Enviado: 25/09/2025 Recibido: 01/11/2025 Aceptado: 17/11/2025

VISION ELECTRONICA

Algo mas que un estado sélido . "

VISION ELECTRONICA

UNIVERSIDAD DISTRITAL https://doi.org/10.14483/issn.2248-4728
FRANCISCO JOSE DE CALDAS

Educational robotic prototype for learning Object-Oriented Programming
principles

Prototipo robdtico educativo para aprender los principios de la programacion
orientada a objetos

Natalia Cafién Castillo?, Juan D. Rodriguez?, Juan Carlos Rinc6n?, Gissel Daniela
Cristiano A%, Samuel Alejandro Sabogal M®, Henry B. Guerrero®

Abstract

According to several reports, mobile robotics can be an effective tool for teaching and learning
computer programming. In light of the fact that the object-oriented programming (OOP)
paradigm is often not adequately incorporated by students in the corresponding classical
courses, this paper describes a prototype mobile robotic system as an effective method for
teaching and learning the concepts of object-oriented programming paradigms via tutored

experiences. Students demonstrated high levels of enthusiasm during the development of

1 Electronic Engineering student, Universidad Distrital Francisco Jose de Caldas, Colombia. E-mail:
ncanonc@udistrital.edu.co

2 Electronic Engineering student, Universidad Distrital Francisco Jose de Caldas, Colombia. E-mail:
jdrodriguezr@udistrital.edu.co

3 Electronic Engineering student, Universidad Distrital Francisco Jose de Caldas, Colombia. E-mail:
jerinconn@udistrital.edu.co

4 Electronic Engineering student, Universidad Distrital Francisco Jose de Caldas, Colombia. E-mail:
gdcristianoa@udistrital.edu.co

5 Electronic Engineering student, Universidad Distrital Francisco Jose de Caldas, Colombia. E-mail:
sasabogalm@udistrital.edu.co

6 Electronic Engineer, Universidad de los Llanos, Colombia. Doctoral degree on Mechanical Engineering,
University of Sao Paulo, Brasil. Professor: Universidad Distrital Francisco Jose de Caldas, Colombia,
Colombia. E-mail: hbguerrero@udistrital.edu.co

https://doi.org/10.14483/issn.2248-4728

experiments involving sensors and actuators in conjunction with objects, methods, classes,
access modifiers, and in general OOP concepts applied to robot movement. A low-cost,
smallscale mobile robot was constructed using a Raspberry Pi 3 B+ running Linux and
suitable motors and sensors. As a result of combining OOP with mobile robots, a high level
of interest in related topics was observed, even facilitating the teaching process.

Keywords: Differential-drive mobile robot, LIDAR sensor, Linux, Object-oriented programming,
python3, raspberry pi 3b+

Resumen

Diversos estudios indican que la robotica movil puede ser una herramienta eficaz para la
enseflanza y el aprendizaje de la programacion. Dado que el paradigma de programacion
orientado a objetos (POO) frecuentemente no es asimilado de manera adecuada por los
estudiantes en los cursos clasicos, este articulo presenta un prototipo de sistema robo6tico movil
como un método efectivo para enseflar y aprender los conceptos del paradigma de
programacién orientada a objetos mediante experiencias guiadas. Durante el desarrollo de
experimentos que involucraron sensores y actuadores en conjunto con objetos, métodos,
clases y modificadores de acceso, en general aplicando conceptos de POO al movimiento del
robot, los estudiantes demostraron altos niveles de entusiasmo. Se construy6 un robot movil
de bajo costo y pequefa escala utilizando una Raspberry Pi 3 B+ con Linux, junto con motores
y sensores apropiados. Como resultado de combinar POO con robética movil, se observé un
nivel elevado de interés en temas relacionados, incluso facilitando el proceso de ensefanza.
Palabras Clave: Robot mdvil con accionamiento diferencial, sensor LIiDAR, Linux,

programacién orientada a objetos, Python 3, Raspberry Pi 3b+

1. Introduction

An ongoing research project aimed at developing autonomous navigation for agricultural mobile
robotics led us to realize that object-oriented programming isn't as well exploited in mobile
robotics as it should be. For students involved in mobile robotics projects, a thorough
understanding of Object Oriented Programming (OOP) concepts is critical, and our research
group has noticed that students have difficulty assimilating abstract concepts in general and for
this reason, we designed a small-scale mobile robot to serve as a learning and teaching support
tool for object-oriented programming.

Diverse approaches in which mobile robots to support the learning and teaching of
programming are shared in suitable publications like [1, 2, 3, 4], however the searching of formal
literature reporting the taking of the advantages of the usage of mobile robots to teaching and
learning OOP leads to find few papers which we consider as a god opportunity to undertake an
interesting defiance: A mobile robot prototype for learning and teaching Object-Oriented
Programming which is presented in this paper.

The prototype is described in section I, followed by a discussion of our considerations and
future work in section Ill. Our acknowledgements and references are presented at the end of
the paper.

2. General structure description of mobile robot

A four wheels differential drive mobile robot prototype was assembled and this is shown in
Figure 1. It measures approximately 0.2 meters in length, 0.16 meters in width, and 0.15 meters
in height. In terms of weight, it is approximately 0.6 kilograms. Our mobile robot has two floors
structured to carry the vehicle elements. According to depicted in Fig. 2, the first floor is destined

to allocate four DC motors, two L298 H-bridge driver boards, an LM2596S voltage regulator, a

12 Vdc battery as well as a 3b+ microcomputer, In accordance with Fig 2 over the second floor

a LiDar sensor was allocated.

Raspberry Pi3 B+
YD LidarX2:

L298N H-bridge
12 Volt Battery

LM2596S Voltage
Regulator

Figure 2. General view about elements distribution in the robot structure

Figure 3 has been included to show how four dc moto-reductors and four wheels were suitable

assembled to the robot chassis.

DC gear motors

Figure 3. Propulsion DC gear motors

Over the top of the robot structure, we allocated a YdLidarX2 sensor [5, 6]. According to [5],
LiDAR sensing is basically remote sensing technology that emits a laser light beam with defined
intensity and focus and measures the reflected beam arrival time detected by the photodiodes
(PD) within the sensor. LIDAR sensors are capable of measuring distances to obstacles around
them. As part of the YDLidar user manual provided by its manufacturer, instructions are
provided about how to set up this sensor to work with Linux version working in this case over a
Raspberry Pi 3b+, in particular we installed a Raspbian operating system. Although this manual
specifies that it is only compatible with Linux Ubuntu 18.04, we tested YDLidar on Raspbian
obtaining acceptable results.

Figure 4 has been included in order to depicts devices connections. The YDLidar X2 uses a

UART which facilitates the communication of its measurements to USB ports, consequently,

we attached the Lidar sensor to a Raspberri Py 3b+ USB port which is represented as the C-
port in Fig. 4. A 12 Vdc battery is used to supply two L298N H-bridges as well as a LM2596S
regulator which regulates 5Vdc to supply the Raspberry pi3b+. According to depicted in Fig. 4
suitable Raspberry pi 3b+ gpio ports was connected to the control inputs of the H-bridges in

order to drive the four robot dc motors.

USB Power Input

- L
Out 1 (+) (_)

Out 3

Note: The arrow labels point to the
device that the signal is coming into.

Figure 4. Block diagram about used devices.

The block diagram shown in Figure 4 provides an overview of the general operation of the

proposed general system. By following the block diagram, we can see that LIDAR

measurements are sent directly to the Raspberry pi 3b+ which processes the corresponding
information to calculate control actions that correspond to PWM (Pulse Wide Modulation)
signals for its application to two H-bridges that transfer energy to DC motors.

The Raspberry Pl 3B+ microcomputer has a software application developed in the Python 3
programming language to control the navigation of the mobile robot. The programmed
application is based on object-oriented programming concepts. The software application aims
to control the movement of an autonomous robot according to the LIDAR sensor (YDLidar)
detections to avoid obstacles by modifying the speeds of the robot motors.

In Figure 5 we show a flow chart which is included to describe the software application workflow,
in accordance, after it starts an initialization subprocess is attended, during the initialization
subprocess the LiDar sensor and g-pio ports are initialized. After the initialization subprocess,
it is verified so that if some error is reported from the LiDar or even the gpio ports then the user
has to verify correct connections and correct if it is necessary. If all devices report successful
initialization then the OOP (Object-oriented programming) navigation subprocess is attended
until it is requested to stop the application at all. When it id stop the application, dc motors and

the LiDar are deactivated. OOP navigation subprocess will be detailed later.

devices
inivahed

Verify

conditions

Figure 5. General flow chart.
Before to detail the working regarding the OOP subprocess included in flowchart at Fig. 5, let
us to explain to mode in which we have undertaken our tests, in accordance with a first step,
we allocate the prototype between two obstacles at its frontal and rear sectors, this situation is
represented in Fig. 6.
After the robot is positioned like depicted in Fig. 6 then the algorithm represented in Fig. 5 is
enabled to run and once all devices are successfully initialized, the OOP navigation subprocess

is attended.

I Frontal obstacle

Rear obstacle

Figure 6. Start position of the robot prototype.

OOP navigation subprocess is detailed in the flowchart in Fig. 7, in this subprocess at first the
LiDar lectures are got to verify the presence of some obstacle at its front, if not, the robot is
moved forward until it is detected some obstacle at least at 15cm in front, such that the robot is
moved backward until it is detected some obstacle at least at 15cm in back, subsequently it is
delivered the manual operation to the user.

The manual operation subprocess depicted in flowchart in Fig.7 is detailed in Fig. 8, in
accordance, once the manual operation is delivered to the user the robot stops and proceeds
to keep waiting for the pressing of a key from a remote keyboard our case we used the keyboard
arrows to control manually the prototype, consequently up arrow determines the forward
displacement, back arrow determines the backward displacement, left arrow determines the

turning left, The right arrow determines the turning right and finally if the key “p” is pressed then

the robot stops and even all application is closed.

Y

4
[Get LiDar lectures]

frontal
obstacle

Not:

Yes

Maove back Not

_D:

rear
obstacle

Yes

Manual
operation

...I--

Figure 7. Flow chart regarding the OOP navigation subprocess.

Flow charts allow to explain in sequence the working of our approach, however it in suitable to
mention the corresponding role of the object-oriented programming. Figure 9 represents the
classes that we used, accordingly, we implemented three classes which were denominated
Car, Motores and MyLidar. The Car class has a method to run ordered the required method

from another classes.

"

|

i Mot
A

‘ Wait for keyboard command ’

Nu[ﬁ' Nnt—¥
@J NUt_P YES’
Yes
Y

+ Yes Yes Yes Yes

Y Y Y
‘ Forward | ‘ Backward I ‘ Turn left | | Turn right ‘

Figure 8. Flow chart regarding the OOP manual operation subprocess.

Taking into account that python3 allows the importing of methods from another modules, again
from depicted in Fig. 9, in the class Car the object lidar belongs to the MyLidar Class whereas
the object controlMotor belongs to the class Motores, The Car class has the attributes front
obstacle and rear obstacle, as wheel the methods get_frontobstacle() and get_rearobstacle(),
get_frontobstacle() notifies when an obstacle is present at front of the vehicle and
get_rearobstacle() notifies when an obstacle is present at rear of the vehicle. The method
controlCar() is used to operate manually the prototype. Getter methods in class Car use the
method get data() in the class My_Lidar in order to get the measurements corresponding to

those depicted in Fig. 6.

Car

lidar: MyLidar
controlMotor: Motores
frontobstacle: bool
rearobstacle: bool

get_frontobstacle()
get_rearobstacle()
controlCar()

MylLidar

motor_right_front: Motores
motor_left front: Motores
motor:right_rear: Motores get data()
e motor:right_rear: Motores

forward()
backward()
turn_right()
teurn_left()
stop()

Figure 9. Classes diagram.

In Fig. 9 Class Motores has the objects motor_right_front, motor_left front, motor:right_rear
and motor_right_rear that corrspond to dc motors assembled fro the prototype, subsequently
that class Motores has the methods forward(), backward(), turn_right() turn_left() and stop(), in
accordance when in the class Car the method controlCar() runs, suitable signals are applied to
the H-bridges to drive the four motors.

Figure 10 depicts the angular sense in which the LiDar sensor reports its measurements, in
accordance the LiDar reports the distance measurements also reporting the angle in which
each distance was measured, correspondingly for the left side distance measurements also

reports angles «, such that 0 < a <m while for the right side reported angles are —0>a>m.

+7/y

Figure 10. Angular sense in which LiDar sensor reports its measurements.

The figure 11 illustrates the front and rear regions of the robot, as well as the initial position for
our tests, therefore, in the front there is a wall as an obstacle, while in the rear there is another
obstacle. Figure 12 shows an image while the mobile robot moves forward during corresponding
task described in flow chart in Figure 7. Figure 13 shows an image while the mobile robot moves
backward during corresponding task described in flow chart in Figure 7. Figure 14 shows an
image while the mobile robot moves under manual operation during corresponding task

described in flow chart in Figure 7.

Front

Rear

Figure 11. Front and rear regions of the mobile robot

Figure 13. Mobile robot moving forward

Figure 14. Mobile robot moving during manual operation

3. Conclusions and Future works

The described mobile robot was operated using remote access to the Raspberry Pi 3b+ in the
robot, as a future work we are looking for the usage of a remote graphical user interface since
currently we are accessing just the Raspbian terminal to control the robot.

According to initial demonstrations to OOP students, we consider that our approach has shown

promising results since we noted that initial OOP concepts like objects, attributes, methods, and

access modifiers were adopted more quickly in comparison to experiences in the past without

a robot, noting that in the most of students, happiness during the learning was expressed.

Acknowledgments

The authors acknowledge the academic and administrative communities at Universidad Distrital

Francisco José de Caldas as they are always willing to support the development of innovative

research strategies. The researchers would like to express their gratitude to Fabian Yesid

Martinez, a brilliant industrial mechanic, who assisted us greatly in building the mobile robot

structure.

References

[1]

[2]

[3]

[4]

[5]

0. 0. Ortiz, J. A. Pastor Franco, P. M. Alcover Garau and R. Herrero Martin, "Innovative
Mobile Robot Method: Improving the Learning of Programming Languages in
Engineering Degrees," in IEEE Transactions on Education, vol. 60, no. 2, pp. 143-148,
May 2017, doi: 10.1109/TE.2016.2608779

D. N. A. Jawawi, R. Mamat, F. Ridzuan, M. Khatibsyarbini and M. Z. M. Zaki, "Introducing
computer programming to secondary school students using mobile robots,"” 2015 10th
Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 2015, pp. 1-6, doi:
10.1109/ASCC.2015.7244750.

Rodriguez Corral, J. M., Morgado Estévez, A., Cabrera Molina, D., Pérez-Pefia, F.,
Amaya Rodriguez, C. A., & Civit Balcells, A. (2016). Application of robot programming
to the teaching of object-oriented computer languages. International Journal of
Engineering Education, 32 (4), 1823-1832.

Moran-Borbor, R., Galvis-Roballo, V., Nifio-Vega, J., & Fernandez-Morales, F. (2021).
Desarrollo de un robot sumo como material educativo orientado a la ensefianza de
programacién en Arduino. Revista Habitus: Semilleros de investigacion, 1(2), e12178.
https://doi.org/10.19053/22158391.12178

Alam Bhuiyan, Ifte Khairul. (2017). LIDAR Sensor for Autonomous Vehicle.

https://doi.org/10.19053/22158391.12178
https://doi.org/10.19053/22158391.12178

10.13140/RG.2.2.16982.34887/1.

[6] Borrero-Guerrero, H., LoOpez-Aguilar, J. J., Orduz-Garcia, A., Barrero, S. V., y
JutinicoAlarcon, A. L. (2023). A differential drive mobile robot controlled by using the
robotics operational system (ROS). Vision electronica, 17(2).
https://revistas.udistrital.edu.co/index.php/visele/article/view/21881.

https://revistas.udistrital.edu.co/index.php/visele/article/view/21881
https://revistas.udistrital.edu.co/index.php/visele/article/view/21881

