

59

MÉTODO PARA LA EVALUACIÓN DE UN MICROCONTROLADOR DE NÚCLEO ABIERTO

METHOD FOR ASSESSMENT OF AN 8-BIT OPEN CORE MICROCONTROLLER

Sibilla B. Luz1

Christophe F. L. Bricout2

Ricardo P. Jasinski3

Volnei A. Pedroni4

Resumen:
La etapa de verifi cación desempeña un papel fundamental en el diseño

e implementación de microcontroladores. Con el fi n de realizar una ve-

rifi cación acertada del diseño, son utilizadas algunas técnicas de veri-

fi cación funcional tales como: pruebas defi nidas por el diseñador para

verifi car el desempeño ante casos extremos, la simulación a través de

testbenches, y la ejecución de aplicaciones extensas. El proyecto pro-

puesto en este trabajo tiene como objetivo desarrollar e implementar

un método para la evaluación de un microcontrolador de núcleo abier-

to, con la realización de pruebas directamente sobre el hardware. Este

enfoque presenta como ventajas, un proceso mucho más rápido que

otros métodos que emplean simulaciones y menos requerimiento de

memoria para las pruebas. Un Ethernet IP Core ha sido integrado al

proyecto, con el fi n de hacer que el método sea independiente del siste-

ma operativo, de la arquitectura de microprocesador y de la herramien-

ta de diseño.

Fecha de envió: Abril de 2011
 Fecha de recepción: Mayo de 2011

Fecha de aceptación: Agosto de 2011

Palabras clave:
Verifi cación, test bench, microcontrolador,

Ethernet, IP core, VHDL.

Abstract:
The verifi cation stage plays a major role in a

microcontroller design and implementation

project. An extensive series of tests must be

performed looking for possible failures in

the design. For this, some functional veri-

fi cation techniques are used, like manually

devised tests targeting corner cases, simu-

lation using sets of tests, and extensive sam-

ple applications. The project proposed in this

paper aims to develop and implement a me-

1 MSc in Electrical Engi-
neering. Federal Univer-
sity of Technology – UT-
FPR. E-mail: sibillabl@
yahoo.com.br

2 PhD in Micro Systems.
AXP Microeletrônica.
E-mail: christophebri-
cout@yahoo.fr

3 MSc in Electrical Engi-
neering. Federal Uni-
versity of Technology
– UTFPR. E-mail: jasin-
ski@solvis.com.br

4 PhD in Electrical Engi-
neering. Federal Uni-
versity of Technology
– UTFPR. E-mail: pe-
droni@utfpr.edu.br

Revista Visión Electrónica Año 5 No. 2 pp. 59 - 68 Julio - Diciembre de 2011

60

SIBILLA B. LUZ – CHRISTOPHE F. L. BRICOUT – RICARDO P. JASINSKI – VOLNEI A. PEDRONI

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

thod for the assessment of an open-source

microcontroller, with the advantage of run-

ning tests directly on hardware. This appro-

ach makes the process much faster than

other methods based only on simulations.

Moreover, a smaller amount of memory is

required for the tests. An Ethernet IP Core

has been integrated to the project, in order

to make the method independent from the

operating system, microprocessor architec-

ture, and design software. The test code is

then sent through the network, enabling fast

execution of a large number of test applica-

tions, whose output values can be compared

against expected results or results obtained

from simulation. The proposed method is

supplementary to the conventional methods

based on testbenches.

Key Words:
Verifi cation, test bench, microcontroller,

Ethernet, IP core, VHDL.

1. Introduction

Functional verifi cation consists in testing

all functionalities of a design, in order to

guarantee that it operates according to the

specifi cations. It is a very complex task, and

more than half of the computer and human

resources can be dedicated to this purpose

in typical projects [1-3]. If the resulting im-

plementation does not match the specifi ed

features, enormous commercial losses can

easily occur [4].

The verifi cation process usually makes use

of different techniques [5], including tests

from different sources [6-7]. Initially, some

tests are manually devised to target corner

cases. Then simulations are run, including

existing sets of tests. After the hardware is

ready, extensive applications are executed.

Finally, when an exhaustive test set in not

practical or feasible, it is common to use

pseudo-random stimuli. Conventional me-

thods perform all the tests in the simulation

environment, through testbenches. In this

setup, the DUV (Device Under Verifi cation)

test results are automatically compared with

a reference model provided by the user, as

illustrated in fi gure 1 [8].

The proposed method has the advantage

of performing these tests on hardware,

making the verifi cation time considerably

shorter. However, the method can also be

used as a complement to conventional me-

thodologies, seeking better coverage in the

microcontroller functional verifi cation.

Several open-source projects, including mi-

crocontrollers, are available at the OpenCo-

res website [9]. Many of them may be used

in any application, while others present res-

trictions for commercial use.

However, since the available projects are

not commercial versions (the latter under-

go rigorous performance tests), correct

functionality cannot be guaranteed. It is ne-

cessary to perform various additional tests

to guarantee that the implementation has no

errors. After a proper validation, the micro-

controller can be used reliably in different

projects.

REFERENCE MODEL
S
O
U
R
C
E

D
R
I
V
E
R

M
O
N
I
T
O
R

C
H
E
C
K
E
R

DUV

Figure 1. Testbench to functional verification [8].

61

MÉTODO PARA LA EVALUACIÓN DE UN MICROCONTROLADOR DE NÚCLEO ABIERTO

Revista Visión Electrónica Año 5 No. 2 pp. 59 - 68 Julio - Diciembre de 2011

The goal of the proposed method is to fa-

cilitate the verifi cation of 8-bit open-source

microcontrollers. The confi rmation of the

success or failure of the test runs should be

done through self-tests implemented by the

user. However, verifi cation techniques like

pseudo-random stimuli can also be used.

These tests must be provided by the user,

and sent to a test circuit through the net-

work.

2. Microcontroller Selection

The work described in this paper was part of

a larger, industry sponsored project, which

also included the selection of an adequate

8-bit microcontroller under the following re-

quirements:

i) Availability of documentation, describing

the implemented functions and design li-

mitations.

ii) Availability of testbenches.

iii) The project should be an implementa-

tion of an existing, commercial product.

iv) Support tools for software development.

v) Preferably described in VHDL (as requi-

red by the sponsoring company).

vi) It should be a design with recent upda-

tes or corrections.

The fi rst task was to do a search on the In-

ternet, especially in the OpenCores websi-

te, to select the microcontroller to be used.

Thirty-three microcontrollers were analyzed,

trying to select the most complete 8-bit mo-

del, considering the following requirements:

the project should be an implementation of an

existing commercial product; with documen-

tation describing implemented functions and

design limitations; testbenches; software for

data conversion to fi ll the program memory;

project preferably described in VHDL; and,

fi nally, a project with recent updates. Table

1 shows the surveyed designs, along with

all relevant characteristics obtained from the

project websites and source code. Looking at

table 1, one sees that not all projects contai-

ned documentation, making it very diffi cult

to know specifi c details.

Another important requirement is the avai-

lability of testbenches, which help unders-

tand the core operation, inspect simulation

waves, and check signals and buses. Even

though the majority of projects have test-

benches, some are implemented in Assem-

bly, not in a hardware description language.

These software tests perform tasks such as

printing of messages on a serial port, calcu-

lations, or reading a section of memory, and

cannot be called proper testbenches.

In some cases, the MCUs had no equivalent

commercial model. The JOP project, for

example, implements a JVM (Java Virtual

Machine) as a machine in hardware. Ano-

ther example is the CPUgen project, which

generates customizable RISC processors.

A data conversion utility is necessary to

convert the implemented code in a format

that can be used as the program memory.

In some projects, such as the AVR_CORE,

the converter generates, from a hex fi le,

a VHDL fi le containing descriptions for a

PROM (program memory) entity and archi-

tecture.

Among all surveyed candidates, four proces-

sor models were selected, with one or more

implementations available for each of them.

The selected microcontrollers included the

Intel 8051, Zilog Z80, Motorola 6805, and

Atmel AVR.

62

SIBILLA B. LUZ – CHRISTOPHE F. L. BRICOUT – RICARDO P. JASINSKI – VOLNEI A. PEDRONI

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

Table 1. Evaluted microcontrollers.

A more detailed examination of the docu-

mentation and code and a brief operation

test were performed with the objective of

selecting the fi nal candidate. Eventually, the

AVR_CORE was chosen [10]. This project is

recent, described in VHDL, takes little FPGA

space, has free C and Assembly compilers,

and also a converter software (hex to vhdl)

for the program memory. On the downside,

it does not have testbenches.

Pr
oj

ec
t

A
rc

h.

C
om

. M
od

el

M
an

uf
ac

tu
re

r

D
oc

.

Te
st

be
nc

he
s

La
ng

ua
ge

C
on

ve
rt

er
1

68hc05 8-bit mc68hc05 Motorola No No VHDL No

68hc08 8-bit mc68hc08 Motorola No No VHDL No

AVR_CORE 8-bit ATmega103 Atmel Yes No VHDL Yes

JOP - - - Yes Yes VHDL Yes

RISCMCU 8-bit 90S1200 Atmel Yes Yes VHDL No

System09 8-bit 6809 Motorola Yes Yes VHDL Yes

System11 8-bit 68HC11 Motorola No Yes VHDL Yes

System68 8-bit 6800 Motorola Yes Yes VHDL Yes

T400 4-bit COP420/421e
COP410L/411L

National
Semiconductor

Yes Yes VHDL Yes

Marca 16-bit - - Yes No VHDL No

Risc5x 12-bit PIC12 bit opcode Microchip Yes Yes VHDL Yes

Mlite 8-bit - - No Yes VHDL Yes

CPUgen - - - Yes Yes VHDL No

T51 8-bit 8052/8032 Intel Yes Yes VHDL Yes

T48 μController 8-bit MCS-48 Intel Yes Yes Yes

Tiny64 64-bit - - No Yes VHDL Yes

MiniMIPS 32-bit MIPS I - Yes Yes VHDL Yes

T80 8-bit Z80 e 8080 Zilog/Intel No Yes VHDL Yes

3 AVR_CORE

After selecting the AVR Core project, several

tests were performed on this microcontro-

ller, using different codes written in C and

in Assembly. Most AVR instructions were

tested. Furthermore, some codes were im-

plemented in different sequences of execu-

tion to determine whether any combination

of instructions would cause any error.

1 Software to convert
object file from C or
Assembly compiler to
VHDL file.

63

MÉTODO PARA LA EVALUACIÓN DE UN MICROCONTROLADOR DE NÚCLEO ABIERTO

Revista Visión Electrónica Año 5 No. 2 pp. 59 - 68 Julio - Diciembre de 2011

The model in fi gure 2 shows the se-

quence of operations performed for

implementing the tests before the inte-

gration of the proposed method. First,

the code written in C or Assembly is

compiled. The object fi le generated by

compilation is then used as input to a

converter that provides a fi le containing

the PROM memory entity and architec-

ture in VHDL. The project must then

be rebuilt and the program memory

rewritten.

Figura 2 Formulario desarrollado para leer las variables (Visual Basic).

Figure 2. Original Model.

Pr
oj

ec
t

A
rc

h.

C
om

. M
od

el

M
an

uf
ac

tu
re

r

D
oc

.

Te
st

be
nc

he
s

La
ng

ua
ge

C
on

ve
rt

er
1

AX8 8-bit 90S1200 e
90S2313

Atmel No Yes VHDL Yes

Risc16f84 8-bit PIC 16f84 Microchip Yes No Verilog Yes

PPX16 mcu 8-bit PIC 16C55 e 16F84 Microchip No yes Verilog Yes

TV80 8-bit Z80 Zilog Yes Yes Verilog No

AE18 8-bit PIC18 Microchip Yes Yes Verilog No

C16 8-bit 8080 Intel Yes Yes Verilog Yes

Wishbone
High P. Z80

8-bit Z80 Zilog Yes Yes Verilog No

Aquarius 16-bit CPU RISC
SuperH-2 ISA

Motorola Yes Yes Verilog Yes

OpenRISC 1000 32-bit/
64-bit

- - Yes Yes Verilog Yes

8051 core 8-bit 8051 Intel Yes Yes Verilog Yes

MiniRisc 8-bit PIC 16C57 Microchip Yes Yes Verilog Yes

YACC 32-bit MIPS I - Yes Yes Verilog Yes

S1 Core 64-bit OpenSPARC T1
(Reduced version)

Sun
Microsystems

Yes Yes Verilog Yes

CPU8080 8-bit 8080 Intel Yes Yes Verilog Yes
aeMB 32-bit Microblaze Xilinx Yes Yes Verilog No

Data

Address

PROM AVR_CORE

Text Editor

Conveter

PROM.VHD

AVR_GCC

Object file

file.c or
file.asm

64

SIBILLA B. LUZ – CHRISTOPHE F. L. BRICOUT – RICARDO P. JASINSKI – VOLNEI A. PEDRONI

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

4. The Proposed Method

In the proposed method, the code to be

executed by the microcontroller is sent in

frames via the Ethernet network and stored

in a RAM. After receiving the entire fi le, the

microcontroller executes the memory con-

tents, as shown in fi gure 3.

The PROM contents are not changed, and

contain only data for the Ethernet startup

configuration. The device with the mi-

crocontroller design is configured only

once.

To minimize the design check time, and fur-

thermore make the tests independent from

the operating system, design software, and

processor architecture, Ethernet communi-

cation is utilized. An Ethernet IP Core was

used in the project, also provided by Open-

Cores, which has the Media Access Contro-

ller (MAC) of the Ethernet protocol imple-

mented in Verilog [11].

The Ethernet network provides high speed

data transfer and is available in most opera-

ting systems. Moreover, the user can choo-

se any convenient tool for FPGA program-

ming.

4.1. CIB – Control and Interface Block

The CIB block is responsible for the inter-

face between the Ethernet IP Core and the

AVR_CORE, and it contains the custom

communication protocol implementation.

Moreover, it performs the initial confi gu-

ration of the Ethernet registers (operation

speed, frame size limits, interrupts, frame

discard, etc.).

When a frame containing the code for tes-

ting is received, the CIB records the data

in a RAM. After completing this memory,

the PROM is disabled and the microcon-

troller will execute the instructions from

RAM.

The Ethernet registers are confi gured

through the microcontroller ports A and

B. Port A, shown in table 2, is used for

control and contains the signals used for

reading / writing registers. Port B is used

for data.

Since the available ports are 8 bits wide

and the Ethernet registers are 32 bits

wide, the data transfer must be split into

four parts. For this, a protocol was imple-

mented, where the start signal indicates

the beginning of the sequence. When this

signal is high, it is known that the next

four available values on port B form the

Figure 3. Proposed Model.

AVR_CORECIB

RAM

Ethernet

Text Editor

Converter

PROM.VHD

PROM RAM

PROM

AVR_GCC

Object file

SW

Text Editor

file.c or
file.asm

AVR_GCC

Object file

file.c or
file.asm

St
ar

t

Pr
og

ra
m

 e
nd

St
at

us

- - -

O
pe

ra
tio

n

St
op

7 6 5 4 3 2 1 0

Table 2. Control Port.

65

MÉTODO PARA LA EVALUACIÓN DE UN MICROCONTROLADOR DE NÚCLEO ABIERTO

Revista Visión Electrónica Año 5 No. 2 pp. 59 - 68 Julio - Diciembre de 2011

address, while the next four parts are the

data. The operation bit indicates registers

writing or reading. The stop bit ends the

operations sequence.

Bit 5 indicates the operation status, and can

be changed by the test code to indicate suc-

cess or failure.

To indicate the test code end, bit 6 is driven

high, so instructions will be executed again

from the PROM memory.

After establishing the connection between

the computer and the test circuit, the mi-

crocontroller waits for the arrival of a new

frame.

4.2. Memories Control

CIB also provides the multiplexing for the

memories (PROM and RAM), using PC

address and bit 6 from port A as parame-

ters.

Addresses from 0000H to 01FF are used for

RAM access. Addresses above 0200H are

utilized for PROM access. If bit 6 from port

A is high, that is, the test is over, microcon-

troller executes from PROM.

When a frame has been received, the Ether-

net IP Core generates an interrupt, CIB wri-

tes FFH in port D, so the PC is set to 0008H.

PROM’s chip select is disabled, and from

this point, instructions are being executed

from RAM, as shown in the block diagram

of fi gure 4. RAM addresses between 0000H

and 0007H contain destination MAC address,

source and size of the frame information.

Once the self-test sets bit 6 from port A to

one, indicating that the test is fi nished, the

PROM memory is able and the microcontro-

Figure 5. Frame sent to test circuit.

ller return to execute from PROM, and wait

for a new frame arrived.

4.3. Data Transmission

The program Bittwist is used to send data

to the Ethernet IP Core [12]. This program

uses a packet capture (pcap) fi le obtained

through WinDump, which is a network tra-

ffi c analyzer able to capture and save to hard

disk network packets [13].

To edit the captured packet contents, ano-

ther program, named Bittwiste, is used

[14]. With this editor, payload, source and

destination addresses can be changed. The

Core PC

Core_PC

CS

CTRL

RAM

Data
Out Core_Inst

Out
RAM_Ex

AVR

OK

IP ETH

INT

CIB

PROM

Figure 4. Control Memories Block Diagram.

66

SIBILLA B. LUZ – CHRISTOPHE F. L. BRICOUT – RICARDO P. JASINSKI – VOLNEI A. PEDRONI

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

desired layer and header can be specifi ed

too, among other options. In this project, the

defi ned layer was the Ethernet layer, becau-

se the Ethernet IP Core does not have the

TCP/IP protocol implemented.

Figure 5 shows an example of frame sent to

the test circuit using a network analyzer.

5. Results

The fi rst step after choosing the microcon-

troller was to fi nd more about its operation.

As the AVR_CORE had no testbenches, it

was necessary to provide some simulation

tests. The majority of the AVR instructions

were verifi ed using C and Assembly codes.

All of the tests presented the expected re-

sults.

Before the Ethernet IP core integration,

the CIB block was implemented and tested

along with the AVR in simulations. After va-

lidating the CIB block, the Ethernet MAC

was added to the project.

Because the original intent was to validate

the AVR instruction set, more than 80% of

the documented instructions were tested,

using all of the available addressing modes.

All of the arithmetic, logic, and branch ins-

tructions were exercised, and matched the

expected results in all cases.

The development board, used for testing,

was developed at the UTFPR Microelectro-

nics Laboratory. This board has a Cyclone

II FPGA EP2C8F256C8 and Ethernet PHY

78Q2123. One example of a self-test is pre-

sented in Figure 6, which shows signals cap-

tured with an oscilloscope to test the code

presented in fi gure 7. In this test a register

(r18) is cleared and then incremented 15

times. At the same time, the count value is

replicated in at one of the microcontroller IO

ports (port B). This self-test checks the re-

gister value and compares with the expected

value, if the test is successful bit 5 of port A

receives the value one. The last instruction

sets bit 6 (port A) to one, returning the exe-

cution to the PROM. Bits 5 and 6 are conti-

nuously displayed by LEDs on the develop-

ment board.

Figure 7. Assembly test (LST file).

Figure 6. Test results captured with
a logic analyzer.

Int

PortB[3]

PortB[2]

PortB[1]

PortB[0]

PortA[5]

PortA[6]

.org $0008
000008 ef3f ser TEMP
000009 bb3a out DDRA, TEMP
00000a bb37 out DDRB, TEMP
00000b e04f ldi r20, $0F
00000c e020 ldi r18, $00
00000d 3040 loop: cpi r20, $00
00000e f029 breq check
00000f bb28 out PORTB, r18
000010 954a dec r20
000011 9523 inc r18
000012 940c jmp loop
000013 000d
000014 302f check: cpi r18, $0F
000015 f011 breq ok
000016 e430 ldi r19, $40
000017 bb3b out PORTA, r19
000018 e230 ok: ldi r19,$20
000019 bb3b out PORTA, r19

67

MÉTODO PARA LA EVALUACIÓN DE UN MICROCONTROLADOR DE NÚCLEO ABIERTO

Revista Visión Electrónica Año 5 No. 2 pp. 59 - 68 Julio - Diciembre de 2011

In order to evaluate the performance gain

provided by the proposed method, a test

run with a length of 5×106 clock cycles was

executed in Mentor Graphics Modelsim

simulator, which required 2,262 seconds

(37.7 minutes). When executed in real-time

in the FPGA, using the proposed method,

this same test is run in only 100 ms (for a

clock frequency of 50 MHz). These results

indicate that, in this case, the proposed me-

thod is 22,620 times faster than a simulation

of the same test code.

Table 3 summarizes the increase in logic

resources usage (lookup tables – LUTs –

and memory bits) with the adoption of the

proposed method, as well as the correspon-

ding speed gain in the aforementioned si-

mulation run.

Finally, some faults were inserted in the

microcontroller to demonstrate that the

proposed method is capable of identifying

errors in design. By examining test sequen-

ce outputs, the failing tests were identifi ed

and provided enough information to locate

the fault in the original circuit.

6. Conclusions

The proposed method performs all ne-

cessary activities, without any additional

delays in instruction availability when the

program memories (PROM and RAM) are

multiplexed. Consequently, errors due to

system delays, which could affect the mi-

crocontroller verifi cation, do not occur. All

tests were performed at 50 MHz. The new

test setup provided speed gains of up to

22,620 times compared to the simulation-

only approach.

Additionally, the tests are independent

from the design software, so the user can

choose any tool for FPGA programming.

The project is compiled and the FPGA is

confi gured only once. Differently from

tests using MIF (Memory Initialization

File) fi les, for example, no specifi c tools

are need here.

The tests are also independent from the

operating system because most of them

have Ethernet support. With the use of

Ethernet to receive and transmit the test

code through the network, the verifi cation

time is reduced considerably compared to

traditional methods, which employ simula-

tions.

The proposed method can also be used for

other 8-bit microcontrollers, either RISC or

CISC. It is only required that the microcon-

troller contains three 8-bit ports available.

This method is supplementary and should

be used in addition to methodologies ba-

sed on testbenches in order to achieve bet-

ter functional verifi cation coverage.

Table 3. Synthesis and simulation results.

Original IP Cores
(AVR + Ethernet)

Modified Cores +
Test Control Hardware

Ratio

LUTs 4039 6577 162.8%

Registers and on-chip-memory bits 11010 18426 167.4%

Simulation time 2,262 s 0.1 s 0.0000442%

68

SIBILLA B. LUZ – CHRISTOPHE F. L. BRICOUT – RICARDO P. JASINSKI – VOLNEI A. PEDRONI

Universidad Distrital Francisco José de Caldas - Facultad Tecnológica

References

[1] F. Casaubieith et. al., “Functional ve-

rifi cation methodology of Chameleon

Processor,” Proceedings of 33rd Design

Automation Conference, pp. 421-426,

June, 1996.

[2] J. Kumar, C. Pixley, “Logic and functio-

nal verifi cation in a commercial semi-

conductor environment,” International

Conference on Application of Concu-

rrency to System Design, pp. 8-15,

March, 1998.

[3] J. Bergeron, Functional verifi cation of

HDL models, 2nd ed. New York, NY:

Kluwer Academic Publishers, 2002.

[4] L. Fournier, Y. Arbetman, M. Levinger,

“Functional verifi cation methodolo-

gy for microprocessors using the Ge-

nesys test-program generator,” Procee-

dings of Design, Automation and Test

in Europe Conference, pp. 434-441,

March, 1999.

[5] W. S. Encinas Jr, C. A. Dueñas, “Functio-

nal verifi cation in 8-bit microcontrollers:

A case study,” Proc. of Symposium on

Microelectronics and Devices, SBMicro

2001, pp. 1668-173, September., 2001.

[6] J. Monaco, D. Holloway, R. Raina,

“Functional verifi cation methodology

for the PowerPC 604 microprocessor,”

Proc. of 33rd. Proceedings Design Au-

tomation Conference, pp. 319-324, June,

1996.

[7] M. Kantrowitz, L. M. Noack, “I’m done

simulating; now what? Verifi cation cove-

rage analysis and correctness checking

of the DECchip 21164 Alpha micropro-

cessor”, Proceedings of 33rd Design

Automation Conference, pp. 325-330,

1996.

[8] K. R. G. da Silva, E. U. K. Melcher, G. C.

S. Araújo, V. A. Pimenta, “An automatic

testbench generation tool for a Syste-

mC functional verifi cation methodolo-

gy,” Proceedings of 17th Symposium

on Integrated Circuits and Systems De-

sign, SBCCI 2004, pp. 66-70, September,

2004.

[9] OpenCores, available at: http://openco-

res.org. Accessed: April, 2007.

[10]OpenCores, available at: http://openco-

res.org/?do=project&who=avr _core.

Accessed: April, 2007.

[11] OpenCores, available at: http://open-

cores.org/?do=project&who=ethmac.

Accessed: April, 2007.

[12] A. Y. C. Heng, “Bittwist,” Faculty of

Information Technology, Multimedia

University, 2006. Available at: http://

bittwist.sourceforge.net. Accessed: No-

vember, 2007.

[13] L. Degioanni, G. Varenni, F. Risso, B.

John, “WinDump: tcpdump for Win-

dows,” 2006. Available at: ttp://www.

winpcap.org/windump. Accessed: Nov-

ember, 2007.

[14] A. Y. C. Heng, “Bittwiste,” Faculty of In-

formation Technology, Multimedia Uni-

versity, 2006. Available at: ttp://bittwist.

sourceforge.net. Accessed: November,

2007.

