machine learning 

models; the first is a classification model that categorizes digitized samples as satisfactory or 

unsatisfactory. The MobileNet, VGG16, and Resnet50 architectures were compared, yielding 

better results with the latter, reaching a sensitivity of 0.93 for unsatisfactory samples. The 

second, a diffusion model for noise reduction where a UNet architecture with ResNet blocks 

was evaluated for images without noise and with added noise, and an unsharp mask was 

applied, achieving PSNR and SSIM metrics of 36 dB and 0.92 in noise-free images, and 31 dB 

and 0.72 in noisy images. The implementation of these models serves as a first step in the 

binary classification of cytological image quality and in improving the initial image quality. 
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Resumen 

La subjetividad y la agilidad en la revisión y clasificación de calidad de imágenes de citología 

cervical representa un desafío importante debido al criterio individual del observador, así como 

al alto volumen de muestras que requieren análisis. El proyecto tiene como objetivo desarrollar 

dos modelos de machine learning; el primero es un modelo de clasificación que categoriza las 

muestras digitalizadas como satisfactorias o insatisfactorias, se compararon las arquitecturas 

MobileNet, VGG16 y Resnet50, arrojando mejores resultados con esta última, llegando a una 

sensibilidad de 0.93 las muestras insatisfactorias. El segundo, un modelo de difusión para 

reducción de ruido donde se utilizó una arquitectura UNet con bloques ResNet, evaluado para 

imágenes sin ruido y con ruido agregado, y se aplicó una máscara de enfoque alcanzando 

métricas de PSNR y SSIM de 36 dB y 0.92 en imágenes sin ruido, y 31 dB y 0.72 en imágenes 

con ruido. La implementación de estos modelos funciona como un primer paso en la 

clasificación binaria de calidad de imágenes citológicas, y en el mejoramiento de la calidad 

inicial de las imágenes. 

Palabras clave: Citología cervical, Modelo de difusión, Transfer learning.  

1. Introduction: 

Cervical cancer is a common sexually transmitted disease caused by infection with the human 

papillomavirus (HPV) [1]. To world levelIt is the eighth cancer with the highest incidence, the 

ninth with the highest mortality and a prevalence in the last 5 years of approximately 50 cases 

per 100,000 people [2]; in Colombia it is the third most common cancer in women [3] 

One of the prevention methods is performing the Pap test for cervical cytology, which is the 

main screening test for cervical cancer, contributing to early detection. Review of Pap samples 



 

is performed manually using an optical microscope under the level of expertise and subjectivity 

of the examining pathologist, which can lead to false positives or false negatives, thus affecting 

the patient's diagnosis and treatment [4]. 

The impact of Artificial Intelligence (AI) in the health sector has been significant in the early 

detection of diseases and reducing the burden on professionals, through the implementation of 

machine learning models, for example, in [5] and in [6] They develop algorithms with neural 

networks to detect cervical cancer, demonstrating the capacity of AI in optimizing medical 

diagnoses. 

Training these models involves a large volume and variety of scanned whole slide images 

(WSI), which are susceptible to factors that can affect their quality from the capture stage to the 

digitization of the sample. The latter can be influenced by factors such as different types of 

scanners, out-of-focus areas, inappropriate color profile, and unrecognized slide identifier [7], 

which can affect the model's performance. Therefore, algorithms that operate without prior 

quality analysis could generate inconsistent results [8], as in [9] where it is obtained a larger 

area under the curve in the models that used high-quality images. 

In recent studies [10] They have made progress in classifying the quality of cytological images 

for the detection of cervical cancer, with a categorization of poor and good quality; in another 

study [6], developed a quality system for images of thin-layer liquid-based cervical cell smears, 

categorized as satisfactory and unsatisfactory. Other works [11], have improved images in 

cervical cytology, using methodologies such as histogram equalization to adjust contrast, noise 

filtering and edge detection.   

This highlights the need for WSI image quality control as part of the diagnostic process, 

enabling detection and improvement of quality. Therefore, in this research, two machine 



 
 

learning models were developed to classify images as satisfactory and unsatisfactory. Noise 

was subsequently removed only for those images previously classified as satisfactory. Finally, 

a sharpening mask was applied. This contributes to a broader project focused on the early 

detection of cervical cancer in partnership with the Universidad El Bosque and the Colombian 

League Against Cancer in Bogotá. 

Diffusion Models 

2.1 Mathematical basis: 

Diffusion models are generative models that operate under the principles of forward and 

reverse diffusion [12]. This process is based on the structure of Markov chains, where each 

step depends only on the previous step; in diffusion models, noise is added in the forward 

diffusion process, where each state 𝑡 depends on  𝑡 − 1 , and in the reverse process, noise is 

reversed, where each step  𝑡 − 1  depends on 𝒕 the state. Thus, this process is based on 

conditional distribution, assuming a Gaussian distribution [13]. The following figure shows the 

diffusion model process:             

        Figure 1. Diffusion model process. Taken and modified from 

a. Direct Diffusion   b. Reverse Diffusion 

The forward diffusion process takes the image and adds noise in a series of steps, taking into 

account the variance value, which defines the amount of noise added. Equations (1) and (2) 

present the single-step process and the complete process.𝐵𝑡 

                                  (1)        𝑞(𝑋𝑡−1) ≔ 𝑁(𝑋𝑡; √1 − 𝛽𝑡𝑋𝑡−1, 𝛽𝑡𝐼) 



 

                                                         (2)𝑞(𝑋0) ≔  ∏𝑇
𝑡=1 𝑞(𝑋𝑡−1) 

Here represents the normal (Gaussian) distribution, the image at step , is generated around the 

mean and variance I (1). In (2) represents the joint probability of the noisy images, the notation 

indicates the multiplication of probabilities of each individual step.  

𝑁𝑋𝑡𝑡√1 − 𝛽𝑡𝑥𝑡−1𝐵𝑡𝑞(𝑋0) ∏𝑇
𝑡=1 𝑞(𝑋𝑡−1) 

The reverse or backward diffusion process gradually removes noise from the noisy image to 

the noise-free image, given by the following equations: 

𝑝𝜃(𝑋𝑡 ∣ 𝑋𝑡−1) ∶= 𝑁(𝑋𝑡−1; 𝜇𝜃(𝑋𝑡 , 𝑡), ∑ 𝜃 (𝑋𝑡, 𝑡))     (3) 

𝑝𝜃(𝑋0: 𝑇) ≔ 𝑝(𝑋𝑇) ∏𝑇
𝑡=1 𝑝𝜃(𝑋𝑡−1 ∣ 𝑋𝑡)                   (4) 

 

𝑝𝜃(𝑋𝑡 ∣ 𝑋𝑡−1) represents the probability of obtaining the given image; N𝑋𝑡−1𝑋𝑡Gaussian normal 

distribution;  𝜇𝜃(𝑋𝑡, 𝑡) the average modeled by the current image𝑋𝑡in step; is the variance of the 

distribution. In (4) and 𝑡 ∑ 𝜃 (𝑋𝑡, 𝑡)𝑝𝜃(𝑋0: 𝑇)s the joint probability of all steps 𝑋0up to; the 

probability of the initial state of the reverse process and   𝑋𝑇𝑝(𝑋𝑇) ∏𝑇
𝑡=1 𝑝𝜃(𝑋𝑡−1 ∣ 𝑋𝑡)the 

multiplication of all conditional distributions at each step. 

The mean is calculated by the model and reparameterized by making the model learn to predict 

the added noise allowing it to advance from to , the variance is assumed constant according to 

𝑋𝑡𝑋𝑡−1[13]. Thus, to calculate the difference between the added noise and the predicted noise, 

for both training and validation, the metric is the Mean Square Error (MSE). 

2.2 Image quality assessment metrics 

The mean square error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index 

(SSIM) were used as image quality assessment metrics. The goal was to find the lowest MSE 

value and the highest PSNR and SSIM values. 

2.2.1 MSE: 



 
 

The MSE together with the PSNR have been traditional metrics used as efficiency criteria in 

image filtering processes [14]. MSE measures signal fidelity by comparing the difference 

between an original image and the same image filtered pixel by pixel. MSE is a metric that is 

sensitive to changes in squaring the differences. It is simple and inexpensive to calculate [15] 

although it does not measure the perception of the quality of the visual image [16]. 

The calculation of the MSE is given by: 

𝑀𝑆𝐸(𝑥.𝑦) =  
1

𝑁
∑𝑁

𝑖=1 (𝑥𝑖 − 𝑦𝑖)2  (5) 

N is the total number of pixels in the images, and N is the values of the i-th points of the two 

signals or images.𝑥𝑖𝑦𝑖 [17]. 

2.2.2 PSNR: 

It is based on the MSE [18], and refers to the ratio between the maximum possible power of a 

signal (original image) and the power of the noise (reconstructed image). It is expressed in 

decibels, where an appropriate range is between 30 dB and 40 dB [19]. When an image has 

the same dynamic range, PSNR does not provide additional information to that obtained with 

MSE [20]. 

The PSNR calculation is given by: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10
𝐿2

𝑀𝑆𝐸
        (6) 

L is the dynamic range of allowed image pixel intensities [20] 

2.2.3 SSIM: 

It measures three factors of images: luminance, contrast and structure.[21] In the process of 

removing noise from an image, changes to the structure of the image can be generated that 

are perceptible to human vision called structural distortions, and the work of this metric is this 

human function [17]. The SSIM range is from 0 to 1, where the highest values closest to 1 are 

sought. 



 

The SSIM calculation is given by: 

𝑄 =
𝜎𝑥𝑦

𝜎𝑥𝜎𝑦
 .

2𝑥𝑦

(𝑥)2+(𝑦)2
 .

2𝜎𝑥𝜎𝑦

𝜎𝑥
2+𝜎𝑦

2
          (7) 

The first part is the structure component, where the numerator is the covariance between the 

image and , and the bottom part is the standard deviation. The second part is the luminance, 

which represents the average intensity values for each image, and the third is the contrast 

component.𝑥𝑦 [17]. 

2. Methodology 

The proposed methodology is shown in the following figure. 

Figure 2. Methodology 

 

Source: own. 

3.1 Dataset and processing 

For the visualization and cropping process of TIFF images, the TIAToolbox library in Python 

was used, which is focused on the analysis of pathological images [22]. 

Fifty cytology slides provided by the CITOMAP Cytology and Pathology Laboratory were 

selected. These samples were older than 5 years, so mounting the slides using synthetic resin 



 
 

(CYTORESIN) was required for proper cytology review by the cytologist and for the scanning 

process. The specialist reviewed the slides according to the 2014 Bethesda classification 

system, which is used for quality and diagnosis. The samples were classified into two classes: 

satisfactory and unsatisfactory, taking into account factors such as fixation, staining, mounting, 

presence of endocervical cells, and presence of exocervical cells. They were then scanned by 

the University Foundation of Health Sciences (FUCS). 

It should be added that, among the factors labeled for the unsatisfactory class, scan quality was 

included, which was the sum of two variables: the number of white areas in the image and the 

percentage of blur. A sample was classified as unsatisfactory if it had a hemorrhagic smear, 

inflammation, low cellularity, and a poor scan. 

The samples were digitized using a MoticEasyScan scanner line, and initially in SVS format 

however, as mentioned in [23] this format is not compatible with some viewing programs, and 

its size is greater compared to other image formats, so it was decided to use a TIFF type format. 

Once the scanned images with a resolution of 65,500 x 65,500 pixels, a magnification of 40x 

and a resolution of 5.3004 μm per pixel were received, they were passed through a 

compression process to optimize their handling and analysis by reducing their dimension to a 

resolution of 10,240 x 10,240 pixels equivalent to a 45% reduction in the weight of the original 

image, a process in which the PIL python library was used. For this, the images were 

compressed to 24,584 x 51,600 pixels using 1,024 processing blocks in order to avoid memory 

collapse problems, to later be taken to a final resolution of 10,240 x 10,240 pixels. 

3.2 Quality classifier: 

The VGG16, MobileNet and ResNet50 architectures were tested, taking as reference the 

research [10] and [9] where they were implemented in their medical image classification tasks, 

obtaining metrics for the first of 99.5% in sensitivity and precision, and in the second of 99.9% 

in AUC. 



 

The final layers of each architecture were customized to adapt to the binary classifier output, 

testing different layer types. The number of layers to be trained and the initial learning rate were 

varied. Additionally, two callbacks were applied: one from Modelcheckpoint to save the best 

model based on accuracy, and the other from ReduceLROnPlateau to dynamically adjust the 

learning rate. 

For the classifier, 50 images with dimensions of 10,240 x 10,240 pixels were taken, and a 

processing was performed that included a reduction to 1,000 x 1,000 pixels in jpg format and 

subsequently, three 224 x 224pixel crops were taken from each image to adapt them to the 

implemented architectures. This number of crops was selected to break the tie between the two 

categories to be classified at the time of model inference. A total of 150 crops were obtained, 

distributed 69 as unsatisfactory and 81 as satisfactory. For the training process, the dataset 

was divided into 104 images for the training set, 23 for the validation set, and 23 for the testing 

set. For each set, data augmentation was applied making variations consisting of rotations, 

shifts, zooming, and flipping the image horizontally. 

3.3 Probabilistic diffusion model for noise removal 

For the diffusion model, images with dimensions of 10,240 x 10,240 pixels were taken, and 

cutouts with a size of 640 x 640 pixels were made in jpg format, generating 256 images per 

sheet, resulting in a total of 12,800 images for the final dataset. Taking into account the 

specifications of the diffusion model, 5 cutouts of 128 x 128 pixels were taken from each 640 x 

640pixel image, subsequently in the final output of the model a spatial reconstruction was 

performed to return the images to their original size. 

The code that was implemented for the model was taken from the GitHub repository [24] which 

is available under the MIT license.  

3.4 Unsharp Mask 



 
 

Unsharp masking is implemented to improve the sharpness of the image by making it look 

clearer and more defined.   

𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 𝑖𝑚𝑎𝑔𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 +  𝑎𝑚𝑜𝑢𝑛𝑡 ∗  (𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −  𝑏𝑙𝑢𝑟𝑟𝑒𝑑)   (8) 

The original image is taken and the difference with a blurred version is calculated. This 

difference is multiplied by the sharpness factor and added to the original image, resulting in a 

sharper image. For this purpose, the functionunsharp_maskfrom the skimage.filters library 

[25], which receives two hyper parameters radius and amount, where the first indicates the 

level of blur applied to the image before edge enhancement, and the second controls the level 

of sharpening of the image. 

4. Results 

          4.1 Classification model: 

For the selection of the hyperparameters, the Keras Tuner methodology was used with the 

objective of finding the best Recall value in the unsatisfactory class 1, given that the aim was 

to reduce false negatives, that is, if an unsatisfactory sample passes as satisfactory, analyses 

will be performed on it and it will become part of the dataset to train the diagnostic model of the 

macroproject. 

Figure 3 shows the classic structure of each of the implemented architectures: 

Figure 3. Implemented architectures.[26], [27], [28]        

         

             a.VGG16     b. MobileNetV1 

https://scikit-image.org/docs/stable/api/skimage.filters.html#skimage.filters.unsharp_mask


 

                             

      c.ResNet50 

In each of the related architectures, adjustments were made that allow the model to reduce 

overfitting and improve training efficiency. 

The classic VGG16 architecture contains 5 convolution blocks with 3x3 filters, increasing in 

number (64 to 512) per block and ReLU activations, each block has a MaxPooling layer, ending 

with 3 dense layers and a softmax layer. To adapt the training to the binary classifier, trainable 

layers were unfrozen, a GlobalAveragePooling2D layer was placed, an intermediate dense 

layer, a Dropout and the final layer adjusting to the output of 2 classes, as well as the optimizer 

learning rate.   

The classic MobileNetV1 architecture contains 28 depthwise separable convolutional layers 

with batch normalization and ReLU activations, a GlobalAveragePooling and Dropout layer, 

and a final Dense layer. Among the adjustments made for this architecture are the unfreezing 

of trainable layers, a DropOut layer, a Flatten layer, a final Dense layer, and a learning rate. 

The classic Resnet50 architecture starts with a 7x7 convolution layer and max-pooling, four 

stages of bottleneck residual blocks and finally a Global Average Pooling layer and a dense 

layer, as in the previous architectures, trainable layers were unfrozen, a 

GlobalAveragePooling2D layer was added, a Dropout, an intermediate dense layer and the 

final dense layer. 

The following tables list the results of each model trained with 90 epochs and the best 

hyperparameters, with the ResNet50 architecture performing best for the Recall of the 

unsatisfactory class with a value of 0.93. 



 
 

Table 1. Better hyperparameters for architectures. 

Architecture Configuration Thawed layers Learning rate 

ResNet50 

GlobalAveragePooling2D 

Dropout(0.4) 

Dense(64, activation='relu') 

Dense(2, activation='softmax') 

5 Adam 0.0000494 

MobileNet 

Dropout(0.4) 

Flatten 

Dense(2, activation='softmax') 

15 Adam 0.00029 

VGG16 

GlobalAveragePooling2D 
Dropout(0.6) 
Dense(256, activation='relu') 
Dense(2,activation='softmax') 

15 Adam 0.0000394 

Source: own. 

Table 2.Results 

  Precision Recall F1 score # images 

VGG16 

Class 1: unsatisfactory 0.91 0.70 0.79 492 

Class 0: satisfactory 0.74 0.92 0.83 451 

MobileNetV1 

Class 1: unsatisfactory 0.85 0.83 0.84 492 

Class 0: satisfactory 0.82 0.84 0.83 451 

ResNet50 

Class 1: unsatisfactory 0.75 0.93 0.83 492 

Class 0: satisfactory 0.90 0.65 0.76 451 

Source: own. 



 

Figure 4. Confusion Matrix Best ResNet50 Model 

Source: own. 

4.2 Diffusion model: 

The model used was based on [24] where they take an adjusted HuggingFace model, which is 

based on a Classic UNet with advanced ResNet convolution blocks, time embeddings and 

linear attention. 

Table 3 shows the differences between Classic UNet and the implemented architecture: 

Table 3. Differences between UNet Classic and HuggingFace Adjusted 

Component UNet Classic HuggingFace 

First Convolution Conv 3x3 Conv 7x7 

Block convolution Conv + ReLU ResNetBlock + SiLU 

Time embeddings Not applicable If applicable 

Linear attention Not applicable Linear care at each stage 

Dimensionality reduction Max Pooling 2x2 2D Stride 2 Convolution 

Dimensionality increase Up conv 2x2 Transposed convolution 

Source: own. 



 
 

The implemented architecture uses ResNetBlock convolutional blocks with a SiLU activation 

function and linear attention. These blocks consist of two 3x3 layers with normalization, which 

gives the model greater ability to detail the image; linear attention gives more weight to more 

important areas of the image without consuming too much memory. SiLU activation is more 

advanced and smoother compared to ReLU, allowing the model to learn complex patterns in a 

more controlled manner. 

In the first convolution, unlike classic UNet, the model used an input with a 7x7 kernel. In the 

downsampling phase, a 2D convolution layer with stride 2 is used to extract features while 

reducing the resolution. The bottleneck (the lowest part) uses ResNetBlock blocks; in the 

upsampling phase, a transposed convolution is used, doubling the resolution along with the 

advanced blocks. 

The entire architecture uses a temporal embedding function to add information about the time 

step in the diffusion process so that the model knows how much noise has been added to the 

image at that step. This allows the model to learn to progressively reconstruct the image by 

appropriately removing noise based on the passage of time. 

In the training process, different dataset size values were used in a range from 100 to 6,000, 

however, due to computational resource limitations, the best result was obtained with 2,307 

images of 128x128 pixels which were divided into 1,600 images for the training set, 402 for the 

validation set and 350 for the test set. 

To create the diffusion datasets, a series of transformations were performed on the training set, 

consisting of converting the image to a tensor with values ranging from 0 to 1, randomly 

adjusting the image's brightness and hue, horizontally flipping the image, horizontally 

translating it, and scaling it. The objective of this was to enable the model to learn image 



 

characteristics independently of their variations. Gaussian noise level control was applied with 

variance ranging from 0 to 5e-3 in 1000 steps. For the test and test sets, the image was 

converted to a tensor and noise control was included. 

The model ran with 200 epochs, under a batch size of 32 for training and 64 for validation using 

the Google Colab Pro tool with an A100 GPU. 

The MSELoss loss function and an AdamW optimizer were used, the learning rate was adjusted 

at each step with a maximum value of 0.0005 and with a OneCycleLR cycle. 

For the model evaluation process, image reconstruction steps of 1, 5, 10, and 15 were used, 

and an average of the MSE, PSNR, and SSIM metrics was taken. In this process, the model 

was tested with the original 640x640 images without added noise, and images with added 

Gaussian noise with a mean of 0 and variance of 0.01 and salt and pepper noise with a 

percentage of 0.01. A total of 128 images were used for each of the tests. This was done in 

order to evaluate what level of noise the model could eliminate and the optimal step for the 

process. 

Below are the results of each test performed: 

Table 4. Comparative metrics Diffusion Model 

Image Step MSE Manual PSNR (dB) SSIM 

Original image 1 27.61 34.99 0.90 

Original image 5 25.20 35.52 0.91 

Original image 10 22.06 36.11 0.92 

Original image 15 15.57 37.29 0.94 

Image with Gaussian noise 1 38.25 33.00 0.90 

Image with Gaussian noise 5 37.83 32.89 0.90 

Image with Gaussian noise 10 42.76 32.27 0.90 

Image with Gaussian noise 15 48.97 31.55 0.83 

Image with noise SaltPepper 1 43.12 31.87 0.62 

Image with noise SaltPepper 5 42.90 31.88 0.60 

Image with noise SaltPepper 10 43.58 31.79 0.56 

Image with noise SaltPepper 15 47.16 31.41 0.49 

Source: own. 



 
 

Given the metrics, what was discussed with specialists and after an analysis of the images, it 

was concluded that step 15 was optimal since, while it eliminates a lower percentage of noise, 

it better preserves the characteristics of the images. 

To optimize image sharpness, an unsharp mask was applied at the selected step by varying 

the radius and amount hyperparameters with combinations of values of 1, 1.5, and 2. The 

combination of 1 and 1 provided the best visual perception for images without added noise, 

with MSE metrics of 21.9; PSNR of 35.6 dB and SSIM of 0.92, and for images with added 

Gaussian noise of 59.9; 30.6 and SSIM of 0.72 respectively. As for the images with added salt 

and pepper noise, the test with the unsharp mask was not performed since the selected step 

did not demonstrate the best performance in noise removal, from which it can be inferred that 

the reason was because the model was trained with Gaussian noise. Below is a fragment of an 

image processed by the model and the unsharp mask. 

Figure 5. Images without added noise processed by the Diffusion Model and Unsharp Mask 

  

         a. Original image                b. Diffusion Model Image        c. Masked Image 

Source: own. 

 

 



 

5. Conclusions 

The two models deployed during the project were successfully developed, representing a 

significant advance in the selection and improvement of satisfactory images, contributing to the 

macro-project focused on cervical cancer detection. 

For the classifier model, the ResNet50 architecture proved to be the most suitable in terms of 

sensitivity to the unsatisfactory class compared to other architectures (VGG16 and MobileNet). 

The diffusion model based on the UNet architecture with ResNet blocks showed good results 

in noise removal, along with the application of an unsharp mask, which improved image 

sharpness. 

Two limitations were encountered during the project: first, the computational capacity available 

to run the diffusion model with a training size greater than 2,500 images. Second, since the 

diffusion model was trained with Gaussian noise, it was not highly effective in removing salt-

and-pepper noise. Finally, it is suggested that higher zoom levels be used for future work with 

cytological images to increase practical applicability. 
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