
Universidad Distrital Francisco José de Caldas - Technological Faculty134

A Mechanism of abstraction for independent definition of game’s platform elements 

Carlos Enrique Montenegro Marín*                                                                                                            
Juan Manuel Cueva Lovelle**                                                                                                    
Jordan Pascual Espada***

*	 B.Sc. In Systems Engineering, MSc. Information and Comunications, Universidad Distrital Francisco José de Cal-
das, Bogotá (Colombia). PhD. In Informatics Systems of Services for Internet, Universidad Pontificia de Salamanca 
(Spain).Current position: professor at Universidad Distrital Francisco José de Caldas, Bogotá (Colombia). 

	 E-mail: cemontenegrom@udistrital.edu.co 
**	 B.Sc. In Mining, MSc. In Computers, PhD. In Computer Science. Current position: professor at Universidad de Ovie-

do, (Spain). E-mail: cueva@uniovi.es  
**	 B.Sc. In Informatic Engineering, MSc. In Web engineering, PhD. In Computer Science. Current position: professor 

at Universidad de Oviedo, (Spain). E-mail: pascualjordan@uniovi.es 

submitted date: September 2013
received date: October 2013

accepted date: February 2014

Abstract
This article is aimed at determining the feasibility of using a common 
mechanism to define the configuration in games for mobile devices. 
Such a configuration is intended to increase the level of abstraction up 
to a point where the definition of a platform game in XML format is 
made independent. This should then be read and deployed in an auto-
matic way over any mobile platform.

Keywords
Abstraction, independent the definition, Mobil games, Domain Specific 
Language (DSL).

1. Introduction

One of the big problems that arise when ge-

nerating applications for different mobile 

platforms is how to standardize the defini-

tion of common areas. For example, suppose 

that you want to display the same game for 

an Android device and for an IPhone device, 
the game has some common elements such 
as name, screen orientation, the main icon’s 
game, the background image, additional ima-
ges that will manage the game, sounds, button 
images, images of level change among others. 
Defining these elements in the appropriate 



135

A Mechanism of abstraction for independent definition of game’s platform elements 

A CASE-STUDY
VISION

Electronic Vision - year 7 number 1 pp. 134 - 142 january -june of 2014 

language for Android and for iPhone separa-
tely leads to carrying out repetitive tasks that 
could be minimized by reading information 
from a common format.

The approach presented herein attempts to 
solve such a problem. The idea is to read the 
common elements of an XML file in order to 
abstract these common elements in a single 
format that is accessible regardless of the 
platform. However, the problem is presented 
and is the purpose of this article to focus on 
studying the feasibility level of performance 
that this implies in different mobile platforms.

2. Gade4All Project description

The above problem is contained within the 
Gade4All project that seeks the goal of crea-
ting a Domain Specific Language (DSL), 
through which a person, without knowledge 
in developing applications for a specific mobi-
le platform, can build his/her own games.

In this sense, it has been already established that 
the most relevant mobile operating systems to-
day are Android and iOS, whose tasks involve 
the development of the game for each platform, 
considering the dynamism and the great insight 
that social networks have. A third platform that 
has also been considered, on which to deploy 
the game, is a web browser that uses HTML5 
((W3C)). Finally, and in order to provide grea-
ter coverage on mobile platforms, the game will 
also be deployed over Windows Mobile.

Therefore a working plan has been determi-
ned, which comprises the following stages:

1.	 Generic categorization of game mobile de-
vices.

2.	 Establishment of the common elements 
among the different games by category.

3.	 Identification of common elements to all 
games.

4.	 The making of a game by category and di-
fferent platforms, containing the common 
elements involved in each of the specific 
programming languages.

5.	 Performance of XML loader for each plat-
form.

6.	 Establishment and deployment of a compa-
rative metric to evaluate the operation of the 
game; reading the XML properties against 
the definition of these implicit properties in 
the same executable code of the game.

To perform the tests, an XML file that conta-
ins the features related to the levels of a mo-
bile game will be created. This XML file will 
be loaded on each mobile platform (Android, 
iPhone OS and Windows Mobile) and will 
take some metrics regarding time to make a 
full comparative analysis. Therefore, it will be 
necessary to implement the same features on 
each mobile platform, obviating XML.

3 Mobile operating system and 
game creation software

This section is aimed at showing the reader a 
very simple description of the mobile platforms 
to be used and some frameworks that somehow 
resemble each other within the Gade4all project.

Android: One of the most famous mobile Ope-
rating System (OS) these days is Android. 
Introduced in 2008, this OS is a product of 
Google and has many features that a mobile 
OS should have. Initially, this OS was not so 
successful, having many bugs, e.g. Bluetooth 
file transfer was not supported. But develop-
ments continued and now Android is used by 
many mobile manufacturing companies.



136

Carlos Enrique Montenegro Marín - Juan Manuel Cueva Lovelle - Jordan Pascual Espada

Universidad Distrital Francisco José de Caldas - Technological Faculty

The latest version of Android is Ice Cream 
Sandwich (version 4.0). This version combines 
the best of Honeycomb 3.0 for Android tablets 
with the Android Gingerbread 2.3 OS to create a 
single, united operating system that developers 
use for all Android devices. The tiny incremen-
tal changes we saw from Froyo to Gingerbread 
have disappeared completely. Ice Cream Sand-
wich heralds a dramatic growth. Despite its 
catchy name, Ice Cream Sandwich is all about 
strong lines, sharp corners, and darker colors, 
its applications are distributed through “Android 
Market” or “Google Play” [1].

iOS: Apple is a late entrant in the smart-
phone industry, yet with a refreshing design 
and many innovations, Apple’s iPhone quic-
kly made inroads in the market. Accordingly, 
iPhone OS quickly became the number two 
smart-phone OS in the market. The iPhone 
is a closed smart-phone platform, running a 
closed OS; which means Apple has the full 
control on its hardware and software.

Apple plays the roles of device maker and 
vendor, OS owner and service platform maker. 
The iPhone is made by OEM companies and 
sold through Apple’s stores. Apple gets a sli-
ce of profit from content providers and appli-
cation developers through two platforms: 
iTunes and App Store. The iTunes sells music 
and movies to customers, and App Store sells 
application software [2].

Windows Mobile: The Windows Mobile opera-
ting system is available on multiple platforms, 
but the first devices to use Windows Mobile 
were Pocket PC’s that were driven by the Poc-
ket PC 2000 Operating System and powered 
by Windows CE 3.0, which was launched in 
April 2000. Pocket PC 2000 can support only 
screens with a resolution of 240 x 320. It was 
designed for early PDAs like the HP journey 
and the iPads. It was a CPU-specific OS so all 

the software created for these devices had to 
be targeted at specific platforms. After the 
Pocket PC 2000 came the enhanced operabili-
ty and Smartphone compatibility of Pocket PC 
2002, launched in October 2001.

Currently, Windows phone 7 is introducing a 
new interface for the design system that in-
cludes a codename which is known as “Me-
tro”. The screen itself has been provided with 
the links for applications, features, functions 
and individual items that include contacts, 
web pages, gaming applications or media 
items using tiles (i.e. click-able links). You 
can add, edit, rearrange and remove the links. 
These links also use the updater that will up-
date the user interface using a real time sys-
tem. Its applications are distributed through 
“Marketplace” of Windows Phone [1].

The <E-Game> Project: The <e-Game> pro-
ject offers an authoring environment for educa-
tional adventure games that do not demand prior 
knowledge of Information and Communication 
Technologies. The author (an expert in a specific 
field) only needs to write documents that descri-
be the contents of the videogame following the 
<e-Game> XML syntax and feed them into 
the engine. In turn, the engine produces a fully 
functional game from those documents [3]

In the Tutorial “Applying Domain-Specific 
Modeling to Game Development with the Mi-
crosoft DSL Tools”, the authors introduce the 
concepts of domain-specific modeling (DSM) 
and domain-specific languages (DSLs), pre-
senting how the theory can be productively 
put into practice with the Microsoft Visual 
Studio DSL Tools. The required steps for 
applying DSM to the game development do-
main are specified and illustrated with the 
creation of a visual DSL for modeling 2D ad-
venture games. The ultimate goal is to allow 
game developers and designers to work more 



137

A Mechanism of abstraction for independent definition of game’s platform elements 

A CASE-STUDY
VISION

Electronic Vision - year 7 number 1 pp. 134 - 142 january -june of 2014 

intuitively, with a higher level of abstraction 
and closer to their application domain [4]. 
Another contribution from these tools, in the 
same direction, is a report called “Using Do-
main-Specific Modeling towards Computer 
Games Development Industrialization” [5].

In the Project “Domain Specific Techniques 
for Creating Games”, the authors examine 
strategic games and present the Game Design 
Language as a language for expressing game 
rules. The goal of this project is to apply do-
main specific programming techniques to crea-
te a language for generating turn based stra-
tegy games. The language is written in XML 
while the templates and runtime libraries for 
the architecture are written in Java. The pro-
grammer writes the players, boards, units, ru-
les, and turn structure of the game in XML. 
The XML is given to a parser which fills in the 
templates to produce a game architecture. The 
programmer then needs to create a user inter-
face for the architecture to have a game [6].

A report called “Developing Digital Games 
through Software Reuse” considers that a 
game title is software and thus faces the same 
restrictions of business applications. The 
authors intend to analyze, under the optics of 
reuse, if game development should resort to 
reuse, and where and how this happens. This 
survey analyzes digital game development ai-
ming at identifying reuse techniques as well as 
the evolution of games since 2002. The report 
addresses questions like: did game engines 
become more productive and facilitate game 
development projects? Is the use of engines 
the only type of reuse in game engines? What 
is the similarity between game development 
and a software product line? What are the di-
fferences and similarities between game deve-
lopment and common commercial software? Is 
any formal reuse technique contemplated in 
the process of developing a game? [7].

The research work entitled “Sharpludus: 
improving game development experience 
through software factories and domain-spe-
cific languages” explores the integration of 
game development, an inherently creative 
discipline, with software factories, which are 
concerned with turning the current software 
development paradigm, based on craftsmans-
hip, into a manufacturing process. A software 
factory specification (i.e. schema) for a given 
game development domain is described, and a 
domain-specific language (DSL) that comple-
tes part of the software factory specification 
is defined. Such concepts were implemented 
and deployed into a host development envi-
ronment, which includes code generation 
(consuming a simple game engine) from dia-
grams specified by means of the visual DSL. 
Finally, real world scenarios, developed to 
validate the proposed software factory, and 
its visual DSL, show that the presented ap-
proach can be used by game developers and 
designers to work more productively, with a 
higher level of abstraction and closer to their 
application domain [8].

4. Test development

According to the outline of this work, the first 
step it is to categorize generic games for mobi-
le devices. To this end, the classification made 
in the iTunes Store has been taken as bench-
mark (http://www.apple.com/es/itunes/). Also, 
we considered the group’s experience in de-
veloping mobile games; thus we identified 5 
types of games: Arcade / Action, Puzzle, Stra-
tegy, Trivia, Memory, Logic and Skill Touch.

In order to determine the common elements 
between the different games by category and 
the common elements of all the games, it was 
necessary to make an iterative process that 
consisted on developing a game by category 
and on each different platform. Each iteration 



138

Carlos Enrique Montenegro Marín - Juan Manuel Cueva Lovelle - Jordan Pascual Espada

Universidad Distrital Francisco José de Caldas - Technological Faculty

of the process involved a comparative task 
that was carried out in order to determine the 
common elements. Table 1 shows the games 
performed and the specific platform on which 
each game was deployed:

Table 1. Typology of games and platforms 
on which games were deployed

Typology Platform

- Arcade / Action Windows Phone 7

- Puzzle iPhone

- Estrategy iPhone

nm- Trivia, Memory, 
Logic...

HTML 5 +
 Javascript

- Skill Touch Android

Source: own elaboration

Figure 1 shows the games created in each one 
of the platforms.

Figure 1. View of games in Iphone, Android, 
HTM5 and Windows Mobile

Source: own elaboration

Since each one of the platforms supported a 
different game, this exercise has allowed the 
abstraction of the configurable elements of 
the game in a class for each platform. Then, 
through a comparative process, debugging of 

the common elements of this class was achie-
ved for all games on all platforms, these ele-
ments are shown below.

global_elemts: global_name, global_
name_timespan, global_package_name, 
global_screen_orientation, global_icon, glo-
bal_window_width, global_window_height, 
global_window_tile_width, global_window_
tile_height, global_window_has_advertising.

screens_elemts: main_screen, main_
screen_start_button, main_screen_op-
tions_button, main_screen_images, game_
screen, game_screen_joypad_button, 
game_screen_shot_button, game_screen_
jump_button, game_screen_pause_button, 
game_screen_status_bar, end_level_screen, 
end_level_screen_retry_button, end_le-
vel_screen_play_next_level_button, end_le-
vel_screen_images, select_level_screen, 
select_level_screen_next_level_button, 
select_level_screen_previous_level_but-
ton, select_level_screen_play_button, se-
lect_level_screen_level_thumbnail_view, 
select_level_screen_level_title_view, se-
lect_level_screen_level_images, end_game_
screen, end_game_screen_return_button, 
end_game_screen_images.

Game: level, level_id, level_description, 
level_title, level_thumbnail_image_source, 
level_fps, level_attemps, level_end_level_
condition, level_points, level_points_time_
decrease.

The most significant contribution of this paper 
is summarized in Figure 2. This proposal is dis-
played as a tool that generates XML with the 
information necessary for playing, then this 
XML file is taken to a loader in each of the mo-
bile platforms, then this loader is responsible 
for reading the information to be accessed on 
each platform. Then, each platform will measu-



139

A Mechanism of abstraction for independent definition of game’s platform elements 

A CASE-STUDY
VISION

Electronic Vision - year 7 number 1 pp. 134 - 142 january -june of 2014 

re the loading time, also performing the same 
process (i.e. obviating the XML). The idea is 
to determine the feasibility of extracting in-
formation that is common to all platforms in a 

file that is independent of and reusable for the 
platforms. This mechanism would increase the 
level of abstraction and gained independence, 
defining the levels of a specific platform.

Figure 2. General vision of the process of abstraction of levels in a 
game for mobile devices regarding runtime

      Source:  own elaboration

The diagramming tool shown in Figure 3 consists 
of a palette that contains all the common elements 
defined in one level. To be integrated into the 

XML, users simply drag the elements onto the 
workspace and fill its properties. These tools have 
2 versions, one in Visual Studio and one in eclipse.

Figure 3. Diagramming tool in Visual Studio and Eclipse

     Source: own elaboration



140

Carlos Enrique Montenegro Marín - Juan Manuel Cueva Lovelle - Jordan Pascual Espada

Universidad Distrital Francisco José de Caldas - Technological Faculty

The result of using the diagramming tool is 
an XML file that contains all the common 
and configurable information for games. Fi-
gure 4 shows the resulting file containing 
information on the level of a game and also 
of how the test of loading time was carried 
out. An important point here is that the 
example does not contain all the information 
on games, because this information is quite 

extensive and does not represent the main 
objective of this article.

Once the XML to be loaded is obtained, the 
next step is to implement the loader of this 
file for each platform. To this end, a mecha-
nism has been created to load the XML file 
into iOS, Android and Windows Mobile. This 
loader will also be responsible for measuring 
the load times on each platform.

Figure 4. XML file that contains the level elements to play on mobile devices

Source: own elaboration

Finally, the time it takes for the game to be 
deployed at the information level directly from 
the assembly is measured. These time mea-
surements were used for comparison with the 
data-reading process from XML in order to 

assess whether carrying out the abstraction of 
the levels through an XML file that is indepen-
dent of the platform is valid and does not invol-
ve a high cost in terms of run time. This issue 
will be discussed in the following section.



141

A Mechanism of abstraction for independent definition of game’s platform elements 

A CASE-STUDY
VISION

Electronic Vision - year 7 number 1 pp. 134 - 142 january -june of 2014 

5. Comparative evaluation of level 
loading for a game in mobile devices 
through a platform-independent 
mechanism against a mechanism that 
loads the level in its own assembly

The level-loading times are larger than the 
time involved in reading information from 
the XML file, but the idea of this section is 

to determine if the time difference is not sig-

nificant; thus the fact of using a mechanism 

that homogenizes and achieves platform in-

dependence in the definition of levels is more 

important. In this respect, we first show the 

times of each experiment, then make a com-

parison and finally argue if the proposal is va-

lid or not, Figs. 5,6,7.

Figure 5. Generation time of a game when reading information from an XML 
file vs reading information from a source code in Android

                                         Source: own elaboration

Figure 6. Generation time of a game when reading information form an XML file 
vs reading information from a source code in Windows Mobile

                                            Source: own elaboration

Figure 7. Generation time of a game when reading information from an XML 
file vs reading information from a source code in IOS

                                         Source: own elaboration



142

Carlos Enrique Montenegro Marín - Juan Manuel Cueva Lovelle - Jordan Pascual Espada

Universidad Distrital Francisco José de Caldas - Technological Faculty

Comparing the previous graphs, the best per-
formance, when reading the configuration 
from XML, is observed for the Windows Mo-
bile platform. This is because XNA has been 
used in the reading process of XML and this 
framework has provided enough improve-
ment to read this type of files, whereas the 
other two platforms have made use of a ma-
nual charger, not involving any improvement.

The worst case is observed for the IOS plat-
form when 100 enemies are loaded, showing 
an increment of 4307 milliseconds to load the 
game from XML. This means that the user 
must wait 4 seconds more for the game to be 
loaded in its mobile device; this time is ac-
ceptable as the charging time for loading will 
occur at the beginning of the game.

The longest wait time is observed in the IOS 
platform and the shortest time in the Win-
dows Mobile platform. These differences 
are caused by the loading mechanisms and 
so reading files happens faster on one of the 
platforms. In this case the platform that pro-
vides better results is Windows Mobile due 
to the improvements included in the XNA 
Framework.

6 Conclusions

In conclusion, it is preferable to increase the 
level of abstraction of the elements that con-
tains a level for a game, and make them inde-
pendent of platform, since the price to be paid 
is only a small increase in the loading time of 
the game for the user. This in the sense that, 
with a single configuration file, games can 
be deployed on different platforms without 
redoing all the code and/or making it neces-
sary to having expertise and prior knowledge 
about each specific platform.

References

[1]		 K. Vipin and G. Hitesh, “Mobile Opera-
ting Systems,” IJEIR, vol. 1, no. 2, pp. 
115-120, April 2012.

[2]		 F. Lin and W. Ye, “Operating System Battle 
in the Ecosystem of Smartphone Indus-
try,” Information Engineering and Electro-
nic Commerce, 2009. IEEC ’09. Internatio-
nal Symposium on. pp. 617-621, 2009.

[3]		 P. Moreno-Ger, I. Martínez-Ortiz, and B. 
Fernández-Manjón, “The< e-Game> 
project: Facilitating the development of 
educational adventure games,” Disponi-
ble en: http://www.e-ucm.es/drafts/11.pdf.

[4]		 A. L. de M. Santos and André W. B, Fur-
tado, “Tutorial: Applying Domain-Specific 
Modeling to Game Development with the 
Microsoft DSL Tools”, 2006, disponible en: 
http://www.cin.ufpe.br/awbf/files/SBGa-
mes2006_TutorialGamesDSM. pdf.

[5]		 A. W. B. Furtado and A. L. M. Santos, 
“Using domain-specific modeling towards 
computer games development industriali-
zation,” in 6th OOPSLA Workshop on Do-
mainSpecific Modeling DSM’06, 2006, p. 1.

[6]		 WORCESTER POLYTECHNIC INSTI-
TUTE, “Domain Specific Techniques for 
Creating Games,” 2007.

[7]		 B. Neto, L. Fernandes, C. Werner, and 
J. Moreira de Souza, “Developing Digital 
Games through Software Reuse,” Journal 
of Information Processing Systems, vol. 
6, no. 2, pp. 219-234, 2010.

[8]		 A.W. B. Furtado, “Sharpludus: improving 
game development experience through 
software factories and domain-specific 
languages,” Universidade Federal De 
Pernambuco (UFPE), 2006. 


