
4 Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

DEFINICIÓN DE ESTADOS EMOCIONALES EN SISTEMAS DINÁMICOS

DEFINITION OF EMOTIONAL STATES FOR DYNAMICAL SYSTEMS

Danilo Rairán A.1 

Resumen: 
Este trabajo presenta una forma de lograr sistemas adaptables y autó-

nomos, con el propósito de emular inteligencia en máquinas, de ma-

nera que estas puedan verse como entidades que tracen sus propios 

planes y los sigan. Sin embargo, el enfoque del artículo no es mostrar 

la construcción de humanoides, sino que es presentar mejoras en el 

control de cada actuador en una máquina, esto como primer paso 

para tener dispositivos inteligentes. El trabajo de cada algoritmo de 

control es el tomar decisiones para fi jar la dinámica del sistema que 

dirige en un valor llamado referencia. En este sentido, el autor asocia 

descubrimientos recientes en neurociencia y psicología acerca de la 

importancia de las emociones en el proceso de toma de decisiones 

con el trabajo de los controladores. Como resultado, se defi ne y prue-

ba un grupo de emociones básicas que deberían tener los controla-

dores.
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Abstract:
This work is part of new scientifi c attempts 

of having adaptive and autonomous systems. 

That is useful to improve the intelligence of 

machines in order to have capable entities 

to trace their own plans and to follow them. 

Even though the focus of the paper is not to 

build humanoids but to improve the control 

of every actuator in a machine, which would 

be the fi rst step to have intelligent devices in 

a down-up approach. The work of every con-

trol algorithm is to make decisions in order 

to fi x the dynamic of a system on a defi ned 

reference value. The author of this paper 

associates recent discoveries of neuroscien-

tists and psychologist about the importance 
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changes or learn from them. The internal 

scenario includes faults and changes in the 

attributes of the system. 

An autonomous system is a system that per-

forms tasks in an unknown environment wi-

thout human supervision. This requires ma-

king decisions to evaluate the current state 

and ideal situations, and determining what 

is desirable and what to avoid [2]. Examples 

of applications where adaptive and autono-

mous systems are needed are: (1) planetary 

explorations and (2) motion in environments 

harmful to humans. These include robotics 

such as unmanned aerial vehicles (UAV), 

which can also be ground or aquatic vehi-

cles [3].

A big challenge for these machines is to de-

termine how to get from a point A to point 

B, while within an unknown and changeable 

environment. The general way to deal with 

it is called motion planning: a route is tra-

ced and the machine must track it as close 

as possible. This tracking means changing 

the reference point for every actuator ade-

quately, e.g., motors or hydraulic cylinders. 

Therefore, each physical variable—such as 

speed and position—must be set at specifi c 

values constantly in order to follow a precise 

path [4].

As in the motion of the UAV, each of the 

robot’s actuators must determine how to go 

from an initial state to a desired fi nal state, 

for example from zero speed to the nominal 

value. Therefore, the same problem obtains 

at a low level: machines do not have enough 

intelligence to make their own decisions or 

to follow their own plans. So solving the low 

level problem (i.e., making more intelligent 

controllers) is a good approach to solving 

the high level problem, that of the entire ma-

chine.

of emotions in the decision-making process 

with the task of controllers. As a result a 

group of basic emotions are defi ned as well 

as tested. 

Key Words:
Control Systems, Decision-Making Proces-

ses, Emotions, Non-linear Systems.

1. Introduction

Current machines cannot follow their own 

plans: they are programmed. To avoid losing 

control, redundant systems and protections 

are necessary because even the machine’s 

operation can damage its own integrity. In 

addition, the complexity of machines has 

been increasing, but intelligence has not 

evolved at the same pace. Some solutions 

have been proposed in areas such as compu-

tational intelligence, which use techniques 

like fuzzy logic, neural networks, genetic 

algorithms, swarm intelligence and artifi cial 

immune systems in order to create more 

intelligent programs [1]. However, it is not 

possible to say that there is an industrial 

system capable of being conscious of itself, 

deciding what to do, and defi ning its own va-

lues and goals.

It is better to divide the problem—complex 

machines without enough intelligence—

and to seek solutions from different bran-

ches of science. For instance, this work 

considers only two subproblems: adapta-

bility and autonomy. About adaptation, two 

scenarios may be observed: the external 

and internal system. The external scena-

rio takes into account changes in the envi-

ronment; if the changes occur very slowly, 

then the machine may not notice them; in 

contrast, if they happen very fast, there 

may not be enough time to adapt to the 



6

DANILO RAIRÁN A.

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

Clearly, the human body is a highly adap-

tive and autonomous entity in nature; hu-

mans inhabit diverse regions of the world, 

gain experience, learn, associate concepts, 

and make decisions that are useful to 

survival and reproduction. Humans have 

transformed the environment to serve own 

purposes and plans, and reasoning is undo-

ubtedly one of the most powerful tools in 

that process.

Engineering has designed controllers based 

logical components, such as mathematical 

functions, which result in rigid algorithms 

known as hard computing. Psychologists 

and neuroscientists have proved that is not 

possible to reason properly without emo-

tions. Emotions play an important role in 

long term memory and learning; in addition, 

they are essential in the human decision-ma-

king process [5]. 

The hypothesis of this work is that including 

emulated emotions in control algorithms 

would make them adaptive and autonomous. 

This should allow them to trace their plan to 

reach a desired value, the reference signal, 

without human guidance even when the en-

vironment changes.

2. Computational Models of Emotion

Researchers in cognitive science and related 

areas have proposed several computational 

models of emotions; these are useful to dem-

onstrate or refute theories about emotions. 

For example, one of the most complete 

models, based on neuroscience, studies the 

interaction between attention and memory 

[6]. Other models represent the cognitive 

process of decision making, especially ap-

plied to robotics or virtual agents [7-13]. 

Two of them have been used in controlling 

dynamical systems, in a way similar to the 

model proposed in this paper. The fi rst mod-

el applies neuronal nets in implementing the 

control algorithm [14].

The second model is more relevant, though 

it was not originally designed for adaptive 

control. In this model authors seek to re-

produce the emotional learning occurring 

in the amygdala, and the relation of the 

amygdala with the orbitofrontal cortex 

[15]. Their equations represent the con-

nections among elements, and the work of 

each component is reduced to comparisons 

and to the four basic arithmetic operations. 

It provides a helpful algorithm for real time 

applications.

 

In this section, a continuous model of emo-

tions is taken. There exist theories that 

assume that emotions are discrete; these 

theories create sets out of basic or principal 

emotions. Viewing emotions as being dis-

creet has inspired several engineering appli-

cations; some of its theorists include: Robert 

Plutchik, Paul Ekman, and Nico Frijda, who 

have defi ned eight, six, and six basic emo-

tions, respectively. In control, some studies 

based on discrete emotions make use of an-

ger and fear in search algorithms as well as 

in generation of autonomy [16, 17].

Against the discreet theories of emotions, 

the continuous theories focus on two as-

pects: one known as the appraisal theory 

and the other as the dimensional theory of 

the affection. The two main authors of the 

fi rst theory are psychologists Richard La-

zarus and Craig Smith. They seek to defi ne 

emotions as the result of evaluating a situa-

tion; this explains why the same condition 

activates a variety of emotions in the same 

person, according to the context, or triggers 

different emotions in different people.
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The defi nition of emotion takes into account 

the suddenness of a situation, the impor-

tance of the goal that is being sought, the 

control that can be gained from the situa-

tion and the available energy, among other 

aspects. Documents have been proposed us-

ing from fi ve to sixteen variables [18]. Cur-

rently, some work has been done in support 

of this theory from neuroscience and it is 

complemented with the use of the nonlinear 

dynamic systems theory in the generation of 

a computational model of emotions [19].

The second point of view regarding the con-

tinuous theories of emotions is the dimen-

sional theory. This was proposed by Russell 

in 1980, who measured emotional states in 

human beings by means of two variables: 

valence and arousal. Valence indicates the 

emotional experience from positive states 

such as happiness, to the negative ones such 

as anger. Arousal ranges from inactive such 

as sleepiness, to very active ones such as ex-

citement [20]. When Russell measured such 

dynamical states, he represented them on 

a Cartesian coordinate system with the va-

lence on the horizontal axis and the arousal 

on the vertical axis. Therefore, emotions oc-

cupied a circular region, and that is why this 

proposal is known as the Circumfl ex Model 

of Affect. Although this theory was proposed 

by psychologists, in the last years, it has also 

been supported by neuroscience [21].

Based on the Circumfl ex Model of Affect, a 

great many contributions have been made 

to medicine, psychology, language analysis, 

and music, among other fi elds. Recent work 

includes the measurement of emotional 

states in order to change screen colors on 

a mobile phone [22], and the measurement 

of emotional states in a player to alter the 

characteristics of a video game [23]. Anoth-

er work in robotics is the design and con-

struction of EDDIE (An Emotion-Display 

with Dynamic Intuitive Expressions). This 

robot regulates the action of servomotors, 

which control the movement of ears, eyes 

and mouth in the generation of emotional 

expressions [24]. From the analysis of this 

application, they concluded that the dimen-

sional theory is useful in building a control 

strategy based on emotions. It has a continu-

ous evaluation of emotions and it is easy to 

implement. As can be seen, the value of the 

model has been demonstrated in a diverse 

range of scientifi c fi elds.

3. Mathematical Basics 

The dynamical system to be controlled must 

be described by means of a non-linear differ-

ential equation. The phase plane is a didactic 

math tool used to study the system [25]. It 

divides a second order differential equation 

into two equations, so an additional depen-

dent variable might be defi ned. Usually all 

that is used is the fi rst derivative of the out-

put. For instance, the speed is the intermedi-

ate variable when the output is the position.

Equation (1) is an example of a non-linear 

system. It is rewritten as two state equations 

in (2), which y(t) is the output of the system, 

v(t) is the rate of change of y(t), and u(t) is 

the input.

 
(1)

 

(2)

The phase plane method draws a vector 

fi eld. It associates a vector to every pair 

(y(t),v(t)). The horizontal component of the 

vector is v(t) and the vertical one is dv(t)/dt, 
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it should also determine when, how much 

and how long it takes.

A phase plane “landscape,” i.e., the vector 

fi eld, is transformed when the actuating sig-

nal, u(t), changes. It implies that attractors 

change their position or even disappear from 

the scene. Therefore, the work is to modify 

the landscape adequately, forcing the mo-

tion of the system (the line in the fi gure 1) 

to reach a desired point.

4. Reference Model Definition 

Having summarized a general control sys-

tem, it is time to explain the particularities 

of emotion based control. First the referen-

ce signal is described. It should be designed 

to avoid rough transitions because it means 

Figure 1.  Motion of the Non-linear System in the Phase Plane. The arrows are the vector field of the system 
described by (2), with u(t) = 0. First values, marked with crosses, are defined at t = 0s, while dots 
are the last duples, at t = 15s. In this case, the continuous line shows how the system by itself 
reaches a different attractor according to its initial condition.

-1 -0.5 0 0.5 1-1

-0.5

0

0.5

1

y(t)

v(
t)

 

as described in (2). Each arrow indicates the 

tendency, so (y(t+Δt), v(t+Δt)) can be predic-

ted by means of the current values of y(t) 

and v(t). Figure 1 illustrates two solutions to 

the non-linear system in equations (1) and 

(2). It can be seen that different sets of initial 

conditions lead the system towards different 

attractors.

A controller takes into account the desired 

value y(t), which is called the reference va-

lue, or r(t), as the main goal. If the reference 

does not change, then the desired v(t) will 

be null. The control algorithm should make 

decisions in order to transform current y(t), 

into the desired r(t). There is only one way 

to do it, and it is by varying u(t). The algori-

thm can only make three possible decisions: 

increasing, decreasing or maintaining u(t). 

However, in addition to these three options, 
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an infi nite rate of changes which are diffi -

cult to deal with mathematically. So original 

r(t) goes through a low-pass fi lter to even 

the reference. This fi lter is called Reference 

Model - RM.

The Reference Model puts together all the 

technical constraints that the overall system 

must accomplish, for instance an adequate 

peak response, a maximum settling time or a 

certain rise time. There are at least two models 

that satisfy the constraints and have been well 

tested (these are Bessel and ITAE [26]). The 

fi rst one has zero overshoot, and the second 

one is optimal regarding energy consumption. 

If the type was already selected, what remains 

is to determine the settling time. 

RM is an important component for the con-

trol architecture because it does not only 

Figure 2. System behavior goes after the Reference Model. The RM’s Transfer function is 1/(S2 + S + 
1), and the system is 1/(S – 1), in addition,  unitary feedback is used, as well a classical 
PI controller with P = 2, I = 2. The simulation time is 6s, and the initial condition is (0,0). 
Vector field is omitted intentionally to improve clearness.
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produce smooth transitions, but it is the 

way to “teach” the system how to “behave”. 

It is the mentor, and everything is measu-

red having its behavior as the target or the 

ideal. The fi gure 2 shows an unstable sys-

tem which becomes stable when it follows 

RM. A classical PI controller measures the 

distance between y(t) and RM output, and 

feeds the system proportionally. 

A remarkable characteristic of the dynamic 

of the system is evident when X and Y axis 

labels are ignored. It looks like the system 

is chasing the RM, like a predator chases 

its prey. The reference model knows whe-

re to go, i.e., the reference point, while the 

system follows the RM. Therefore a perfect 

controller is one that forces the system to 

be just one step behind the RM. In other 

words, the system’s goal changed from 
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reaching the reference point to having the 

same dynamic of the RM.

Pursuit-evasion actions have been consi-

dered for solving problems in evolutive 

computing, network security, motion plan-

ning (e.g., missile tracking systems) and 

cooperative robotics, among other fi elds 

[27-29]. In this case, there is an important 

simplifi cation which comes from the eva-

der behavior. It does not try to escape, on 

the contrary, it seeks the reference point 

and simultaneously acts as a mentor to the 

dynamical system which follows it.

Having defi ned the continuous nature of 

the process by (1) and (2), a geometric 

approach is selected to measure the dis-

tance from the system to the RM. In the 

fi gure 3 there is a snapshot of the dynamic 

at unspecifi ed time t. It has an ideal ten-

dency for the system, which must fall into 

the line of sight between the RM and the 

system. Although this is not the exclusive 

defi nition, it is the simplest. For example, 

a predictive algorithm would consider the 

ideal tendency towards the direction of the 

RM vector.

5 Definition of Emotions 

The ideal emotional state for solving hard 

problems has been identifi ed as the state 

of being calm. In brief, the more complex 

the task, the lower the level of emotional 

arousal that can be tolerated without inter-

fering with the system’s performance. This 

is well known as the Yerkes-Dodson law 

[30]. So the ideal tendency is translated as 

calmness. It means that the goal of the new 

algorithm is to reach calm, avoiding other 

Figure 3.  Vector definition according to pursuit-evasion problem. The relation between line-of-sight and 
tendency of the system is useful to evaluate how close the system is to the ideal tendency. That 
can be labeled Alpha Angle for now, but it will be related to emotional state definition.

y(t)

dy(t)/dt 
Reference Model

System 
RM Tendency

Tendency 

Ideal T. 

Worst case 
Alpha Angle
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emotions. The next step is then to defi ne 

all emotional states that a controller can ex-

perience.

It is essential to say that a controller does 

not need all the range of emotions that are 

felt by humans, but just an adequate range 

which helps to perform the control task. 

This range can also be used in the learn-

ing and decision-making processes. In this 

work, it is assumed that there will not be 

emotional illnesses or behavioral disorders, 

such as stress, phobias, manias, and so for-

th. It is guaranteed because the controller 

just experiences one emotion at each mo-

ment; it is also limited to the same task all 

the time; and, fi nally, the controller expe-

riences only a selected group of emotions 

and not all of them.

To defi ne all the emotional states, there is 

an imaginary situation where a person con-

trols a process, and he/she has experien-

ced diffi culties, challenges and results. For 

instance, a person is happy when his/her 

plans are working as expected; if not, he 

may be afraid. See Table 1 for defi nitions 

of emotional states. Emotions ranging from 

calm to anger are a function of instant beha-

vior, without considering previous or future 

states. However, sleepiness and relaxation, 

or annoyance and frustration, depend on 

how long the controller has experienced 

calm or anger, respectively.

Notice that the defi nitions in Table 1 are 

not fully detailed. For instance, there is not 

any angle, range of time, or scale indicated. 

This is because the algorithm will have the 

Emotion Definition

Sleepiness The plan has worked for a long time, and everything looks steady

Relaxation When zero alpha has been reached and nothing has changed for certain 
time

Calm Zero alpha has been reached, or the angle is small

Satisfaction The goal, zero alpha angle, has not been reached yet, but it is permissible

Happiness At least, the distance between system and RM is decreasing. It is going to take 
some time to reach the ideal angle, but it is possible

Excitement The system does not increase or decrease, but maintains the ratio between RM 
and system, so it oscillates around RM

Fear Alpha angle says that the ratio between RM and system is increasing

Anger This is the worst case scenario. System tendency is directed to the contrary of 
ideal, so it looks like that the goal is never going to be achieved

Annoyance The controller has experienced anger for some time

Frustration It has not been possible to change the system behavior. Ratio between referen-
ce signal and system has exceeded some maximum value.

Table 1. Emotional State Definition
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ability to change them to more convenient 

values according to its own experience, but 

this is out of the scope of this paper. Some 

predefi ned values are: calm has a null alpha 

angle, satisfaction is initially fi xed at an 

alpha angle equal to 30°, happiness is found 

at 60°, and excitement is exactly at 90°; fear 

is at 135°, and anger at 180°.

6. Simulation and Analysis 

The following paragraphs describe each 

emotion. Simulations have been done 

using an unstable system H(S) = 1/(S – 1), 

which is controlled by a classical PID, with 

unitary feedback. The reference signal is a 

step function, and initial conditions are y(0) 

= 0, and dy(0)/dt = 0. In addition, the output 

signal of the reference model is rm(t). 

Figures 4 to 7 have four graphs each. The 

left side shows one emotion and the right 

side another. The upper fi gure illustrates 

the behavior in time, and the lower graph is 

a graph in polar coordinates where emotions 

are presented. The angle in polar coordina-

tes is alpha, the radius is the absolute value 

of the distance between rm(t) and y(t). The 

fi gure 4 shows a system which moves away 

from the reference; the difference between 

the left and right fi gures is the speed.

Anger, shown on the left side of the fi gure 

4, begins at 3s, where the slope of y(t) is 

maximum, so the radius increases to reach 

the value 200 in 15s. The fi gure at the right 

side begins at 0s, but fear is experienced af-

ter 2s. The slope is lower than in the case of 

anger, and the highest difference is 1.25 at 

Figure 4. Anger and Fear. The Reference Model for both emotions is 1/(S2 + 2S + 1). Anger is on the 
left side, with P = 0.2, I = 0.2, D = 0. Fear is on the right side, with P = 0.9, I = 0.3, D = 0.
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4s. Even when the radius changes, the ten-

dency is held, therefore the emotion does 

not change for the simulation time. Emotion 

defi nition takes into account only current 

tendency, not the difference between rm(t) 

and y(t).

Excitement and happiness are simulated in 

the fi gure 5. Excitement is the most impor-

tant emotion because it defi nes the limits bet-

ween stable and unstable behaviors. When 

the step signal appears at 0s, the emotion is 

negative, because the RM moves towards 

the reference value, while the system stays 

still due to its inertia.

Then, the controller works and corrects, 

so the system follows the reference model. 

This implies a positive emotion, for example, 

happiness or satisfaction, but in the border 

excitement is found. Excitement is the point 

where the system stops moving away and 

begins to follow the RM. The way to achie-

ve stability is by making sure that the con-

troller experiences more positive emotions 

than excitement. In other words, to have 

alpha angles smaller than 90°. 

The right side of the fi gure 5 illustrates 

happiness: the controller is excited at the 

outset, t=4.5s, then by means of the actua-

ting signal the emotion turns to happiness 

at alpha angle 60°. The controller experien-

ces this emotion until rm(t) and y(t) have 

the same value, at 7.3s, then a negative 

emotion appears, because y(t) moves away, 

Figure 5. Excitement and Happiness. The Reference Model for both emotions is RM(S) = 1/(S2 + 2S + 
1). Excitement is on the left side, with P = 1, I = 1, D = 0. Happiness is on the right side, 
with P = 1.5, I = 1, D = 1.
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but it is not visible in the polar coordina-

tes due to its having a very small radius. 

The fi gure 6 depicts satisfaction and calm, 

which are the most desirable states. Those 

emotions mean that the actuating signal is 

working as desired, so the system moves to 

reach the RM.

Figure 7 shows an example of a controller 

that is well tuned on the left side, in con-

trast with an undesirable performance on 

the right. On the left side is shown a desi-

red system behavior. It results from the dis-

tribution of emotional states and depicts an 

appropriate relation between the reference 

model defi nition, the system, and contro-

ller efforts; the states oscillate but make 

smooth profi les. Once the overshoot has 

been reached, the error decreases and the 

system gets at a steady state at 13s.

Although the steady state is reached at 10s, 

on the right side of fi gure 7, the control tu-

ning is not adequate because emotional sta-

tes jump from the most positive side to the 

most negative side; this forces the actua-

ting signal to change abruptly, increasing 

the possibility of having an unstable per-

formance. The work of the actuating sig-

nal can be interpreted as making reactive 

decisions or trying to avoid a disaster, but 

not following a plan to match the dynamic 

of the system with the RM.

There are three possible explanations for 

the system performance on the right side 

Figure 6. Satisfaction and Calm. The Reference Model for both emotions is 1/(S2 + 2S + 1). Satisfac-
tion is on the left side, with P = 2.5, I = 1, D = 1. Calm is on the right side, with P = 10, 
I = 1, D = 1.
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of fi gure 7. First of all, the RM is much fas-

ter than the system. Second, the RM has a 

lot of oscillations, so even if the system were 

stable, the polar coordinates would show 

that the emotion changes as well as the RM. 

Finally, the system cannot satisfy the cons-

traints set by the RM, because it is slower 

than the RM. There are three solutions, one 

for each problem: to test a slower RM, to use 

standard confi gurations for the RM (for ins-

tance Bessel or ITAE), and not to force the 

system more than feasible.

7. Conclusion

It has been proved that the dynamic of a 

system can be seen as a set of emotional 

states, and they each have a unique and 

well-defi ned relation between the Referen-

ce Model and the tendency of the system. 

However, it is not necessary to experiment 

with all the repertory of human emotions, 

only an adequate group of them. In this pa-

per the range from calm to anger has been 

adopted, taking into account the order gi-

ven for the Circumplex Model of Affect. 

Tiredness, depression and sadness are not 

included as a result of the adapted range. 

This is useful to avoid unstable behaviors 

or unsatisfactory dynamics. Lastly, calm 

has been defi ned as the most desirable sta-

te due to psychologists have demonstrated 

that calm is the best emotional state to per-

form cognitive tasks.

Figure 7. Good and bad control tuning. The Reference Model in the left side is 1/(S2 + 2S +1), and 
the PID controller constants are P = 1.75, I = 1, D = 0. The Reference Model in the right 
side is 64/(S2 + 4S + 64), and the PID constants are P = 2.5, I = 2.5, D = 1.
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The Reference Model is fundamental to the 

control algorithm. It has two jobs: to be the 

mentor for the dynamical system, and to be 

the reference to measure alpha angle. This 

angle measurement is made considering the 

relation between the line of sight and the 

tendency of the system; furthermore, it has 

been demonstrated that the Reference Mo-

del defi nition is essential in the tuning pro-

cess. It is recommended to use a standard 

linear confi guration such as Bessel or ITAE, 

also it should not be much faster or slower 

than the system. On the one hand the con-

troller is forced more than feasible; on the 

other hand, the control algorithm would be 

underused.

Finally, it is concluded that excitement is 

the most important emotional state for a 

dynamical system. Excitement delimits the 

time when the system leaves to move away 

and begins to go after the Reference Model 

or when it leaves to go after the Reference 

Model and begins to move away. It could be 

used to measure stability because a contro-

lled system is stable when all its emotional 

states are more positive than excitement, in 

other words, when alpha angle is lower than 

90°.

In the next step of the project, defi nitions 

of emotional states are going to be used in 

order to test the decision-making algorithm. 

Therefore, systems to be controlled must be 

selected, for instance, the basic choice is a 

fi rst or a second order systems. In particu-

lar, there will be experiments to measure the 

ability of the controller to force the dynamic 

of the system to be close to the Reference 

Model. This is why classical metrics in con-

trol such as overshoot, rise time and the 

steady-state error can be taken into account. 

Additionally, other measures must be added 

to compute adaptability and autonomy.
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