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Abstract
Based on the Asymptotic Homogenization Method, the electromecha-
nical global behavior of a two-phase piezoelectric unidirectional perio-
dic fibrous composite is investigated. The composite is made of homo-
geneous and linear transversely isotropic piezoelectric materials that 
belong to the symmetry crystal class 622. The cross-sections of the 
fibers are circular and are centered in a periodic array of rectangular 
cells. The composite state is anti-plane shear piezoelectric. Local pro-
blems that arise from the two-scale analysis using the Asymptotic Ho-
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mogenization Method are solved by means 
of a complex variable, leading to an infinite 
system of algebraic linear equations. This 
infinite system is solved here using different 
truncation orders, allowing a numerical study 
of the effective properties. Some numerical 
examples are shown. 

Key words
Periodic composites, asymptotic homogeni-
zation method, effective properties, infinite 
systems.

1 Introduction

Periodic composite materials made of reinfor-
ced unidirectional fibrous embedded in a poly-
meric matrix are often found in a wide range 
of applications. An important problem is to 
compute their global (or effective) properties 
as a function of the physical and geometric 
characteristics of the components. The as-
ymptotic homogenization method (AHM) is 
a mathematical tool for examining both ma-
croscopic and microscopic properties of this 
class of heterogeneous media and has been 
applied to many areas. The formal procedure 
of the AHM is based on the combination of 
the two-scales method combined with avera-
ge techniques of the perturbation theory. 

From a mathematical point of view, the 
method guarantees that the solution of a fa-
mily of problems with periodic and rapidly 
oscillating coefficients, depending on a mi-
crostructural small parameter ,ε  converges 
to the solution of the homogenized problem 
as 0.ε →  The coefficients of the homo-
genized problem are not rapidly oscillating 
and are called effective coefficients of the 
composite. However, to compute the effec-
tive coefficients it is necessary to solve the 
so-called local problems, which involves, for 

instance, partial differential equations with 
periodic boundary conditions and conditions 
on the interfaces between the matrix and the 
fibrous composite. Consequently, AHM pro-
vides a mathematical model to give answers 
to engineering problems but does not provide 
analytical or numerical algorithms to compute 
the effective properties.

In this work, AHM is applied to obtain se-
mi-analytical formulae for the elastic, pie-
zoelectric and dielectric permittivity, which 
represent effective properties of a reinforced 
composite with circular cylindrical shaped fi-
bers, also with a rectangular array distribu-
tion in a matrix. Both, fibers and matrix, are 
characterized by homogeneous and linear 
transversely isotropic piezoelectric materials 
belonging to the symmetry crystal class 622. 
The results are a generalization of those pu-
blished in [1], where the same problem on the 
square periodic cell was investigated.

2 Problem formulation 
and basic equations

A two-phase fibrous composite consisting 
of identical circular cylinders embedded in a 
matrix is considered here. Both components 
are homogeneous and linear transversely 
isotropic piezoelectric materials belonging 
to the symmetry crystal class 622. The axis 
of transversely symmetry coincides with 
the fibers direction, which is taken as the

3Ox - axisaxis. The periodic distribution of the 
fibers follows a rectangular array, as obser-
ved in Figure 1. The governing equations 
are the equilibrium equations of linear elas-
ticity and the quasi-static approximation 
of Maxwell’s equations in the absence of 
free conduction currents. For the mechani-
cal displacement, 1 2 3,( , )w w w=w  and the 
electric field 1 2 3( ), ,EE E=E . 
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The constitutive relations of the linear pie-
zoelectricity theory are as follows:
	

(1)

where ij
εσ  is the stress tensor; ij

ε  is the li-
nearized strain; and iDε  the electric displa-
cement. 

The material properties of the piezoelectric 
medium are described by the following coeffi-
cients: elastic ( ) ,ijklCε  piezoelectric ( ) ,ikleε  and 
dielectric ( )ij

εκ . The super-index ε  indicates 
the periodic and rapidly oscillating variation 
of the original fields. The material functions 
satisfy the usual symmetry and positivity 
conditions (see, for instance, [2]). The con-
vention summation over repeated indexes is 
assumed. The Latin indexes runs from 1 to 3. 

The equilibrium equations on the composite 
are represented by

, ,, 0,ij j i i if Dε εσ = =
                               (2)

where if  corresponds to the body forces and 
the comma notation means partial differentia-
tion.

The following geometric relations have been 
used 

, , ,2 ,,l k k lkl m mw w Eε ε ε ε εϕ= −+=
                  (3)

where εϕ  is an electric potential.

Perfect contact conditions are assumed on 
the interface εΣ  between the fibers and the 
matrix:

             (4)

where 1 2( , )n n=n  is the outer unit normal 
vector to εΣ , and (1) (2)• = • −•  denotes the 
contrast around εΣ , taken from the matrix to 
the fiber.

Figure 1: Binary composite: cross-section of 
the rectangular array distribution 
of the identical circular cylinders 
of radius R . The periodic cell

1 2( )V V V=  ; and the common 
interface Σ  are illustrated 
in the lower right corner

Source: own elaboration

Equations (1)-(4), are established are establis-
hed in the region occupied by composite εΩ
, which must be completed with appropriated 
boundary conditions. For instance, one can as-
sume homogeneous boundary conditions like 

, 0,0 on . lwε ε εϕ= ∂= Ω Hereinafter, 
when “the problem (1)-(4), is mentioned”, it 
means that such homogeneous conditions are 
considered. 
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3. Homogenization and models 
for the local problems and 
effective coefficients

In this problem the small parameter ε  could 
be considered as l Lε = , where l  is the dis-
tance between the centers of two neighboring 
cylinders and L  is the diameter of the com-
posite. In this type of problem it is possible 
to distinguish two spatial scales: one of them 
defined by the global (or slow) variable x , and 
the other one is the local (or fast) variable

ε
=

xy . 

In order to obtain the homogenized problem, 
the solution of the solution of (1)-(4), is sought 
is sought as follows: 

  

   

(5)

where 0w , 1w , 0ϕ , 1ϕ  are V -periodic periodic 
functions with respect to the fast variable .y

Substituting (5) in the problem (1)-(4), 
applying the chain rule differentiation formu-
la, and equating to zero, the terms correspon-
ding to equal powers of ( )2 1 0, , ,ε ε ε ε− − …  
are obtained, which correspond to a recurrent 
family of partial differential equations. From 
the term corresponding to 2ε −  it is possible 
to conclude that 0w  and 0ϕ  do not depend 
on the fast variable, i.e.: 0 0 ( )w w= x  and 

0 0 ( )ϕ ϕ= x . On the other hand, from the 
equations associated to 1ε −  the local pro-
blems are obtained. The solutions to these 
problems play an important role to compute 
the effective properties. Finally, working with 
the system corresponding to 0ε  it is possible 
to derive the “homogenized problem” and the 
formulae for the computation of the effective 

coefficients as functions of the solution of the 
local problems. 

Summarizing the relevant results, the homo-
genized problem can be written in the compo-
site 0Ω  in the following form:
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(6)

				     

where the effective coefficients can be calcu-
lated from the formulae
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where “|” is used to denote partial diffe-
rentiation with respect to the fast variable

ly  whereas the local functions , ,pq kM ,pq N
,q kP  y q Q

 
are the V -periodic periodic solutions of 

the following local problems on the periodic 
cell V :

•	 Problem pq L : Find the V -periodic periodic 
functions ,pq kM  y pq N  such that:
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With the local constitutive relations given by

( ) ( ) ( ) ( ) ( )
, ,

( ) ( ) ( ) ( ) ( )
, ,

,

.
pq i i k pq k i pq
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The Greek indexes run from 1 to 2. 

Problem q L : Find the V -periodic periodic functions 

,q kP  and q Q  such that:
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where
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A more detailed explanation of this asymp-
totic process for a more general case can be 
found in [3]. 

3.1 About the “antiplane” problems for 
the symmetry crystal class 622

In this section the homogenization model will 
be specified for the particular case of compo-
nents with transversely isotropic piezoelec-
tric of 622 crystal symmetry. In particular, we 
are interested in the solution of the “antipla-
ne” problems ( )13 23 1 2, , ,L L L L because the 
“plane” problems ( )3311 22 12 3, , , ,L L L L L  
are the same as those investigated in [4]. The 
relevant constitutive relations are 

23 2323 23 123 1 13 1313 13 213 2

1 123 23 11 1 2 213 13 22 2

2 , ,
2 2 .

2
,

C e E C e E
e eD E D E

ε ε ε ε ε ε ε ε ε ε

ε ε ε ε ε ε ε ε ε ε

σ σ

κ κ
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23 2323 23 123 1 13 1313 13 213 2

1 123 23 11 1 2 213 13 22 2

2 , ,
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2
,

C e E C e E
e eD E D E
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ε ε ε ε ε ε ε ε ε ε

σ σ

κ κ
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 
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					     (12)

Only three material properties are invol-
ved here, namely: the longitudinal shear 
modulus 1313 2323=Cp Cε ε ε= , the transver-
se permittivity constant 11 22tε ε εκ κ== , and 
the shear stress piezoelectric coefficient 

213 123e .s eε ε ε= −′ =

The solution of the “antiplane” local problems 
allows obtaining the effective properties

1313C , 2323C , 213e , 123e , 11κ  and 22κ . For ins-
tance, with the solutions 1 P  and 1Q  of the 
local problem 1 L  it is possible to compute the 
effective coefficients: 

(13)
123 1 1 11 1 12 1 2 1' ' , ' ,v vs p s te P Q P t Qsκ= + + = + +−

123 1 1 11 1 12 1 2 1' ' , ' ,v vs p s te P Q P t Qsκ= + + = + +−

where 
1 1 2 2

1 2
v

V k V kk
V V
+

=
+ , with 2

2V Rπ=  and 1 2V a+ =  
In the following, the pre-index “1” will be eli-
minated for simplicity. The local displacement 

( )1P P≡  and the local potential ( )1Q Q≡  are 
solutions of the following local problem 1 L  

213 123e .s eε ε ε= −′ =
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(14)

where ∆  is the two-dimensional Lapla-
cian. Therefore, the solutions ( )P γ  and 

( )Q γ ( )1,2γ =  are doubly periodic har-
monic functions of the complex variable 

1 2z xx i= +  defined in the rectangular cell 
( )1 2 1 2V V V VV= ∧ =∅ 

 with periods 1 1ω =  
and 2 aiω = .

3.2 Solution of the local problem 1 L  
The solution of  is sought as follows:
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where ka , kb , kc  and kd  are real and un-
determined coefficients, ( )zζ  is the quasi-
periodic Weierstrass Zeta function; whereas 

( ) ( )k zζ  denotes their -thk  derivative of 
periods 1ω  and 2ω . The superscript “ o ” on 
the summation indicates that the summation 
is carried out only over the odd indexes. ( )P γ  

is an even function of θ , with iz Re θ= , and 
( )Q γ  is an odd function of θ . Expressions for 

the undetermined constants 0a  and 0b  appea-
ring in (1)P  and (1)Q , respectively, can be ob-
tained from the quasi-periodicity of ( )zζ

( ( ) ,)z zα αζ ω ζ δ+ − =               (16)

where 2
2 α

α
ωδ ζ=  
 
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 and the Legendre’s re-
lation is fulfilled (see, for instance, [5]). The 
Laurent expansion about the origin for (1)P  
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with
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					     (18)

and the lattices sum kS  is defined by 

1 2
,

(' 3, ,) k
k

m n

n kS mω ω −= + ≥∑ 	 (19)

where the prime on the summation means 
that the double summation excludes the term 

0m n= = . The series are absolute and uni-
formly convergent. The conditions on the in-
terface in (14) are used now to derive the fo-
llowing relations between the undetermined 
coefficients 
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			          (20)

for 1,3,5,l = …  As we can note, the coeffi-
cients ka and kb , from the last two equations 
of (20), are solutions of an infinite system of 
linear algebraic equations. 

On the other hand, based on certain transfor-
mations, as in [1], it is possible to modify  to 
obtain

( )1 11 1 1
123 11

2 , ,
2t bs a t a

a
e

a
a ππ κ
+

= =−
′ − ( )1 11 1 1

123 11
2 , ,

2t bs a t a
a

e
a

a ππ κ
+

= =−
′ −   (21)

  

where only residues 1a  and 1b  of (1)P  and 
(1)Q , respectively, are relevant for computing 

123e  and 11κ . 

3.2.1 Solution of the infinite system
To solve the infinite system (20) it is convenient 
to introduce the following change of variables

(22)

to rewrite (20) as follows: 
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					     (23)

where I  is the identity matrix, and the compo-
nents of matrices W  and W ′  for 1k l= =  are

2 22 1
11 11

2 1

, ,R w Rw δ δ
ω ω

′ ==         (24)

and in other case 
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(25)

So both matrices W  and W ′  are real, sym-
metric, and bounded, and consequently we 
can use classical results from the theory of 
infinite systems. Furthermore,
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and all components of 1U


 and 2U


 are zero ex-
cept the first ones which are equal to pRχ− ′  
and tRχ−  respectively, where
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The non-symmetric 2 2×  matrices (1)Φ  and 
(2)Φ  can be defined by

(1) (2)1
, .

1
p p p

t tt

χ χ χ
χ χ χ

′ ′
Φ Φ

− −   
= =   − ′  ′−                                     

(28)

Therefore, the third and fourth equations of 
(23) can be transformed in

	 11 1 12 1

21 1 22 2

2

2 2

0,
,

W
W U

ψ ψ
ψ ψ

+ + =
′+ + =

  
  

	 (29)

where only the first component of 2U  is non-
null, and equal to R− , and

(30)

( )
( )

1(2) (1) 1 1
, .

1
t p t p t

p t p t
t p p p t
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′
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, .
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′

− − + 
  =    − + ′ ′Λ − 

Now we can analyze the behavior of the effec-
tive coefficients for different orders of trunca-
tion of the infinite system (29). The general 
form of the components of the principal ma-
trix - ijH h =   - of (29) can be defined as fo-
llows
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1 21
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ii ii
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=
=

=
= +

′=
=

(31)

3.2.2 Generalization to other 
antiplane problems
Solving the local problem 1 L , one can obtain only 
the coefficients 123e  and 11κ . This is why we need 
to solve the other “antiplane” local problems so 
as to obtain the remaining effective coefficients. 
For instance, from 2 L  we can compute 213e  and 

22κ , from 23 L  it is possible to obtain 123e  and 

2323C  and from 13 L  we can compute 213e  and 
1313C .

The methodology used in the previous sub-
sections is then applied to solve these local 
problems, with the aim of computing the effec-
tive coefficients 1313 , 2323C , 213e  and 22κ .

4. Numerical examples

In this section some numerical examples 
will be presented in order to illustrate the 
efficiency of the method described above. 
Firstly, we will show comparisons with the 
results reported in [1] for computations of 
the effective coefficients in the limit case of 
a square cell ( )1a = . Secondly, for the rec-
tangular cell with 2a = , some comparisons 
are made with results derived from the Fast 
Fourier Transform numerical method. The-
se last numerical results illustrate that the 
present work involves an extension of the 
results published in [1]. 

In both cases we use the same data taken 
from [1], which are as follows: for the matrix 
(collagen) 1 1, 4p = GPa, 1 0/ 2.825t =  units, 
and 1 0,062d = pC/N; whereas for the fibers 
(collagen-hydroxyapatite (HA)) 2 2,697p =
GPa, 02 / 2.509t =  units, and 2 0,041d = pC/N. 

12
0 8,854 10−= ×  C

2/N·m2 

4.1 Case of 1a =
In this subsection, we reproduce the nume-
rical results published in [1]. In fact, Figure 2 
shows the semi-analytical results of the pre-

(1) (2), .p p p

t t

χ χ χ
χ χ χ

′ ′
Φ Φ

− −   
= =   ′  ′  
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sent model that reproduce those published in 
Figure 2, page 5774 of [1]. The results deri-

ved from the present model corresponds to 
an order of truncation 0 4.n =

Figure 2. Comparisons of the effective properties between the results derived from the 
present semi-analytical model (AHM) and those reported in Figure 2, page 
5774 of [1] (AHM [1]) for the limit case of a square periodic cell ( )1a =

4.2 Case of 2a =

The main goal of this subsection is to illus-
trate the effectiveness of the present semi-
analytical model for a rectangular array 

( )1a ≠ . 

In this case the effective properties don’t pre-
serve the symmetry of the phases, i.e., when 
we compute 123

1'
e
s  and 213

1'
e
s , they will be diffe-

rent. The same will happen when we obtain 

11

1t
κ

 and 22

1t
κ

, or 1313

1

C
p  and 2323

1

C
p , as illustrated in 

Figure 3.

Moreover, this semi-analytical model shows 
its quality when we compare with the re-
sults via the Fast Fourier Transform method 
(FFT) (see, for instance, [5-8]). The results 
of such comparison are shown in Figure 
3. The expected effect of the rectangular 
array periodic distribution, for 2a = , in the 
orthotropic global behavior is revealed.
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Figure 3. Normalized elastic, piezoelectric and dielectric effective coefficients of a two phase 
piezoelectric fibrous composite with 622 piezoelectric phases versus fiber area 
fraction 2 / 2V . Comparisons between the results derived from the present semi-
analytical formulae (AHM) and those derived by the FFT numerical method (FFT)

Source: own elaboration

5. Concluding remarks

A methodology was developed for obtaining 
semi-analytical expressions to compute the 
effective properties derived from the “antipla-
ne” local problems of a two-phase piezoelec-
tric unidirectional periodic fibrous composite 
made of homogeneous and linear transversely 
isotropic piezoelectric materials, which belong 
to the symmetry crystal class 622. The cross-
sections of the fibers are circular and are cen-
tered in a periodic array of rectangular cells. 
The efficiency of such methodology was veri-
fied by reproducing the results published in [1] 
for the particular case of a square cell. 

The main difficulties found in this study are 
linked with the non-nullity of the lattices sums 

related to the considered rectangular geome-
try, which is a considerable source of non-null 
coefficients in the principal matrix of the infi-
nite system. The effective properties depend 
on the fiber radius “ R ”, which is less than
1/ 2 ; on the physical properties of each phase 
as well as on the length “ a ” of the rectangu-
lar cell that appears revealed in the matrix Ψ
of the system (30). The methodology is based 
on elements from the theory of complex varia-
bles, from lattices sums, and from the theory of 
infinite systems of algebraic equations. 
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